1
|
John OD, Surugau N, Kansedo J, Panchal SK, Brown L. Plant-Based Functional Foods from Borneo. Nutrients 2025; 17:200. [PMID: 39861330 PMCID: PMC11767754 DOI: 10.3390/nu17020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Borneo, the third-largest island in the world, is shared between Malaysia (Sabah and Sarawak), Indonesia (Kalimantan) and Brunei. As a biodiversity hotspot, it is home to about 15,000 flowering plants and 3000 tree species, of which many are endemic to the region. Locally derived plant-based foods are gaining popularity due to their lower environmental impact, contribution to food sustainability and health benefits. The local fruits and vegetables of Borneo have been used traditionally by the indigenous community for medicinal purposes. This community knowledge can provide a valuable guide to their potential for use as functional foods. This review explores the contemporary foods from Borneo, including fruit, vegetables, seaweeds and plant-derived food products that are locally consumed. The findings show that the unique tropical food groups have a wide diversity of phytochemical compositions that possess a wide array of biological activities including anti-inflammatory, antioxidant, anti-microbial, anti-proliferative, anti-fungal, wound healing and expectorant properties. The wide range of plant-based foods in Borneo deserves further development for wider applications as functional foods.
Collapse
Affiliation(s)
- Oliver Dean John
- Nutritional Biochemistry Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Noumie Surugau
- Seaweed Research Unit, Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Jibrail Kansedo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Sarawak, Malaysia;
| | - Sunil K. Panchal
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia;
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
2
|
Zhu Y, Wu S, Guo F, Dong Z, Chen Y, Chen Y. Structural characteristics of sulfated xylogalactomannan isolated from Caulerpa okamurae and its anticoagulant activity. Int J Biol Macromol 2024; 275:133743. [PMID: 38986975 DOI: 10.1016/j.ijbiomac.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Due to wonderful taste, rich nutrition and biological functions, many marine green algae in the genus Caulerpa have been recently developed as candidates for green caviar. A novel water-soluble sulfated xylogalactomannan CO-0-1 was obtained from the green algae Caulerpa okamurae. CO-0-1 was mainly composed of mannose (Man), galactose (Gal), and xylose (Xyl) at the ratio of 4.4:4.0:1.4 with the molecular weight at 470 kDa and the sulfate content at 12.78 %. The sulfated xylogalactomannan had Man at the backbone with →4)-β-D-Manp-(1→ and →2)-β-D-Manp-(1→ as the main chain and branches at O-3 position. The side chains contained →3)-β-D-Galp-(1→ and minor →2)-β-D-Xylp(1→. The sulfate groups only distributed at the side chains and at O-6 position of →3)-β-D-Galp-(1→ and O-4 position of (1→2)-β-D-Xylp. The anticoagulant activity indicated that CO-0-1 displayed intrinsic anticoagulant and specific anti-thrombin activities. The investigation expanded the utilization and development scene and scope of the green algae Caulerpa okamurae.
Collapse
Affiliation(s)
- Yanlin Zhu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Feng Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Zhe Dong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
3
|
Xia X, Wu Y, Chen Z, Du D, Chen X, Zhang R, Yan J, Wong IN, Huang R. Colon cancer inhibitory properties of Caulerpa lentillifera polysaccharide and its molecular mechanisms based on three-dimensional cell culture model. Int J Biol Macromol 2024; 267:131574. [PMID: 38615857 DOI: 10.1016/j.ijbiomac.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510535, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Danyi Du
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Guangzhou 510515, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
González-Arceo M, Aguirre L, Macarulla MT, Gil-Pitarch C, Martínez-Chantar ML, Portillo MP, Gómez-Zorita S. Effect of Gracilaria vermiculophylla Macroalga on Non-Alcoholic Fatty Liver Disease in Obese Rats. Antioxidants (Basel) 2024; 13:369. [PMID: 38539902 PMCID: PMC10968416 DOI: 10.3390/antiox13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 01/04/2025] Open
Abstract
Marine algae are valuable sources of bioactive compounds that have the potential to be used in the management of various pathologies. Despite the increasing prevalence of NAFLD, the absence of an approved effective pharmacological treatment with demonstrable effectiveness persists. In this context, the aim of the present study is to assess the effect of Gracilaria vermiculophylla red seaweed dietary supplementation on hepatic lipid accumulation, as well as on oxidative stress, inflammation and fibrosis- related markers on obese fa/fa Zucker rats fed with a standard diet, supplemented or not with 2.5% or 5% dehydrated Gracilaria vermiculophylla. After a six-week supplementation with the macroalga, no significant reduction in hepatic total lipid content or hepatic triglyceride content was observed. However, both doses were able to diminish hepatic NEFA concentration by reducing de novo lipogenesis and increasing mitochondrial biogenesis. Moreover, supplementation with the dose of 2.5% improved some oxidative stress and inflammation-related markers. Supplementation with the dose of 5% did not exert these clear beneficial effects. Thus, this study demonstrates that while Gracilaria vermiculophylla may not mitigate hepatic steatosis, it could exert protective effects on the liver by reducing NEFA content and enhancing oxidative stress and inflammation parameters.
Collapse
Affiliation(s)
- Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
| | - Leixuri Aguirre
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Teresa Macarulla
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-P.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-P.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), National Institute of Health Carlos III, 28222 Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.T.M.); (M.P.P.); (S.G.-Z.)
- CIBERobn Physiopathology of Obesity and Nutrition, National Institute of Health Carlos III, 28222 Madrid, Spain
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Chumphoochai K, Manohong P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model. Mar Drugs 2023; 21:577. [PMID: 37999401 PMCID: PMC10672060 DOI: 10.3390/md21110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Obesity is a multifactorial disease characterized by an excessive accumulation of fat, which in turn poses a significant risk to health. Bioactive compounds obtained from macroalgae have demonstrated their efficacy in combating obesity in various animal models. The green macroalgae Caulerpa lentillifera (CL) contains numerous active constituents. Hence, in the present study, we aimed to elucidate the beneficial anti-obesity effects of extracts derived from C. lentillifera using a Caenorhabditis elegans obesity model. The ethanol (CLET) and ethyl acetate (CLEA) extracts caused a significant decrease in fat consumption, reaching up to approximately 50-60%. Triglyceride levels in 50 mM glucose-fed worms were significantly reduced by approximately 200%. The GFP-labeled dhs-3, a marker for lipid droplets, exhibited a significant reduction in its level to approximately 30%. Furthermore, the level of intracellular ROS displayed a significant decrease of 18.26 to 23.91% in high-glucose-fed worms treated with CL extracts, while their lifespan remained unchanged. Additionally, the mRNA expression of genes associated with lipogenesis, such as sbp-1, showed a significant down-regulation following treatment with CL extracts. This finding was supported by a significant decrease (at 16.22-18.29%) in GFP-labeled sbp-1 gene expression. These results suggest that C. lentillifera extracts may facilitate a reduction in total fat accumulation induced by glucose through sbp-1 pathways. In summary, this study highlights the anti-obesity potential of compounds derived from C. lentillifera extracts in a C. elegans model of obesity, mediated by the suppression of lipogenesis pathways.
Collapse
Affiliation(s)
- Kawita Chumphoochai
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand; (P.M.); (N.N.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand; (P.M.); (N.N.)
| | - Montakan Tamtin
- Kung Krabaen Bay Royal Development of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| |
Collapse
|
7
|
Nasir NAHA, Yuswan MH, Shah NNAK, Abd Rashed A, Kadota K, Yusof YA. Evaluation of Physicochemical Properties of a Hydrocolloid-Based Functional Food Fortified with Caulerpa lentillifera: A D-Optimal Design Approach. Gels 2023; 9:531. [PMID: 37504409 PMCID: PMC10379153 DOI: 10.3390/gels9070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
This study introduced a D-optimal design mixture to assess the physicochemical properties of a hydrocolloid-based functional food fortified with C. lentillifera. The combination incorporated vital jelly constituents, including extract (10-15%), sweeteners (20-29%), gelling agents (k-carrageenan and locust bean gum (LBG)), and preservatives (0-0.05%). The dependent variables were pH, Total Soluble Solid (TSS) value, and moisture content (MS). By employing the D-optimal design approach, a quadratic polynomial model was developed, demonstrating strong correlations with the experimental data with coefficient determinations (R2) of 0.9941, 0.9907, and 0.9989 for pH, TSS, and MS, respectively. Based on the D-optimal design, the study identified the optimum combination of significant factors with a desirability of 0.917, comprising 14.35% extract, 23.00% sucrose, 21.70% fructose, 26.00% k-carrageenan, 13.00% LBG, 1.95% CaCl2, and 0% methylparaben. The percentage of residual standard error (RSE) was less than 5%, indicating the reliability of the developed model. Furthermore, color analysis revealed significant differences among the jellies (p < 0.05). HPLC analysis demonstrated that the total sugar content in the fortified jellies was 28% lower compared to commercial jelly. Meanwhile, the bitterness level according to e-tongue showed a reduction of up to 90.5% when compared to the extract. These findings provide a valuable benchmark for the development of functional food products, ensuring their quality, safety, and extended shelf-life.
Collapse
Affiliation(s)
- Nor Atikah Husna Ahmad Nasir
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, Arau 02600, Perlis, Malaysia
| | - Mohd Hafis Yuswan
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
| | - Nor Nadiah Abd Karim Shah
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit, Institute for Medical Research, National Institutes of Health, No. 1, Jalan, Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Selangor, Malaysia
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yus Aniza Yusof
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Inforport, Serdang 43400, Selangor, Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Panchal SK, Ghattamaneni NKR, Magnusson M, Cole A, Roberts D, Neveux N, Brown L, Paul NA. Freshwater Macroalgae, Oedogonium, Grown in Wastewater Reduce Diet-Induced Metabolic Syndrome in Rats. Int J Mol Sci 2022; 23:ijms232213811. [PMID: 36430290 PMCID: PMC9695597 DOI: 10.3390/ijms232213811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Macroalgae produce compounds with industrial, pharmaceutical and nutritional applications. In this study, biomass from the freshwater macroalgal genus Oedogonium was grown in either treated municipal wastewater (M) or ash dam water from a coal-fired power station (D). The biomass was investigated for its metabolic responses in high-carbohydrate, high-fat diet-fed rats, a model of human metabolic syndrome. The Oedogonium biomass cultured in M contained higher amounts of K, Mg, omega-3 polyunsaturated fatty acids (PUFA), insoluble fibre and β-carotene, while biomass grown in D contained higher amounts of Al, Fe, V, Zn, Mn and As. Biomass from M further increased body weight and inflammation in the heart and colon in high-carbohydrate, high-fat diet-fed rats. In contrast, biomass from D prevented changes in metabolic, cardiovascular and liver parameters without changing tissue histology. We suggest that increased intake of metals and metalloids through macroalgal biomass from D may decrease abdominal fat deposition while polysaccharides, PUFA and carotenoids from M may improve blood glucose responses in an obesogenic diet. Thus, macroalgal biomass grown in different wastewater sources could be acceptable for feed or food applications. This biomass could even provide potential health benefits in diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
- Correspondence: ; Tel.: +61-2-4570-1932
| | - Naga K. R. Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Marie Magnusson
- Te Aka Mātuatua—School of Science, University of Waikato, Tauranga 3112, New Zealand
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew Cole
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - David Roberts
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Nicolas Neveux
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
- Pacific Biotechnologies Australia Pty Ltd., James Cook University, Townsville, QLD 4811, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas A. Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
9
|
Manoppo JIC, Nurkolis F, Pramono A, Ardiaria M, Murbawani EA, Yusuf M, Qhabibi FR, Yusuf VM, Amar N, Karim MRA, Subali AD, Natanael H, Rompies R, Halim RF, Bolang ASL, Joey G, Novianto CA, Permatasari HK. Amelioration of obesity-related metabolic disorders via supplementation of Caulerpa lentillifera in rats fed with a high-fat and high-cholesterol diet. Front Nutr 2022; 9:1010867. [PMID: 36185651 PMCID: PMC9521187 DOI: 10.3389/fnut.2022.1010867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary modification, including functional foods, could reduce comorbidities due to obesity. An increase in serum glucose and lipids is often seen in obesity. Furthermore, obesity is also characterized by a decrease in antioxidant capacity (i.e., decrease in superoxide dismutase/SOD) and downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). It has been well established that PGC-1α is important to regulate mitochondrial biogenesis. Sea grapes (Caulerpa lentillifera) are known as a traditional food in many Asia-Pacific countries. Recent evidence suggests that sea grapes have many beneficial properties as functional foods and may have potential therapeutic functions. We investigated the effect of sea grapes (C. lentillifera) on serum glucose, lipids, PGC-1α, and protein levels of SOD in the liver of Rattus norvegicus, which is induced with a high-fat and high-cholesterol diet. A total of four groups were made, each containing ten male Rattus norvegicus; group A received a standard dry pellet diet as control, group B received cholesterol- and fat-enriched diets (CFED), groups C and D received CFED and 150 and 450 mg/kg body weight (BW) of sea grape extract, respectively, for 4 weeks. Serum glucose and cholesterol were assessed using a blood auto-analyzer. Serum PGC-1α was measured using ELISA. SOD levels were calculated using the superoxide dismutase assay kit by Sigma-Aldrich with blood taken from liver tissue. In this study, sea grape extracts improved total cholesterol levels better than the CFED and normal groups. The efficacy of total cholesterol improvement was similar between the two doses of sea grape extract. Furthermore, sea grape extract increased PCG-1α levels, especially with the dose of 150 mg/kg BW. Blood glucose was also lower in the groups of sea grape extract. Interestingly, the groups treated with sea grapes extract exhibited higher levels of liver SOD compared to the normal and CFED groups. To conclude, sea grapes (C. lentillifera) have promising potential for anti-hyperglycemia and anti-hypercholesterolemia, and for reducing oxidative stress, and providing various health benefits for metabolic disorders.
Collapse
Affiliation(s)
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga, Yogyakarta, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Universitas Diponegoro, Semarang, Indonesia
- *Correspondence: Adriyan Pramono,
| | - Martha Ardiaria
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Etisa Adi Murbawani
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Yusuf
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Faqrizal Ria Qhabibi
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | - Nasim Amar
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | | | - Hans Natanael
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | - Ronald Rompies
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | - Rifrita Fransisca Halim
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | | | - Gregory Joey
- Department of Pediatrics, Sam Ratulangi University/Prof.dr.R.D.Kandou Hospital Manado, Manado, North Sulawesi, Indonesia
| | - Christian Agung Novianto
- Food Science and Technology Study Programme, Faculty of Agricultural Engineering, IPB University, Bogor, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
10
|
A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022; 11:foods11182832. [PMID: 36140958 PMCID: PMC9498133 DOI: 10.3390/foods11182832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable, specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many health benefits. On the other hand, there is currently hardly any article dedicated specifically to C. lentillifera regarding nutritional composition and recent advancements in its potential health benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera and compile recently discovered beneficial properties throughout the past decade. From the data compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of C. lentillifera differs from one region to another depending on various external factors. As a result, this paper will offer researchers the groundwork to develop food products based on C. lentillifera. The authors of this paper are hopeful that a more systematic review could be done in the future as currently, existing data is still scarce.
Collapse
|
11
|
Permatasari HK, Nurkolis F, Hardinsyah H, Taslim NA, Sabrina N, Ibrahim FM, Visnu J, Kumalawati DA, Febriana SA, Sudargo T, Tanner MJ, Kurniatanty I, Yusuf VM, Rompies R, Bahar MR, Holipah H, Mayulu N. Metabolomic Assay, Computational Screening, and Pharmacological Evaluation of Caulerpa racemosa as an Anti-obesity With Anti-aging by Altering Lipid Profile and Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-α Levels. Front Nutr 2022; 9:939073. [PMID: 35911110 PMCID: PMC9330592 DOI: 10.3389/fnut.2022.939073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Obesity is associated with an accelerated aging process, which prevents healthy aging. Both obesity and aging were manifested in the peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) level. These studies fulfill the scientific gap in assembled pharmacological activity assay of Caulerpa racemosa done in a previous preclinical trial. Six major compounds from sea grape (C. racemosa) extract were evaluated using an in silico approach against human pancreatic lipase, a-glucosidase, and a-amylase to predict prospective anti-obesity candidates. The lipase inhibitory activity of the extract reached 90.30 ± 0.40%, 1.75% lower than orlistat. The a-amylase inhibitory assay of the extract was 84.07 ± 5.28%, while the inhibitory activity against a-glucosidase was 81.67 ± 1.54%; both were lower than acarbose. We observe the effect of C. racemosa extract as anti-obesity with anti-aging by evaluating the obesity parameters in the human body for a 4-week period. There was a significant decrease in blood glucose, total cholesterol, low-density lipoprotein (LDL), triglycerides (TG), waist circumference, waist-hip ratio, and body weight (p < 0.05); PGC-1α and high-density lipoprotein (HDL) increased significantly (p = 0.000), in Group B when compared with Group A. Our study revealed that sea grape extract is a potent anti-obesity with an anti-aging reagent that does not produce any significant adverse effects.
Collapse
Affiliation(s)
- Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | | | - Nurpudji Astuti Taslim
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nindy Sabrina
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Faisal Maulana Ibrahim
- Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Jodi Visnu
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dian Aruni Kumalawati
- Department of Biological Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | - Sri Awalia Febriana
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toto Sudargo
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Melvin Junior Tanner
- Department of Nutrition, Faculty of Public Health, University of Indonesia, Depok, Indonesia
| | - Isma Kurniatanty
- Department of Biological Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | | | - Ronald Rompies
- Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | | | - Holipah Holipah
- Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nelly Mayulu
- Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| |
Collapse
|
12
|
Ngadiarti I, Nurkolis F, Handoko MN, Perdana F, Permatasari HK, Taslim NA, Mayulu N, Wewengkang DS, Noor SL, Batubara SC, Tanner MJ, Sabrina N. Anti-aging potential of cookies from sea grapes in mice fed on cholesterol- and fat-enriched diet: in vitro with in vivo study. Heliyon 2022; 8:e09348. [PMID: 35521505 PMCID: PMC9065618 DOI: 10.1016/j.heliyon.2022.e09348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
This study determines the effect of cookies made from sea grapes (Caulerpa racemosa) on PGC-1α, total cholesterol, and blood glucose levels on mice fed with a Cholesterol- and Fat-Enriched Diet (CFED). The antioxidant activity, tyrosinase inhibition, α-glucosidase, and α-amylase inhibition is also analyzed in order to assess the in vitro anti-aging potential of sea grapes cookies. Forty male Mus muscullus albino mice weighing 20 g–30 g were used and randomly distributed into four groups of ten animals each. Group A served as a normal control (given a standard dry pellet diet), Group B was given CFED only, and mice in Groups C and D were given CFED with 100 mg and 200 mg/20 g body weight of sea grapes cookies, respectively for 4 weeks. In vitro study shows that the percentage of inhibition activity of antioxidant, L-Tyrosine, L-Dopa, α-glucosidase, and α-amylase inhibition were 45.65 ± 1.50, 8.95 ± 0.06, 21.31 ± 0.98, 77.12 ± 4.67 and 70.94 ± 0.98, respectively. This study found that group D had better activity in lowering blood glucose than group C (p < 0.0001). In addition, although there was not found significant difference between groups C and D in blood cholesterol reduction and PGC-1α (p = 0.1482), both groups experienced the same effect in total cholesterol reduction and PGC-1α in mice (significantly, p < 0001). Thus, we conclude that sea grapes cookies are proven to improve PGC-1α, total cholesterol, and blood glucose levels in mice fed with CFED. Hence, sea grapes cookies is a potential anti-aging novel-functional food.
Collapse
Affiliation(s)
- Iskari Ngadiarti
- Nutrition and Dietetics, Health Polytechnic of Jakarta II, Jakarta, 12120, Indonesia
- Corresponding author.
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, 55281, Indonesia
| | | | - Fachruddin Perdana
- Nutrition Department, Faculty of Medicince, University of Sultan Ageng Tirtayasa, Serang, 42118, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
| | - Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nelly Mayulu
- Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Defny Silvia Wewengkang
- Pharmacy Department, Faculty of Mathematics and Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Sutamara Lasurdi Noor
- Clinical and Public Health Nutrition Programme, University College London, London, WC1E 6BT, United Kingdom
| | | | | | - Nindy Sabrina
- Nutrition Department, Sahid University of Jakarta, South Jakarta, 12870, Indonesia
| |
Collapse
|
13
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
14
|
The Algal Polysaccharide Ulvan and Carotenoid Astaxanthin Both Positively Modulate Gut Microbiota in Mice. Foods 2022; 11:foods11040565. [PMID: 35206042 PMCID: PMC8871025 DOI: 10.3390/foods11040565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal microbial community (microbiota) is dynamic and variable amongst individuals and plays an essential part in gut health and homeostasis. Dietary components can modulate the structure of the gut microbiota. In recent years, substantial efforts have been made to find novel dietary components with positive effects on the gut microbial community structure. Natural algal polysaccharides and carotenoids have been reported to possess various functions of biological relevance and their impact on the gut microbiota is currently a topic of interest. This study, therefore, reports the effect of the sulfated polysaccharide ulvan and the carotenoid astaxanthin extracted and purified from the aquacultured marine green macroalgae Ulva ohnoi and freshwater green microalgae Haematococcus pluvialis, respectively, on the temporal development of the murine gut microbiota. Significant changes with the increase in the bacterial classes Bacteroidia, Bacilli, Clostridia, and Verrucomicrobia were observed after feeding the mice with ulvan and astaxanthin. Duration of the treatments had a more substantial effect on the bacterial community structure than the type of treatment. Our findings highlight the potential of ulvan and astaxanthin to mediate aspects of host-microbe symbiosis in the gut, and if incorporated into the diet, these could assist positively in improving disease conditions associated with gut health.
Collapse
|
15
|
du Preez R, Majzoub ME, Thomas T, Panchal SK, Brown L. Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients 2021; 13:3991. [PMID: 34836248 PMCID: PMC8624018 DOI: 10.3390/nu13113991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
The microalgal genus Nannochloropsis has broad applicability to produce biofuels, animal feed supplements and other value-added products including proteins, carotenoids and lipids. This study investigated a potential role of N. oceanica in the reversal of metabolic syndrome. Male Wistar rats (n = 48) were divided into four groups in a 16-week protocol. Two groups were fed either corn starch or high-carbohydrate, high-fat diets (C and H, respectively) for the full 16 weeks. The other two groups received C and H diets for eight weeks and then received 5% freeze-dried N. oceanica in these diets for the final eight weeks (CN and HN, respectively) of the protocol. The H diet was high in fructose and sucrose, together with increased saturated and trans fats. H rats developed obesity, hypertension, dyslipidaemia, fatty liver disease and left ventricular fibrosis. N. oceanica increased lean mass in CN and HN rats, possibly due to the increased protein intake, and decreased fat mass in HN rats. Intervention with N. oceanica did not change cardiovascular, liver and metabolic parameters or gut structure. The relative abundance of Oxyphotobacteria in the gut microbiota was increased. N. oceanica may be an effective functional food against metabolic syndrome as a sustainable protein source.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| |
Collapse
|
16
|
González-Arceo M, Gómez-Zorita S, Aguirre L, Portillo MP. Effect of Microalgae and Macroalgae Extracts on Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:2017. [PMID: 34208211 PMCID: PMC8230871 DOI: 10.3390/nu13062017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/05/2022] Open
Abstract
The present review aims to gather scientific evidence regarding the beneficial effects of microalgae and macroalgae extracts on non-alcoholic fatty liver disease (NAFLD). The described data show that both microalgae and macroalgae improved this alteration. The majority of the reported studies analysed the preventive effects because algae were administered to animals concurrent with the diet that induced NAFLD. The positive effects were demonstrated using a wide range of doses, from 7.5 to 300 mg/kg body weight/day or from 1 to 10% in the diet, and experimental periods ranged from 3 to 16 weeks. Two important limitations on the scientific knowledge available to date are that very few studies have researched the mechanisms of action underlying the preventive effects of microalgae on NAFLD and that, for the majority of the algae studied, a single paper has been reported. For these reasons, it is not possible to establish the best conditions in order to know the beneficial effects that these algae could bring. In this scenario, further studies are needed. Moreover, the beneficial effects of algae observed in rodent need to be confirmed in humans before we can start considering these products as new tools in the fight against fatty liver disease.
Collapse
Affiliation(s)
- Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| | - Leixuri Aguirre
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain; (M.G.-A.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| |
Collapse
|
17
|
du Preez R, Magnusson M, Majzoub ME, Thomas T, Praeger C, Glasson CRK, Panchal SK, Brown L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients 2021; 13:1754. [PMID: 34064139 PMCID: PMC8224310 DOI: 10.3390/nu13061754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The therapeutic potential of Sargassum siliquosum grown in Australian tropical waters was tested in a rat model of metabolic syndrome. Forty-eight male Wistar rats were divided into four groups of 12 rats and each group was fed a different diet for 16 weeks: corn starch diet (C); high-carbohydrate, high-fat diet (H) containing fructose, sucrose, saturated and trans fats; and C or H diets with 5% S. siliquosum mixed into the food from weeks 9 to 16 (CS and HS). Obesity, hypertension, dyslipidaemia, impaired glucose tolerance, fatty liver and left ventricular fibrosis developed in H rats. In HS rats, S. siliquosum decreased body weight (H, 547 ± 14; HS, 490 ± 16 g), fat mass (H, 248 ± 27; HS, 193 ± 19 g), abdominal fat deposition and liver fat vacuole size but did not reverse cardiovascular and liver effects. H rats showed marked changes in gut microbiota compared to C rats, while S. siliquosum supplementation increased gut microbiota belonging to the family Muribaculaceae. This selective increase in gut microbiota likely complements the prebiotic actions of the alginates. Thus, S. siliquosum may be a useful dietary additive to decrease abdominal and liver fat deposition.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Marie Magnusson
- School of Science, Environmental Research Institute, University of Waikato, Tauranga 3112, New Zealand; (M.M.); (C.R.K.G.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christina Praeger
- MACRO—The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Christopher R. K. Glasson
- School of Science, Environmental Research Institute, University of Waikato, Tauranga 3112, New Zealand; (M.M.); (C.R.K.G.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
18
|
Ozkan J, Majzoub ME, Coroneo M, Thomas T, Willcox M. Comparative analysis of ocular surface tissue microbiome in human, mouse, rabbit, and guinea pig. Exp Eye Res 2021; 207:108609. [PMID: 33932398 DOI: 10.1016/j.exer.2021.108609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023]
Abstract
Animal models are a critical element of ocular surface research for investigating therapeutic drops, surgical implants, and infection research. This study was a comparative analysis of the microbial communities on conjunctival tissue samples from humans compared to several commonly used laboratory animals (BALB/c mice, New Zealand white rabbits and IMVS colored stock guinea pigs). Microbial communities were analyzed by extracting total DNA from conjunctival tissue and sequencing the 16 S rRNA gene using the Illumina MiSeq platform. Sequences were quality filtered using the UNOISE pipeline in USEARCH and taxonomically classified using GTDB database. Sequences associated with blank extraction and sampling negative controls were removed with the decontam R software package prior to downstream analysis. There was a difference in the diversity measures of richness (P = 0.0124) and Shannon index (P = 0.0002) between humans and rabbits but not between human, mouse and guinea pigs. There was a difference between the human and any animal for bacterial community structure (P = 0.006). There was a higher degree of similarity between the bacterial composition of the human and mouse samples with each dominated by the phyla Proteobacteria and Firmicutes. The use of mouse models may be more appropriate for studies investigating changes to the ocular microbiome due to interventions such as application of antibiotics due to greater similarities in bacterial community structure and composition to humans.
Collapse
Affiliation(s)
- Jerome Ozkan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia; Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Minas Coroneo
- Department of Ophthalmology, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|