1
|
Liao CT, Chang HC, Li CE, Hsiao YM. Functional characterization, transcriptome and metabolome analyses reveal that pacR possesses multifaceted physiological roles in Xanthomonas campestris pathovar campestris. Microb Pathog 2024; 199:107162. [PMID: 39608507 DOI: 10.1016/j.micpath.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Xanthomonas campestris pathovar campestris (Xcc) is the pathogen responsible for causing black rot in cruciferous plants. In this study, we show that mutation of AAW18_RS04175 (pacR, encodes a hypothetical protein containing a domain of unknown function, DUF1631) of Xcc strain Xc17 had decreased bacterial attachment, exopolysaccharide production, hypersensitive response and virulence. Furthermore, the pacR mutant exhibited reduced cell membrane integrity and outer membrane vesicle production. Transcriptomic analysis indicated that 225 genes were differentially expressed following pacR mutation. These genes can be classified into various functional categories, such as the type three secretion system and membrane component. Among them, genes associated with attachment, exopolysaccharide synthesis, the type three secretion system, and nucleotide metabolism were further verified by quantitative RT-PCR. Metabolomic analysis showed that 81 and 132 metabolites in positive and negative modes, respectively, were altered after pacR mutation. Among the identified metabolites, some are known to belong to different pathways, such as biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and nucleotide and purine metabolism, while others have not been previously documented in microbial systems. Additionally, the transcription initiation point of pacR was mapped, and promoter analysis indicated that pacR expression is influenced by different conditions. Taken together, our findings advance the understanding of PacR function and expression in Xcc and offer new insights into the role of the DUF1631-containing hypothetical protein in bacterial physiology.
Collapse
Affiliation(s)
- Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Chih-En Li
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
2
|
Jain A, Sarsaiya S, Singh R, Gong Q, Wu Q, Shi J. Omics approaches in understanding the benefits of plant-microbe interactions. Front Microbiol 2024; 15:1391059. [PMID: 38860224 PMCID: PMC11163067 DOI: 10.3389/fmicb.2024.1391059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Plant-microbe interactions are pivotal for ecosystem dynamics and sustainable agriculture, and are influenced by various factors, such as host characteristics, environmental conditions, and human activities. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have revolutionized our understanding of these interactions. Genomics elucidates key genes, transcriptomics reveals gene expression dynamics, proteomics identifies essential proteins, and metabolomics profiles small molecules, thereby offering a holistic perspective. This review synthesizes diverse microbial-plant interactions, showcasing the application of omics in understanding mechanisms, such as nitrogen fixation, systemic resistance induction, mycorrhizal association, and pathogen-host interactions. Despite the challenges of data integration and ethical considerations, omics approaches promise advancements in precision intervention and resilient agricultural practices. Future research should address data integration challenges, enhance omics technology resolution, explore epigenomics, and understand plant-microbe dynamics under diverse conditions. In conclusion, omics technologies hold immense promise for optimizing agricultural strategies and fortifying resilient plant-microbe alliances, paving the way for sustainable agriculture and environmental stewardship.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Ranjan Singh
- Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Potential and Metabolic Pathways of Eugenol in the Management of Xanthomonas perforans, a Pathogen of Bacterial Spot of Tomato. Int J Mol Sci 2022; 23:ijms232314648. [PMID: 36498976 PMCID: PMC9739100 DOI: 10.3390/ijms232314648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial spot of tomato continues to pose a significant problem to tomato production worldwide. In Florida, bacterial spot of tomato caused by Xanthomonas perforans is one of the most important diseases responsible for tomato yield loss. This disease is difficult to control, and new strategies are continually being investigated to combat the devastating effect of this disease. Recent efforts focusing on essential oils based on small molecules have spurred interests in the utilization of this class of chemicals for disease management. In this study, we evaluated the efficacy of eugenol for the management of bacterial spot of tomato caused by X. perforans. In the greenhouse experiments, eugenol applied as a foliar spray significantly (p < 0.5) reduced bacterial spot disease compared to the untreated control. In the field experiments, the area under the disease progress curve (AUDPC) was significantly (p < 0.5) lower in the plots treated with eugenol or eugenol combined with the surfactant Cohere than in the untreated control plots, and it was comparable to the copper-based treatments. To provide additional insights into the possible pathways of eugenol activities, we applied a liquid chromatography mass spectrometry (LC-MS)-based metabolomic study using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) on X. perforans strain 91−118 treated with eugenol. Our results showed that eugenol affected metabolite production in multiple pathways critical to bacterial survival. For example, treatment of cells with eugenol resulted in the downregulation of the glutathione metabolism pathway and associated metabolites, except for 5-oxoproline, which accumulation is known to be toxic to living cells. While the peaks corresponding to the putatively identified sarmentosin showed the most significant impact and reduced in response to eugenol treatment, branched-chain amino acids, such as L-isoleucine, increased in production, suggesting that eugenol may not negatively affect the protein biosynthesis pathways. The results from our study demonstrated the efficacy of eugenol in the management of bacterial spot of tomato under greenhouse and field conditions and identified multiple pathways that are targeted.
Collapse
|
4
|
Yao D, Wang X, Ma L, Wu M, Xu L, Yu Q, Zhang L, Zheng X. Impact of Weissella cibaria BYL4.2 and its supernatants on Penicillium chrysogenum metabolism. Front Microbiol 2022; 13:983613. [PMID: 36274712 PMCID: PMC9581191 DOI: 10.3389/fmicb.2022.983613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) can produce a vast spectrum of antifungal metabolites to inhibit fungal growth. The purpose of this study was to elucidate the antifungal effect of isolated Weissella cibaria BYL4.2 on Penicillium chrysogenum, the antifungal activity of W. cibaria BYL4.2 against P. chrysogenum was evaluated by the superposition method, results showed that it had obviously antifungal activity against P. chrysogenum. Studying the probiotic properties of BYL4.2 and determining it as beneficial bacteria. Furtherly, different treatments were carried out to characterize the antifungal activity of cell-free supernatant (CFS) produced by W. cibaria BYL4.2, and it was shown that the CFS was pH-dependent, partly heat-sensitive, and was not influenced by proteinaceous treatment. The CFS of W. cibaria BYL4.2 was analyzed by high-performance liquid chromatography (HPLC) and found the highest content of lactic acid. Screening of metabolic markers by a non-targeted metabolomics approach based liquid chromatography-mass spectrometry (LC-MS). The results speculated that organic acid especially detected D-tartaric acid was the main antifungal substance of CFS, which could cause the down-regulation of metabolites in the ABC transporters pathway, thereby inhibiting the growth of P. chrysogenum. Therefore, this study may provide important information for the inhibitory mechanism of W. cibaria BYL4.2 on P. chrysogenum, and provide a basis for further research on the antifungal effect of Weissella.
Collapse
|
5
|
Jibrin MO, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Goss EM, Jones JB. Bacterial Spot of Tomato and Pepper in Africa: Diversity, Emergence of T5 Race, and Management. Front Microbiol 2022; 13:835647. [PMID: 35509307 PMCID: PMC9058171 DOI: 10.3389/fmicb.2022.835647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial spot disease was first reported from South Africa by Ethel M. Doidge in 1920. In the ensuing century after the initial discovery, the pathogen has gained global attention in plant pathology research, providing insights into host-pathogen interactions, pathogen evolution, and effector discovery, such as the first discovery of transcription activation-like effectors, among many others. Four distinct genetic groups, including Xanthomonas euvesicatoria (proposed name: X. euvesicatoria pv. euvesicatoria), Xanthomonas perforans (proposed name: X. euvesicatoria pv. perforans), Xanthomonas gardneri (proposed name: Xanthomonas hortorum pv. gardneri), and Xanthomonas vesicatoria, are known to cause bacterial spot disease. Recently, a new race of a bacterial spot pathogen, race T5, which is a product of recombination between at least two Xanthomonas species, was reported in Nigeria. In this review, our focus is on the progress made on the African continent, vis-à-vis progress made in the global bacterial spot research community to provide a body of information useful for researchers in understanding the diversity, evolutionary changes, and management of the disease in Africa.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Gerald V. Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Garry E. Vallad
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Pamela D. Roberts
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- UF/IFAS Southwest Florida Research and Education Center, Immokalee, FL, United States
| | - Erica M. Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|