1
|
Mitrea L, Medeleanu M, Pop CR, Rotar AM, Vodnar DC. Biotics (Pre-, Pro-, Post-) and Uremic Toxicity: Implications, Mechanisms, and Possible Therapies. Toxins (Basel) 2023; 15:548. [PMID: 37755974 PMCID: PMC10535688 DOI: 10.3390/toxins15090548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, more scientific data have pointed out the close connection between intestinal microbial community, nutritional habits, lifestyle, and the appearance of various affections located at certain anatomical systems. Gut dysbiosis enhances the formation and accumulation of specific metabolites with toxic potential that induce the appearance of kidney-associated illnesses. Intestinal microbes are involved in the degradation of food, drugs, or other ingested products that lead to the formation of various metabolites that end up in renal tissue. Over the last few years, the possibilities of modulating the gut microbiota for the biosynthesis of targeted compounds with bioactive properties for reducing the risk of chronic illness development were investigated. In this regard, the present narrative review provides an overview of the scientific literature across the last decade considering the relationship between bioactive compounds, pre-, pro-, and post-biotics, uremic toxicity, and kidney-associated affections, and the possibility of alleviating the accumulation and the negative effects of uremic toxins into the renal system.
Collapse
Affiliation(s)
- Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mădălina Medeleanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
| | - Carmen-Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
| | - Ancuța-Mihaela Rotar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
| | - Dan-Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Deabold K, Montalbano C, Miscioscia E. Feline Osteoarthritis Management. Vet Clin North Am Small Anim Pract 2023; 53:879-896. [PMID: 36964025 DOI: 10.1016/j.cvsm.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Feline osteoarthritis is common; despite vague clinical signs, it can result in mobility impairment and quality of life concerns. An integrative approach to management may include analgesic medications, dietary modifications, nutraceuticals, environmental modifications, physical rehabilitation, acupuncture, and regenerative medicine. Management of concurrent disease and consideration for patient tolerance and owner compliance are critical in formulating a treatment plan in cats with osteoarthritis.
Collapse
Affiliation(s)
- Kelly Deabold
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32608, USA
| | | | - Erin Miscioscia
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32608, USA.
| |
Collapse
|
3
|
Summers SC, Quimby J, Blake A, Keys D, Steiner JM, Suchodolski J. Serum and Fecal Amino Acid Profiles in Cats with Chronic Kidney Disease. Vet Sci 2022; 9:vetsci9020084. [PMID: 35202337 PMCID: PMC8878831 DOI: 10.3390/vetsci9020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The purpose of the study was to quantify serum and fecal amino acids (AA) in cats with chronic kidney disease (CKD) and compare to healthy cats. Thirty-five cats with International Renal Interest Society Stage 1–4 CKD and 16 healthy mature adult and senior client-owned cats were included in this prospective cross-sectional study. Sera were analyzed for 25 AA concentrations using an ion exchange chromatography AA analyzer with post column ninhydrin derivatization. Voided fecal samples were analyzed for 22 AA concentrations using liquid chromatography with tandem mass spectrometry. CKD cats had lower serum concentrations of phenylalanine (mean difference ± standard error of the mean: 12.7 ± 4.3 µM; p = 0.03), threonine (29.6 ± 9.2 µM; p = 0.03), tryptophan (18.4 ± 5.4 µM; p = 0.005), serine (29.8 ± 12.6 µM; p = 0.03), and tyrosine (11.6 ± 3.8 µM; p = 0.01) and higher serum concentrations of aspartic acid (4.7 ± 2.0 µM; p = 0.01), β-alanine (3.4 ± 1.2 µM; p = 0.01), citrulline (5.7 ± 1.6 µM; p = 0.01), and taurine (109.9 ± 29.6 µM; p = 0.01) when compared to healthy cats. Fecal AA concentrations did not differ between healthy cats and CKD cats. 3-Methylhistidine-to-creatinine did not differ between healthy cats with and without muscle loss. Cats with CKD IRIS Stages 1–4 have a deranged serum amino acid profile compared to healthy cats.
Collapse
Affiliation(s)
- Stacie C. Summers
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda Blake
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| | - Deborah Keys
- Kaleidoscope Statistics Veterinary Medical Research Consulting, Athens, GA 30606, USA;
| | - Joerg M. Steiner
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| | - Jan Suchodolski
- Texas A&M Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College Station, TX 77843, USA; (A.B.); (J.M.S.); (J.S.)
| |
Collapse
|
4
|
Effect of Nutrition on Age-Related Metabolic Markers and the Gut Microbiota in Cats. Microorganisms 2021; 9:microorganisms9122430. [PMID: 34946032 PMCID: PMC8706506 DOI: 10.3390/microorganisms9122430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related changes in the gut microbiota and metabolites are associated with the increased risk of detrimental conditions also seen with age. This study evaluated whether a test food with potential anti-aging benefits results in favorable changes in plasma and fecal metabolites and the fecal microbiota in senior cats. Forty healthy domestic cats aged 8.3–13.5 years were fed a washout food for 30 days, then control or test food for 30 days. After another 30-day washout, cats were switched to the other study food for 30 days. Assessment of plasma and fecal metabolites showed lower levels of metabolites associated with detrimental processes (e.g., uremic toxins) and higher levels of metabolites associated with beneficial processes (e.g., tocopherols) after cats consumed the test food compared with the control food. A shift toward proteolysis with the control food is supported by higher levels of amino acid metabolites and lower levels of carbohydrate metabolites. Operational taxonomic units of greater abundance with the test food positively correlated with carbohydrate and nicotinic acid metabolites, and negatively correlated with uremic toxins, amino acid metabolism, secondary bile salts, and branched-chain fatty acids. Taken together, the test food appears to result in greater levels of metabolites and microbiota associated with a healthier state.
Collapse
|
5
|
Panickar KS, DeBey MC, Jewell DE. Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study. BIOLOGY 2021; 10:biology10040299. [PMID: 33916431 PMCID: PMC8066050 DOI: 10.3390/biology10040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary Cats, like mammals in general, experience lean body mass loss in later life. This study shows that two dietary interventions offset that loss: L-carnitine and carnosine. The combination did not change body lean. Interestingly, the combination resulted in an increased circulating concentration of 8 of the 10 cytokines measured, while L-carnitine alone resulted in decreased concentrations. Thus, L-carnitine could benefit the healthy cat while in some disease states it may be beneficial to increase both L-carnitine and carnosine. Abstract The need to maintain body lean as cats age is shown in both health and disease. In healthy cats, body lean is associated with enhanced movement and overall longevity. In many disease states (i.e., renal disease, obesity), an enhanced or minimally maximal support of body lean is associated with quality of life and is a nutritional goal in aiding in the management of the disease. This study was designed to investigate the effect of these two dietary components and their combination on body composition and circulating factors of health, including metabolomics analysis and cytokine concentration. The foods that were fed for 169 days to four groups of cats and consisted of control food (formulated to meet the nutritional needs of all adult cats), carnitine-enhanced food (control food plus 300 mg/kg L-carnitine), carnosine-enhanced food (control food plus 1000 mg/kg carnosine), and food enhanced with both (control plus 300 mg/kg carnitine and 1000 mg/kg carnosine). Dietary enhancement with L-carnitine and carnosine increased body lean at the end of the study compared to the cats consuming the control food or the combination food. The cats consuming L-carnitine alone had a decreased concentration of circulating cytokines, while those consuming the combination food had an increased concentration of glucose, pyruvate, succinate, and circulating cytokines.
Collapse
Affiliation(s)
- Kiran S. Panickar
- Hill’s Pet Nutrition Inc., Topeka, KS 66617, USA; (K.S.P.); (M.C.D.)
| | - Mary C. DeBey
- Hill’s Pet Nutrition Inc., Topeka, KS 66617, USA; (K.S.P.); (M.C.D.)
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
- Correspondence:
| |
Collapse
|
6
|
Ephraim E, Cochrane CY, Jewell DE. Varying Protein Levels Influence Metabolomics and the Gut Microbiome in Healthy Adult Dogs. Toxins (Basel) 2020; 12:toxins12080517. [PMID: 32806674 PMCID: PMC7472411 DOI: 10.3390/toxins12080517] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The optimal ranges of protein for healthy adult dogs are not known. This study evaluated the impact of long-term consumption of foods containing low, medium, and high levels of protein on serum, urine, and fecal metabolites, and gut microbiome in beagles. Following maintenance on a prefeed food for 14 days, dogs (15 neutered males, 15 spayed females, aged 2–9 years, mean initial weight 11.3 kg) consumed the low (18.99%, dry matter basis), medium (25.34%), or high (45.77%) protein foods, each for 90 days, in a William’s Latin Square Design sequence. In serum and/or urine, metabolites associated with inflammation (9,10-dihydroxyoctadecanoic acid (DiHOME)), 12,13-DiHOME) and kidney dysfunction (urea, 5-hydroxyindole sulfate, 7-hydroxyindole sulfate, p-cresol sulfate) increased with higher protein levels in food, while one-carbon pathway metabolites (betaine, dimethylglycine, sarcosine) decreased. Fecal pH increased with protein consumed, and levels of beneficial indoles and short-chain fatty acids decreased while branched-chain fatty acids increased. Beta diversity of the fecal microbiome was significantly different, with increased abundances of proteolytic bacteria with higher protein food. Feeding dogs a high amount of protein leads to a shift to proteolytic gut bacteria, higher fecal pH, and is associated with increased levels of metabolites linked with inflammation and kidney dysfunction.
Collapse
Affiliation(s)
- Eden Ephraim
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, KS 66617, USA;
- Correspondence:
| | - Chun-Yen Cochrane
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, KS 66617, USA;
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
7
|
Changes in the Fecal Metabolome Are Associated with Feeding Fiber Not Health Status in Cats with Chronic Kidney Disease. Metabolites 2020; 10:metabo10070281. [PMID: 32660033 PMCID: PMC7407581 DOI: 10.3390/metabo10070281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/25/2022] Open
Abstract
The objective was to determine the effects of feeding different fiber sources to cats with chronic kidney disease (CKD) compared with healthy cats (both n = 10) on fecal metabolites. A cross-over within split-plot study design was performed using healthy and CKD cats (IRIS stage 1, 2, and 3). After cats were fed a complete and balanced dry food designed to aid in the management of renal disease for 14 days during a pre-trial period, they were randomly assigned to two fiber treatments for 4 weeks each. The treatment foods were formulated similar to pre-trial food and contained 0.500% betaine, 0.586% oat beta glucan, and either 0.407% short chain fructooligosaccharides (scFOS) fiber or 3.44% apple pomace. Both treatment foods had similar crude fiber (2.0 and 2.1% for scFOS and apple pomace, respectively) whereas soluble fiber was 0.8 and 1.6%, respectively. At baseline, CKD had very little impact on the fecal metabolome. After feeding both fiber sources, some fecal metabolite concentrations were significantly different compared with baseline. Many fecal uremic toxins decreased, although in healthy cats some increased; and some more so when feeding apple pomace compared with scFOS, e.g., hippurate, 4-hydroxyhippurate, and 4-methylcatechol sulfate; the latter was also increased in CKD cats. Changes in secondary bile acid concentrations were more numerous in healthy compared with CKD cats, and cats in both groups had greater increases in some secondary bile acids after consuming apple pomace compared with scFOS, e.g., tauroursodeoxycholate and hyocholate. Although changes associated with feeding fiber were more significant than changes associated with disease status, differential modulation of the gut-kidney axis using dietary fiber may benefit cats.
Collapse
|