1
|
Mogus JP, Marin M, Arowolo O, Salemme V, Suvorov A. Developmental exposures to common environmental pollutants result in long-term Reprogramming of hypothalamic-pituitary axis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124890. [PMID: 39236844 DOI: 10.1016/j.envpol.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Olatunbosun Arowolo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA; Currently at Department of Pharmacology, Molecular, Cellular and Integrative Physiology Group, University of California - Davis, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
2
|
Waye AA, Ticiani E, Sharmin Z, Perez Silos V, Perera T, Tu A, Buhimschi IA, Murga-Zamalloa CA, Hu YS, Veiga-Lopez A. Reduced bioenergetics and mitochondrial fragmentation in human primary cytotrophoblasts induced by an EGFR-targeting chemical mixture. CHEMOSPHERE 2024; 364:143301. [PMID: 39251161 PMCID: PMC11540307 DOI: 10.1016/j.chemosphere.2024.143301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Exposures to complex environmental chemical mixtures during pregnancy reach and target the feto-placental unit. This study investigates the influence of environmental chemical mixtures on placental bioenergetics. Recognizing the essential role of the epidermal growth factor receptor (EGFR) in placental development and its role in stimulating glycolysis and mitochondrial respiration in trophoblast cells, we explored the effects of chemicals known to disrupt EGFR signaling on cellular energy production. Human primary cytotrophoblasts (hCTBs) and a first-trimester extravillous trophoblast cell line (HTR-8/SVneo) were exposed to a mixture of EGFR-interfering chemicals, including atrazine, bisphenol S, niclosamide, PCB-126, PCB-153, and trans-nonachlor. An RNA sequencing approach revealed that the mixture altered the transcriptional signature of genes involved in cellular energetics. Next, the impact of the mixture on cellular bioenergetics was evaluated using a combination of mitochondrial and glycolytic stress tests, ATP production, glucose consumption, lactate synthesis, and super-resolution imaging. The chemical mixture did not alter basal oxygen consumption but diminished the maximum respiratory capacity in a dose-dependent manner, indicating a disruption of mitochondrial function. The respiratory capacity and ATP production were increased by EGF, while the Chem-Mix reduced both EGF- and non-EGF-mediated oxygen consumption rate in hCTBs. A similar pattern was observed in the glycolytic medium acidification, with EGF increasing the acidification, and the Chem-Mix blocking EGF-induced glycolytic acidification. Furthermore, direct stochastic optical reconstruction microscopy (dSTORM) imaging demonstrated that the Chem-Mix led to a reduction of the mitochondrial network architecture, with findings supported by a decrease in the abundance of OPA1, a mitochondrial membrane GTPase involved in mitochondrial fusion. In conclusion, we demonstrated that a mixture of EGFR-disrupting chemicals alters mitochondrial remodeling, resulting in disturbed cellular bioenergetics, reducing the capacity of human cytotrophoblast cells to generate energy. Future studies should investigate the mechanism by which mitochondrial dynamics are disrupted and the pathological significance of these findings.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Zinat Sharmin
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Thilini Perera
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Alex Tu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Irina A Buhimschi
- Department of Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Ying S Hu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Chen X, Hu G, He B, Cao Z, He J, Luo H, Li Y, Yu Q. Effect of brominated flame retardants exposure on liver function and the risk of non-alcoholic fatty liver disease in the US population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116142. [PMID: 38394757 DOI: 10.1016/j.ecoenv.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The relationship between brominated flame retardants (BFRs) exposure and the human liver was still not well understood. METHODS A total of 3108 participants (age > 12) from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016 were included as the study population, with nine BFRs exhibiting a detection rate of over 70% serving as the exposure factor. The singular effects and combined effects of BFRs exposure on liver injury, non-alcoholic fatty liver disease (NAFLD), and advanced hepatic fibrosis (AHF) were evaluated separately. Finally, COX regression was employed to explore the hazard ratios associated with individual BFRs. RESULTS In our analysis of individual exposures, we found significant positive association of PBB153 with alanine aminotransferase (ALT), PBB153 with aspartate aminotransferase (AST), PBDE47, PBDE85, PBDE99, PBDE100, and PBDE154 with alkaline phosphatase (ALP), PBDE28 and PBB153 with gamma-glutamyl transaminase (GGT), PBB153 with the risk of NAFLD and AHF; and significant negative association of PBB153 with ALP, PBDE28, PBDE47, PBDE99, PBDE100, PBDE85, PBDE209, and PBDE154 with albumin (ALB), PBB153 with AST/ALT. The nonlinear analysis results from Restricted Cubic Spline (RCS) further validated these associations (all P<0.05). In the mixed analysis combining Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analysis, BFRs were positively associated with ALT (β>0, P<0.001), GGT (β>0, P<0.001), and the risk of NAFLD (OR>1, P=0.007). Conversely, BFRs exhibited significant negative correlations with ALP (β<0, P<0.001), ALB (β<0, P<0.001), and AST/ALT (β<0, P<0.001). Furthermore, the COX regression analysis revealed that PBB153 had the highest hazard ratio among the BFRs. CONCLUSIONS BFR exposure may increase the risk of liver injury and NAFLD, with no significant association with AHF risk. The impact of BFR exposure on liver health should not be overlooked, especially in individuals residing in impoverished areas.
Collapse
Affiliation(s)
- Xiong Chen
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - GuoHuang Hu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - Bin He
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - Zhen Cao
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - JianFeng He
- Department of Vascular Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China
| | - HaiLong Luo
- Department of Endoscopy, Hunan Province Chest Hospital, No. 519, Xianjia Lake Road, Changsha 410000, PR China
| | - YiJin Li
- Department of Colorectal and Anorectal Surgery, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, No. 58, Lushan Road, Changsha 410000, PR China
| | - QianLe Yu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha 410000, PR China.
| |
Collapse
|
4
|
Hjazi A, Hsu CY, Al-Attar WM, Almajidi YQ, Hussien BM, Alzahrani AA, Kareem AK, Abdulhussien Alazbjee AA, Meng X. The association of exposure to polychlorinated biphenyls with lipid profile and liver enzymes in umbilical cord blood samples. CHEMOSPHERE 2024; 350:141096. [PMID: 38176591 DOI: 10.1016/j.chemosphere.2023.141096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Evidence on prenatal exposure to polychlorinated biphenyls (PCBs) and its effects on newborns and potential biological mechanisms is not well defined yet. Therefore, this study aimed to examine whether PCBs are associated with lipid profile and non-invasive markers of hepatocyte injuries in samples of blood obtained from the umbilical cord. This study included 450 mothers-newborn pairs. Umbilical levels of PCBs were measured using Gas Chromatography/Mass Spectrophotometry (GC/MS). Lipid profile including low-density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL-C), as well as liver enzymes i.e., alanine amino transferase (ALT), aspartate amino transferase (AST), γ-glutamyl-transferase (GGT) and alkaline phosphatase (ALP) were determined from umbilical cord blood samples. Quantile g-computation analysis was applied to evaluate the collective influence of PCBs on both lipid profiles and liver enzymes, along with the impact of lipid profiles on liver enzymes. Exposure to the mixture of PCBs was significantly associated with increases in ALP, AST, ALT, and GGT levels in cord blood samples, with increments of 90.38 U/L (95%CI: 65.08, 115.70, p < 0.01), 11.88 U/L (95%CI: 9.03, 14.74, p < 0.01), 2.19 U/L (95%CI:1.43, 2.94, p < 0.01), and 50.67 U/L (95%CI: 36.32, 65.03, p < 0.01), respectively. Additionally, combined PCBs exposure was correlated with significant increases in umbilical TG, TC, and LDL-C levels, with values of 3.97 mg/dL (95%CI: 0.86, 7.09, p = 0.01), 6.30 mg/dL (95%CI: 2.98, 9.61, p < 0.01), and 4.63 mg/dL (95%CI: 2.04, 7.23, p < 0.01) respectively. Exposure to the mixture of lipids was linked to elevated levels of AST and GGT in umbilical cord blood samples. Furthermore, a noteworthy mediating role of TC and LDL-C was observed in the association between total PCBs exposure and umbilical cord blood liver enzyme levels. Overall our findings suggested that higher levels of umbilical cord blood PCBs and lipid profile could affect liver function in newborns.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Yasir Qasim Almajidi
- Lecturer Dr and Dean Assistant of Baghdad College of Medical Sciences-department of Pharmacy (pharmaceutics), Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Babylon, Babylon, Iraq
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | | | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Hepatobiliary Surgery Department, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, 065001, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
6
|
Ghasemzadeh-Hasankolaei M, Elcombe CS, Powls S, Lea RG, Sinclair KD, Padmanabhan V, Evans NP, Bellingham M. Preconceptional and in utero exposure of sheep to a real-life environmental chemical mixture disrupts key markers of energy metabolism in male offspring. J Neuroendocrinol 2024; 36:e13358. [PMID: 38087451 PMCID: PMC10841670 DOI: 10.1111/jne.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
Over recent decades, an extensive array of anthropogenic chemicals have entered the environment and have been implicated in the increased incidence of an array of diseases, including metabolic syndrome. The ubiquitous presence of these environmental chemicals (ECs) necessitates the use of real-life exposure models to the assess cumulative risk burden to metabolic health. Sheep that graze on biosolids-treated pastures are exposed to a real-life mixture of ECs such as phthalates, per- and polyfluoroalkyl substances, heavy metals, pharmaceuticals, pesticides, and metabolites thereof, and this EC exposure can result in metabolic disorders in their offspring. Using this model, we evaluated the effects of gestational exposure to a complex EC mixture on plasma triglyceride (TG) concentrations and metabolic and epigenetic regulatory genes in tissues key to energy regulation and storage, including the hypothalamus, liver, and adipose depots of 11-month-old male offspring. Our results demonstrated a binary effect of EC exposure on gene expression particularly in the hypothalamus. Principal component analysis revealed two subsets (B-S1 [n = 6] and B-S2 [n = 4]) within the biosolids group (B, n = 10), relative to the controls (C, n = 11). Changes in body weight, TG levels, and in gene expression in the hypothalamus, and visceral and subcutaneous fat were apparent between biosolid and control and the two subgroups of biosolids animals. These findings demonstrate that gestational exposure to an EC mixture results in differential regulation of metabolic processes in adult male offspring. Binary effects on hypothalamic gene expression and altered expression of lipid metabolism genes in visceral and subcutaneous fat, coupled with phenotypic outcomes, point to differences in individual susceptibility to EC exposure that could predispose vulnerable individuals to later metabolic dysfunction.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Chris S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Samantha Powls
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Gao X, Yan D, Li G, Wei Y, He H, Zhai J. Polychlorinated biphenyls and risk of metabolic syndrome and comparison with the risk of diabetes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165773. [PMID: 37506918 DOI: 10.1016/j.scitotenv.2023.165773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
With the increasing incidence of metabolic syndrome (MetS) worldwide and no consistent results on PCBs and MetS. A meta-analysis to explore their relationship was conducted. Given the high correlation and overlap of MetS with diabetes, analysis of diabetes risk, was used as a supplement to compare with MetS. Seven studies included MetS, 15 studies for diabetes, and one study included both outcomes. It was found that PCBs may not be a risk factor for MetS, but their high heterogeneity indicates that they are under-represented. In addition, our results showed that total PCBs might be a protective factor against diabetes. In the whole blood subgroup, which can reflect the accumulation of more than one body load, heterogeneity was reduced, and its OR value suggested that PCBs increased the risk of MetS in the whole blood biomaterial. DL-PCBs were positively associated with MetS and diabetes, while NDL-PCBs were negatively associated with diabetes. In the subgroup analysis of PCBs homologs, DL-PCB-126 and DL-PCB-118 were risk factors for MetS and diabetes, respectively. In addition, PCB-153 and 180 showed a dose-response relationship between them and diabetes mellitus, respectively. The results of total analysis of MetS and diabetes mellitus and subgroup analysis of PCBs were mixed, and this reason might be attributed to the different mechanisms of action and effect sizes of different PCBs, so based on subgroup results and in vivo and in vitro experiments, we considered PCBs to be a risk factor for MetS and diabetes. Due to various reasons, there are still many shortcomings in the evaluation of PCBs impact on human health, and more high-quality research are needed to further explore the role of PCBs of different species and congeners in MetS and diabetes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China.
| |
Collapse
|
8
|
Casella M, Lori G, Coppola L, La Rocca C, Tait S. BDE-47, -99, -209 and Their Ternary Mixture Disrupt Glucose and Lipid Metabolism of Hepg2 Cells at Dietary Relevant Concentrations: Mechanistic Insight through Integrated Transcriptomics and Proteomics Analysis. Int J Mol Sci 2022; 23:ijms232214465. [PMID: 36430946 PMCID: PMC9697228 DOI: 10.3390/ijms232214465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic chemicals implied as flame retardants. Humans are mainly exposed to BDE-47, -99, and -209 congeners by diet. PBDEs are metabolic disruptors with the liver as the main target organ. To investigate their mode of action at a human-relevant concentration, we exposed HepG2 cells to these congeners and their mixture at 1 nM, analyzing their transcriptomic and proteomic profiles. KEGG pathways and GSEA Hallmarks enrichment analyses evidenced that BDE-47 disrupted the glucose metabolism and hypoxia pathway; all the congeners and the MIX affected lipid metabolism and signaling Hallmarks regulating metabolism as mTORC1 and PI3K/AKT/MTOR. These results were confirmed by glucose secretion depletion and increased lipid accumulation, especially in BDE-47 and -209 treated cells. These congeners also affected the EGFR/MAPK signaling; further, BDE-47 enriched the estrogen pathway. Interestingly, BDE-209 and the MIX increased ERα gene expression, whereas all the congeners and the MIX induced ERβ and PPARα. We also found that PBDEs modulated several lncRNAs and that HNRNAP1 represented a central hub in all the four interaction networks. Overall, the PBDEs investigated affected glucose and lipid metabolism with different underlying modes of action, as highlighted by the integrated omics analysis, at a dietary relevant concentration. These results may support the mechanism-based risk assessment of these compounds in relation to liver metabolism disruption.
Collapse
Affiliation(s)
- Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Science Department, Università Degli Studi di Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Cinzia La Rocca
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49902839
| |
Collapse
|
9
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
10
|
Zhang Q, Peng J, Huang A, Zheng S, Shi X, Li B, Huang W, Tan W, Wang X, Wu K. Associations between polybrominated diphenyl ethers (PBDEs) levels in adipose tissues and blood lipids in women of Shantou, China. ENVIRONMENTAL RESEARCH 2022; 214:114096. [PMID: 35973458 DOI: 10.1016/j.envres.2022.114096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Animal studies have indicated that exposure to polybrominated diphenyl ethers (PBDEs) during development can permanently affect blood/liver lipid balance. However, no epidemiological study has assessed the relationship between PBDEs in adipose tissues and blood lipid metabolism. In this study, we explored the associations between PBDEs levels in female adipose tissues and lipid profiles. We recruited 150 female patients undergoing plastic surgery from hospital in Shantou, China, collected their characteristics, clinical information, and adipose tissue samples. Fourteen PBDE congeners in adipose tissues were analyzed by gas chromatography-mass spectrometry (GC-MS). Multiple linear and logistic regression models were used to explore the relationships between PBDEs and lipid profiles, while restricted cubic spline (RCS) regression and Bayesian kernel machine regression (BKMR) models were used to evaluate the nonlinearity of mixtures. Median levels of ΣPBDEs and dominant congeners BDE-153, -209, and -183 in adipose tissues were 73.91, 26.12, 14.10 and 9.01 ng/g lipid, respectively. In the multiple linear model, BDE-153 and BDE-209 were negatively associated with triglycerides (TG), similarly for BDE-190 and total cholesterol (TC). While in the adjusted logistic models, BDE-138 was negatively associated with TC (OR = 0.76, 95%CI: 0.58, 0.99) and total lipids (TL) (OR = 0.76, 95%CI: 0.58, 0.99). Diastolic blood pressure was positively correlated with BDE-28 and BDE-71 (P < 0.05). Furthermore, a non-linear relationship was observed in BDE-138 and blood lipid levels using a RCS model (Pnonlinearity<0.05). BKMR analysis indicated that with the cumulative levels across PBDEs increased, the health risks of hypertriglyceridemia gradually rebounded, and the health risks of hypercholesterolemia and high total lipid gradually rebounded and then declined, but without statistical significance. PBDEs pollution was still prevalent in Shantou city, and several PBDE congeners were significant risk factors for dyslipidemia and blood pressure alteration. There exist deleterious effects of PBDEs and blood lipids.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Anyan Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Boyu Li
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
11
|
Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13923. [PMID: 36360801 PMCID: PMC9657815 DOI: 10.3390/ijerph192113923] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) were widely used in industrial and commercial applications, until they were banned in the late 1970s as a result of their significant environmental pollution. PCBs in the environment gained scientific interest because of their persistence and the potential threats they pose to humans. Traditionally, human exposure to PCBs was linked to dietary ingestion. Inhalational exposure to these contaminants is often overlooked. This review discusses the occurrence and distribution of PCBs in environmental matrices and their associated health impacts. Severe PCB contamination levels have been reported in e-waste recycling areas. The occurrence of high PCB levels, notably in urban and industrial areas, might result from extensive PCB use and intensive human activity. Furthermore, PCB contamination in the indoor environment is ten-fold higher than outdoors, which may present expose risk for humans through the inhalation of contaminated air or through the ingestion of dust. In such settings, the inhalation route may contribute significantly to PCB exposure. The data on human health effects due to PCB inhalation are scarce. More epidemiological studies should be performed to investigate the inhalation dose and response mechanism and to evaluate the health risks. Further studies should also evaluate the health impact of prolonged low-concentration PCB exposure.
Collapse
Affiliation(s)
- Naffisah Othman
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Mohamad Ikhsan Selamat
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Nur Amirah Shibraumalisi
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
12
|
Prenatal Environmental Exposure to Persistent Organic Pollutants and Indices of Overweight and Cardiovascular Risk in Dutch Adolescents. Nutrients 2022; 14:nu14112269. [PMID: 35684070 PMCID: PMC9183073 DOI: 10.3390/nu14112269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Persistent organic pollutants (POPs) may have obesogenic effects. Knowledge about the effects of prenatal exposure to POPs on anthropometric measurements and metabolic parameters into adolescence is limited. Therefore, the aim of the current study was to determine whether prenatal environmental exposure to several POPs is associated with indices of overweight and cardiovascular risk in 13–15-year-old children. In this Dutch observational cohort study, 194 mother–infant pairs were included (1998–2002). Maternal pregnancy serum levels of PCBs, OH-PCBs, PBDEs, and other POPs were measured. At follow-up (2014–2016), levels of cholesterol, HDL-C, LDL-C, triglycerides, fasting insulin, fasting glucose, leptin, and adiponectin were measured in their children. The children’s height, weight, waist circumference, hip circumference, and blood pressure were measured. In total, 101 adolescents (14.4 ± 0.8 years; 53.7% of invited) participated of which 55 were boys. Mean BMI was 19.1 ± 3.6 kg/m2 and mean BMI z-score 0.13 ± 1.14. Higher prenatal levels of PCBs were associated with lower levels of HDL-C and adiponectin in boys and higher levels of PBDEs with higher triglycerides in girls. We found significant differences by sex in the associations with OH-PCBs, with lower HDL-C and adiponectin, higher LDL-C/HDL-C ratio, fasting glucose, HOMA2-IR, height, and weight for boys. Our study indicates that higher prenatal exposure to PCBs, OH-PCBs, and PBDEs was associated with adolescent levels of some metabolic cardiovascular risk markers and hormones associated with the development of obesity and cardiovascular disease.
Collapse
|