1
|
Bobbitt NS, Sikma RE, Sammon JP, Chandross M, Deneff JI, Gallis DS. Infection Diagnostics Enabled by Selective Adsorption of Breath-Based Biomarkers in Zr-Based Metal-Organic Frameworks. ACS Sens 2025. [PMID: 39757838 DOI: 10.1021/acssensors.4c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Exhaled breath contains trace levels of volatile organic compounds (VOCs) that can reveal information about metabolic processes or pathogens in the body. These molecules can be used for medical diagnosis, but capturing and accurately measuring them is a significant challenge in chemical separations. A highly selective nanoporous sorbent can be used to capture target molecules from a breath sample and preconcentrate them for use in a detector. In this work, we present a combined predictive modeling-experimental validation study in which five Zr-based metal-organic frameworks (MOFs) were identified and tested. These MOFs display good selectivity for a variety of VOCs known to be indicators of viral infections such as influenza and COVID-19. We first used molecular simulation to identify promising MOF candidates that were subsequently synthesized and tested for recovery of a variety of VOCs (toluene, propanal, butanone, octane, acetaldehyde) at concentrations of 20 ppm in humid nitrogen. We show that MOF-818, PCN-777, and UiO-66 have particularly good selectivity for the target molecules in the presence of humidity. These three MOFs each recover around 40-60% of the targets (with the exception of acetaldehyde) at up to 95% relative humidity. MOF-818 recovers 63% of butanone and 60% of toluene at 80% relative humidity. Recovery for acetaldehyde is lower across all MOFs at high humidity, but notably, MOF-808 recovers 90% of acetaldehyde at 60% humidity.
Collapse
Affiliation(s)
- N Scott Bobbitt
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - R Eric Sikma
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jason P Sammon
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael Chandross
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob I Deneff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina Sava Gallis
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
2
|
van Vorstenbosch R, van Munster K, Stavropoulos G, Pachen D, van Schooten FJ, Ponsioen C, Smolinska A. The potential of volatile organic compounds to diagnose primary sclerosing cholangitis. JHEP Rep 2024; 6:101103. [PMID: 39131082 PMCID: PMC11315128 DOI: 10.1016/j.jhepr.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. PSC is a complex disease of largely unknown aetiology that is strongly associated with inflammatory bowel disease (IBD). Diagnosis, especially at an early stage, is difficult and to date there is no diagnostic biomarker. The present study aimed to assess the diagnostic potential of volatile organic compounds (VOCs) in exhaled breath to detect (early) PSC in an IBD population. Methods Breath samples were obtained from 16 patients with PSC alone, 47 with PSC and IBD, and 53 with IBD alone during outpatient clinic visits. Breath sampling was performed using the ReCIVA breath sampler and subsequently analysed by gas chromatography mass spectrometry. Random forest modelling was performed to find discriminatory VOCs and create a predictive model that was tested using an independent test set. Results The final model to discriminate patients with PSC, with or without IBD, from patients with IBD alone included twenty VOCs and achieved a sensitivity, specificity, and area under the receiver-operating curve on the test set of 77%, 83%, and 0.84 respectively. Three VOCs (isoprene, 2-octanone and undecane) together correlated significantly with the Amsterdam-Oxford score for PSC disease prognosis. A sensitivity analysis showed stable results across early-stage PSC, including in those with normal alkaline phosphatase levels, as well as further progressed PSC. Conclusion The present study demonstrates that exhaled breath can distinguish PSC cases from IBD and has potential as a non-invasive clinical breath test for (early) PSC. Impact and implications Primary sclerosing cholangitis is a complex chronic liver disease, which ultimately results in cirrhosis, liver failure, and death. Detection, especially in early disease stages, can be challenging, and therefore therapy typically starts when there is already some irreversible damage. The current study shows that metabolites in exhaled breath, so called volatile organic compounds, hold promise to non-invasively detect primary sclerosing cholangitis, including at early disease stages.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Kim van Munster
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Center, Amsterdam, The Netherlands
| | - Georgios Stavropoulos
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle Pachen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Center, Amsterdam, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
de Kroon RR, Frerichs NM, Struys EA, de Boer NK, de Meij TGJ, Niemarkt HJ. The Potential of Fecal Volatile Organic Compound Analysis for the Early Diagnosis of Late-Onset Sepsis in Preterm Infants: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3162. [PMID: 38794014 PMCID: PMC11124895 DOI: 10.3390/s24103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.
Collapse
Affiliation(s)
- Rimke R. de Kroon
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nina M. Frerichs
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nanne K. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hendrik J. Niemarkt
- Department of Neonatology, Maxima Medisch Centrum, De Run 4600, 5504 DB Veldhoven, The Netherlands
- Department of Electrical Engineering, TU Eindhoven, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Reis T, Moura PC, Gonçalves D, Ribeiro PA, Vassilenko V, Fino MH, Raposo M. Ammonia Detection by Electronic Noses for a Safer Work Environment. SENSORS (BASEL, SWITZERLAND) 2024; 24:3152. [PMID: 38794006 PMCID: PMC11125007 DOI: 10.3390/s24103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Providing employees with proper work conditions should be one of the main concerns of any employer. Even so, in many cases, work shifts chronically expose the workers to a wide range of potentially harmful compounds, such as ammonia. Ammonia has been present in the composition of products commonly used in a wide range of industries, namely production in lines, and also laboratories, schools, hospitals, and others. Chronic exposure to ammonia can yield several diseases, such as irritation and pruritus, as well as inflammation of ocular, cutaneous, and respiratory tissues. In more extreme cases, exposure to ammonia is also related to dyspnea, progressive cyanosis, and pulmonary edema. As such, the use of ammonia needs to be properly regulated and monitored to ensure safer work environments. The Occupational Safety and Health Administration and the European Agency for Safety and Health at Work have already commissioned regulations on the acceptable limits of exposure to ammonia. Nevertheless, the monitoring of ammonia gas is still not normalized because appropriate sensors can be difficult to find as commercially available products. To help promote promising methods of developing ammonia sensors, this work will compile and compare the results published so far.
Collapse
Affiliation(s)
- Tiago Reis
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (T.R.); (P.C.M.); (P.A.R.); (V.V.)
| | - Pedro Catalão Moura
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (T.R.); (P.C.M.); (P.A.R.); (V.V.)
| | - Débora Gonçalves
- Institute of Physics of Sao Carlos, University of Sao Paulo, São Carlos 13566-590, Brazil;
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (T.R.); (P.C.M.); (P.A.R.); (V.V.)
| | - Valentina Vassilenko
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (T.R.); (P.C.M.); (P.A.R.); (V.V.)
| | - Maria Helena Fino
- LASI—Associated Laboratory of Intelligent Systems, CTS—Centre for Technology and Systems, UNINOVA, Department of Electrotechnical and Computer Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal;
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (T.R.); (P.C.M.); (P.A.R.); (V.V.)
| |
Collapse
|
5
|
Chou H, Arthur K, Shaw E, Schaber C, Boyle B, Allsworth M, Kelley EF, Stewart GM, Wheatley CM, Schwartz J, Fermoyle CC, Ziegler BL, Johnson KA, Robach P, Basset P, Johnson BD. Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis. J Breath Res 2024; 18:026008. [PMID: 38290132 DOI: 10.1088/1752-7163/ad23f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjustedP-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.
Collapse
Affiliation(s)
- Hsuan Chou
- Owlstone Medical, Cambridge, United Kingdom
| | | | - Elen Shaw
- Owlstone Medical, Cambridge, United Kingdom
| | | | | | | | - Eli F Kelley
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Glenn M Stewart
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Courtney M Wheatley
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Jesse Schwartz
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Caitlin C Fermoyle
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Utah Vascular Research Laboratory, Salt Lake City, UT, United States of America
| | - Briana L Ziegler
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Kay A Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Paul Robach
- Ecole Nationale des Sports de Montagne, Chamonix, France
| | | | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
6
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
7
|
van Vorstenbosch R, van Munster K, Pachen D, Mommers A, Stavropoulos G, van Schooten FJ, Ponsioen C, Smolinska A. The Detection of Primary Sclerosing Cholangitis Using Volatile Metabolites in Fecal Headspace and Exhaled Breath. Metabolites 2023; 14:23. [PMID: 38248826 PMCID: PMC10819709 DOI: 10.3390/metabo14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Kim van Munster
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Danielle Pachen
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Alex Mommers
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Georgios Stavropoulos
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Frederik-Jan van Schooten
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Agnieszka Smolinska
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| |
Collapse
|
8
|
Ain Nazir NU, Shaukat MH, Luo R, Abbas SR. Novel breath biomarkers identification for early detection of hepatocellular carcinoma and cirrhosis using ML tools and GCMS. PLoS One 2023; 18:e0287465. [PMID: 37967076 PMCID: PMC10651033 DOI: 10.1371/journal.pone.0287465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/06/2023] [Indexed: 11/17/2023] Open
Abstract
According to WHO 2019, Hepatocellular carcinoma (HCC) is the fourth highest cause of cancer death worldwide. More precise diagnostic models are needed to enhance early HCC and cirrhosis quick diagnosis, treatment, and survival. Breath biomarkers known as volatile organic compounds (VOCs) in exhaled air can be used to make rapid, precise, and painless diagnoses. Gas chromatography and mass spectrometry (GCMS) are utilized to diagnose HCC and cirrhosis VOCs. In this investigation, metabolically generated VOCs in breath samples (n = 35) of HCC, (n = 35) cirrhotic, and (n = 30) controls were detected via GCMS and SPME. Moreover, this study also aims to identify diagnostic VOCs for distinction among HCC and cirrhosis liver conditions, which are most closely related, and cause misleading during diagnosis. However, using gas chromatography-mass spectrometry (GC-MS) to quantify volatile organic compounds (VOCs) is time-consuming and error-prone since it requires an expert. To verify GC-MS data analysis, we present an in-house R-based array of machine learning models that applies deep learning pattern recognition to automatically discover VOCs from raw data, without human intervention. All-machine learning diagnostic model offers 80% sensitivity, 90% specificity, and 95% accuracy, with an AUC of 0.9586. Our results demonstrated the validity and utility of GCMS-SMPE in combination with innovative ML models for early detection of HCC and cirrhosis-specific VOCs considered as potential diagnostic breath biomarkers and showed differentiation among HCC and cirrhosis. With these useful insights, we can build handheld e-nose sensors to detect HCC and cirrhosis through breath analysis and this unique approach can help in diagnosis by reducing integration time and costs without compromising accuracy or consistency.
Collapse
Affiliation(s)
- Noor ul Ain Nazir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Department of Electrical Engineering and Computer Science, The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States of America
| | | | - Ray Luo
- Departments of Chemical and Biomolecular Engineering, Materials Science and Engineering and Biomedical Engineering, the University of California, Irvine, Irvine, CA, United States of America
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Shah Rukh Abbas
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
9
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
10
|
Ferrandino G, Ricciardi F, Murgia A, Banda I, Manhota M, Ahmed Y, Sweeney K, Nicholson-Scott L, McConville L, Gandelman O, Allsworth M, Boyle B, Smolinska A, Ginesta Frings CA, Contreras J, Asenjo-Lobos C, Barrientos V, Clavo N, Novoa A, Riviotta A, Jerez M, Méndez L. Exogenous Volatile Organic Compound (EVOC ®) Breath Testing Maximizes Classification Performance for Subjects with Cirrhosis and Reveals Signs of Portal Hypertension. Biomedicines 2023; 11:2957. [PMID: 38001958 PMCID: PMC10669625 DOI: 10.3390/biomedicines11112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Cirrhosis detection in primary care relies on low-performing biomarkers. Consequently, up to 75% of subjects with cirrhosis receive their first diagnosis with decompensation when causal treatments are less effective at preserving liver function. We investigated an unprecedented approach to cirrhosis detection based on dynamic breath testing. Methods: We enrolled 29 subjects with cirrhosis (Child-Pugh A and B), and 29 controls. All subjects fasted overnight. Breath samples were taken using Breath Biopsy® before and at different time points after the administration of 100 mg limonene. Absolute limonene breath levels were measured using gas chromatography-mass spectrometry. Results: All subjects showed a >100-fold limonene spike in breath after administration compared to baseline. Limonene breath kinetics showed first-order decay in >90% of the participants, with higher bioavailability in the cirrhosis group. At the Youden index, baseline limonene levels showed classification performance with an area under the roc curve (AUROC) of 0.83 ± 0.012, sensitivity of 0.66 ± 0.09, and specificity of 0.83 ± 0.07. The best performing timepoint post-administration was 60 min, with an AUROC of 0.91, sensitivity of 0.83 ± 0.07, and specificity of 0.9 ± 0.06. In the cirrhosis group, limonene bioavailability showed a correlation with MELD and fibrosis indicators, and was associated with signs of portal hypertension. Conclusions: Dynamic limonene breath testing enhances diagnostic performance for cirrhosis compared to static testing. The correlation with disease severity suggests potential for monitoring therapeutic interventions. Given the non-invasive nature of breath collection, a dynamic limonene breath test could be implemented in primary care.
Collapse
Affiliation(s)
- Giuseppe Ferrandino
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Federico Ricciardi
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Antonio Murgia
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Iris Banda
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Menisha Manhota
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Yusuf Ahmed
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Kelly Sweeney
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | | | - Lucinda McConville
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Olga Gandelman
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Max Allsworth
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Billy Boyle
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
| | - Agnieszka Smolinska
- Owlstone Medical, 183 Cambridge Science Park, Milton Road, Cambridge CB4 0GJ, UK
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Carmen A. Ginesta Frings
- Unidad de Gastroenterología y Endoscopía, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7650568, Chile
- Unidad de Endoscopia, Hospital Padre Hurtado, Santiago 8880465, Chile
| | - Jorge Contreras
- Unidad de Gastroenterología y Endoscopía, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7650568, Chile
| | - Claudia Asenjo-Lobos
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610315, Chile
| | | | - Nataly Clavo
- Unidad de Endoscopia, Hospital Padre Hurtado, Santiago 8880465, Chile
| | - Angela Novoa
- Laboratorio de Fisiología Digestiva, Clínica Alemana, Santiago 7650568, Chile
| | - Amy Riviotta
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610315, Chile
| | - Melissa Jerez
- Nursing School, Universidad de Las Américas, Santiago 8242125, Chile
| | - Luis Méndez
- Unidad de Gastroenterología y Endoscopía, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7650568, Chile
- Unidad de Endoscopia, Hospital Padre Hurtado, Santiago 8880465, Chile
| |
Collapse
|
11
|
Hintzen KF, Eussen MM, Neutel C, Bouvy ND, van Schooten FJ, Hooijmans CR, Lubbers T. A systematic review on the detection of volatile organic compounds in exhaled breath in experimental animals in the context of gastrointestinal and hepatic diseases. PLoS One 2023; 18:e0291636. [PMID: 37733754 PMCID: PMC10513283 DOI: 10.1371/journal.pone.0291636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Analysis of volatile organic compounds (VOCs) in exhaled breath has the potential to serve as an accurate diagnostic tool for gastro-intestinal diseases. Animal studies could be instrumental as a preclinical base and subsequent clinical translation to humans, as they are easier to standardize and better equipped to relate specific VOCs to metabolic and pathological processes. This review provides an overview of the study design, characteristics and methodological quality of previously published animal studies on analysis of exhaled breath in gastrointestinal and hepatic diseases. Guidelines are provided for standardization in study design and breath collection methods to improve comparability, avoid duplication of research and reduce discomfort of animals in future studies. METHODS PubMed and Embase database were searched for animal studies using exhaled breath analysis to detect gastro-intestinal diseases. Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. Information on study design, standardization methods, animal models, breath collection methods and identified VOCs were extracted from the included studies. RESULTS 10 studies were included (acute liver failure n = 1, non-alcoholic steatohepatitis n = 1, hepatic ischemia n = 2, mesenteric ischemia n = 2, sepsis and peritonitis n = 3, colitis n = 1). Rats were used in most of the studies. Exhaled breath was mostly collected using invasive procedures as tracheal cannulation or tracheostomy. Poor reporting on standardization, breath collection methods, analytical techniques, as well as heterogeneity of the studies, complicate comparison of the different studies. CONCLUSION Poor reporting of essential methodological details impaired comprehensive summarizing the various studies on exhaled breath in gastrointestinal and hepatic diseases. Potential pitfalls in study design, and suggestions for improvement of study design are discussed which, when applied, lead to consistent and generalizable results and a reduction in the use of laboratory animals. Refining the methodological quality of animal studies has the potential to improve subsequent clinical trial design.
Collapse
Affiliation(s)
- Kim F.H. Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Myrthe M.M. Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Céline Neutel
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Carlijn R. Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Moura PC, Raposo M, Vassilenko V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed J 2023; 46:100623. [PMID: 37336362 PMCID: PMC10339195 DOI: 10.1016/j.bj.2023.100623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Normal and abnormal/pathological status of physiological processes in the human organism can be characterized through Volatile Organic Compounds (VOCs) emitted in breath. Recently, a wide range of volatile analytes has risen as biomarkers. These compounds have been addressed in the scientific and medical communities as an extremely valuable metabolic window. Once collected and analysed, VOCs can represent a tool for a rapid, accurate, non-invasive, and painless diagnosis of several diseases and health conditions. These biomarkers are released by exhaled breath, urine, faeces, skin, and several other ways, at trace concentration levels, usually in the ppbv (μg/L) range. For this reason, the analytical techniques applied for detecting and clinically exploiting the VOCs are extremely important. The present work reviews the most promising results in the field of breath biomarkers and the most common methods of detection of VOCs. A total of 16 pathologies and the respective database of compounds are addressed. An updated version of the VOCs biomarkers database can be consulted at: https://neomeditec.com/VOCdatabase/.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal.
| |
Collapse
|
13
|
Ferrandino G, De Palo G, Murgia A, Birch O, Tawfike A, Smith R, Debiram-Beecham I, Gandelman O, Kibble G, Lydon AM, Groves A, Smolinska A, Allsworth M, Boyle B, van der Schee MP, Allison M, Fitzgerald RC, Hoare M, Snowdon VK. Breath Biopsy ® to Identify Exhaled Volatile Organic Compounds Biomarkers for Liver Cirrhosis Detection. J Clin Transl Hepatol 2023; 11:638-648. [PMID: 36969895 PMCID: PMC10037526 DOI: 10.14218/jcth.2022.00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 03/29/2023] Open
Abstract
Background and Aims The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Debiram-Beecham
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | - Graham Kibble
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Anne Marie Lydon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Alice Groves
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Agnieszka Smolinska
- Owlstone Medical, Cambridge, UK
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | | | | | | | - Michael Allison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Matthew Hoare
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Victoria K. Snowdon
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
14
|
Walsh CM, Fadel MG, Jamel SH, Hanna GB. Breath Testing in the Surgical Setting: Applications, Challenges, and Future Perspectives. Eur Surg Res 2023; 64:315-322. [PMID: 37311421 PMCID: PMC10614239 DOI: 10.1159/000531504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND The potential for exhaled breath to be a valuable diagnostic tool is often overlooked as it can be difficult to imagine how a barely visible sample of breath could hold such a rich source of information about the state of our health. However, technological advances over the last 50 years have enabled us to detect volatile organic compounds (VOCs) present in exhaled breath, and this provides the key to understanding the wealth of information contained within these readily available samples. SUMMARY VOCs are produced as a by-product of metabolism; hence, changes in the underlying physiological processes will be reflected in the exact composition of VOCs in exhaled breath. It has been shown that characteristic changes occur in the breath VOC profile associated with certain diseases including cancer, which may enable the non-invasive detection of cancer at primary care level for patients with vague symptoms. The use of breath testing as a diagnostic tool has many advantages. It is non-invasive and quick, and the test is widely accepted by patients and clinicians. However, breath samples provide a snapshot of the VOCs present in a particular patient at a given point in time, so this can be heavily influenced by external factors such as diet, smoking, and the environment. These must all be accounted for when attempting to draw conclusions about disease status. This review focuses on the current applications for breath testing in the field of surgery, as well as discussing the challenges encountered with developing a breath test in a clinical environment. The future of breath testing in the surgical setting is also discussed, including the translation of breath research into clinical practice. KEY MESSAGES Analysis of VOCs in exhaled breath can identify the presence of underlying disease including cancer as well as other infectious or inflammatory conditions. Despite the patient factors, environmental factors, storage, and transport considerations that must be accounted for, breath testing demonstrates ideal characteristics for a triage test, being non-invasive, simple, and universally acceptable to patients and clinicians. Many novel biomarkers and diagnostic tests fail to translate into clinical practice because their potential clinical application does not align with the requirements and unmet needs of the healthcare sector. Non-invasive breath testing, however, has the great potential to revolutionise the early detection of diseases, such as cancer, in the surgical setting for patients with vague symptoms.
Collapse
Affiliation(s)
- Caoimhe M Walsh
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael G Fadel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sara H Jamel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
15
|
Ding X, Zhang Y, Zhang Y, Ding X, Zhang H, Cao T, Qu ZB, Ren J, Li L, Guo Z, Xu F, Wang QX, Wu X, Shi G, Haick H, Zhang M. Modular Assembly of MXene Frameworks for Noninvasive Disease Diagnosis via Urinary Volatiles. ACS NANO 2022; 16:17376-17388. [PMID: 36227058 DOI: 10.1021/acsnano.2c08266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) in urine are valuable biomarkers for noninvasive disease diagnosis. Herein, a facile coordination-driven modular assembly strategy is used for developing a library of gas-sensing materials based on porous MXene frameworks (MFs). Taking advantage of modules with diverse composition and tunable structure, our MFs-based library can provide more choices to satisfy gas-sensing demands. Meanwhile, the laser-induced graphene interdigital electrodes array and microchamber are laser-engraved for the assembly of a microchamber-hosted MF (MHMF) e-nose. Our MHMF e-nose possesses high-discriminative pattern recognition for simultaneous sensing and distinguishing of complex VOCs. Furthermore, with the MHMF e-nose being a plug-and-play module, a point-of-care testing (POCT) platform is modularly assembled for wireless and real-time monitoring of urinary volatiles from clinical samples. By virtue of machine learning, our POCT platform achieves noninvasive diagnosis of multiple diseases with a high accuracy of 91.7%, providing a favorable opportunity for early disease diagnosis, disease course monitoring, and relevant research.
Collapse
Affiliation(s)
- Xuyin Ding
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Yecheng Zhang
- College of Architecture and Art, Hefei University of Technology, Hefei 230601, China
| | - Yue Zhang
- Bengbu Medical University, Anhui Provincial Hospital, Bengbu 233030, China
| | - Xufa Ding
- School of Mechanical Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hanxin Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Tian Cao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Ren
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lei Li
- Department of Infectious Disease, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230001, China
| | - Zhijun Guo
- Department of Pharmacy, Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, China
| | - Feng Xu
- Department of Pharmacy, Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, China
| | - Qi-Xian Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing Wu
- School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, 320003 Haifa, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Engineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Keogh RJ, Riches JC. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr Oncol 2022; 29:7355-7378. [PMID: 36290855 PMCID: PMC9600994 DOI: 10.3390/curroncol29100578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Breath analysis is a promising non-invasive method for the detection and management of lung cancer. Exhaled breath contains a complex mixture of volatile and non-volatile organic compounds that are produced as end-products of metabolism. Several studies have explored the patterns of these compounds and have postulated that a unique breath signature is emitted in the setting of lung cancer. Most studies have evaluated the use of gas chromatography and mass spectrometry to identify these unique breath signatures. With recent advances in the field of analytical chemistry and machine learning gaseous chemical sensing and identification devices have also been created to detect patterns of odorant molecules such as volatile organic compounds. These devices offer hope for a point-of-care test in the future. Several prospective studies have also explored the presence of specific genomic aberrations in the exhaled breath of patients with lung cancer as an alternative method for molecular analysis. Despite its potential, the use of breath analysis has largely been limited to translational research due to methodological issues, the lack of standardization or validation and the paucity of large multi-center studies. It is clear however that it offers a potentially non-invasive alternative to investigations such as tumor biopsy and blood sampling.
Collapse
|
17
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
18
|
Taunk K, Porto-Figueira P, Pereira JAM, Taware R, da Costa NL, Barbosa R, Rapole S, Câmara JS. Urinary Volatomic Expression Pattern: Paving the Way for Identification of Potential Candidate Biosignatures for Lung Cancer. Metabolites 2022; 12:36. [PMID: 35050157 PMCID: PMC8780352 DOI: 10.3390/metabo12010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The urinary volatomic profiling of Indian cohorts composed of 28 lung cancer (LC) patients and 27 healthy subjects (control group, CTRL) was established using headspace solid phase microextraction technique combined with gas chromatography mass spectrometry methodology as a powerful approach to identify urinary volatile organic metabolites (uVOMs) to discriminate among LC patients from CTRL. Overall, 147 VOMs of several chemistries were identified in the intervention groups-including naphthalene derivatives, phenols, and organosulphurs-augmented in the LC group. In contrast, benzene and terpenic derivatives were found to be more prevalent in the CTRL group. The volatomic data obtained were processed using advanced statistical analysis, namely partial least square discriminative analysis (PLS-DA), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) methods. This resulted in the identification of nine uVOMs with a higher potential to discriminate LC patients from CTRL subjects. These were furan, o-cymene, furfural, linalool oxide, viridiflorene, 2-bromo-phenol, tricyclazole, 4-methyl-phenol, and 1-(4-hydroxy-3,5-di-tert-butylphenyl)-2-methyl-3-morpholinopropan-1-one. The metabolic pathway analysis of the data obtained identified several altered biochemical pathways in LC mainly affecting glycolysis/gluconeogenesis, pyruvate metabolism, and fatty acid biosynthesis. Moreover, acetate and octanoic, decanoic, and dodecanoic fatty acids were identified as the key metabolites responsible for such deregulation. Furthermore, studies involving larger cohorts of LC patients would allow us to consolidate the data obtained and challenge the potential of the uVOMs as candidate biomarkers for LC.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind, SPPU Campus, Pune 411007, India; (K.T.); (R.T.)
| | - Priscilla Porto-Figueira
- CQM—Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (P.P.-F.); (J.A.M.P.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (P.P.-F.); (J.A.M.P.)
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind, SPPU Campus, Pune 411007, India; (K.T.); (R.T.)
| | - Nattane Luíza da Costa
- Instituto de Informática, Alameda Palmeiras, Quadra D, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (N.L.d.C.); (R.B.)
| | - Rommel Barbosa
- Instituto de Informática, Alameda Palmeiras, Quadra D, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (N.L.d.C.); (R.B.)
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind, SPPU Campus, Pune 411007, India; (K.T.); (R.T.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (P.P.-F.); (J.A.M.P.)
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
19
|
Dima AC, Balaban DV, Dima A. Diagnostic Application of Volatile Organic Compounds as Potential Biomarkers for Detecting Digestive Neoplasia: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11122317. [PMID: 34943554 PMCID: PMC8700395 DOI: 10.3390/diagnostics11122317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) are part of the exhaled breath that were proposed as non-invasive breath biomarkers via different human discharge products like saliva, breath, urine, blood, or tissues. Particularly, due to the non-invasive approach, VOCs were considered as potential biomarkers for non-invasive early cancer detection. We herein aimed to review the data over VOCs utility in digestive neoplasia as early diagnosis or monitoring biomarkers. A systematic literature search was done using MEDLINE via PubMed, Cochrane Library, and Thomson Reuters' Web of Science Core Collection. We identified sixteen articles that were included in the final analysis. Based on the current knowledge, we cannot identify a single VOC as a specific non-invasive biomarker for digestive neoplasia. Several combinations of up to twelve VOCs seem promising for accurately detecting some neoplasia types. A combination of different VOCs breath expression are promising tools for digestive neoplasia screening.
Collapse
Affiliation(s)
- Augustin Catalin Dima
- Department of General Surgery and Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniel Vasile Balaban
- Department of General Surgery and Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| |
Collapse
|
20
|
Breath-Taking Perspectives and Preliminary Data toward Early Detection of Chronic Liver Diseases. Biomedicines 2021; 9:biomedicines9111563. [PMID: 34829792 PMCID: PMC8615034 DOI: 10.3390/biomedicines9111563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The gold standard method for chronic liver diseases diagnosis and staging remains liver biopsy, despite the spread of less invasive surrogate modalities based on imaging and blood biomarkers. Still, more than 50% of chronic liver disease cases are detected at later stages when patients exhibit episodes of liver decompensation. Breath analysis represents an attractive means for the development of non-invasive tests for several pathologies, including chronic liver diseases. In this perspective review, we summarize the main findings of studies that compared the breath of patients with chronic liver diseases against that of control subjects and found candidate biomarkers for a potential breath test. Interestingly, identified compounds with best classification performance are of exogenous origin and used as flavoring agents in food. Therefore, random dietary exposure of the general population to these compounds prevents the establishment of threshold levels for the identification of disease subjects. To overcome this limitation, we propose the exogenous volatile organic compounds (EVOCs) probe approach, where one or multiple of these flavoring agent(s) are administered at a standard dose and liver dysfunction associated with chronic liver diseases is evaluated as a washout of ingested compound(s). We report preliminary results in healthy subjects in support of the potential of the EVOC Probe approach.
Collapse
|