1
|
Lei X, Ye W, Safdarin F, Baghaei S. Microfluidics devices for sports: A review on technology for biomedical application used in fields such as biomedicine, drug encapsulation, preparation of nanoparticles, cell targeting, analysis, diagnosis, and cell culture. Tissue Cell 2024; 87:102339. [PMID: 38432127 DOI: 10.1016/j.tice.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Microfluidics is an interdisciplinary field that combines knowledge from various disciplines, including biology, chemistry, sports medicine, fluid dynamics, kinetic biomechanics, and microelectronics, to manipulate and control fluids and particles in micron-scale channels and chambers. These channels and chambers can be fabricated using different materials and methods to achieve various geometries and shapes. Microfluidics has numerous biomedical applications, such as drug encapsulation, nanoparticle preparation, cell targeting, analysis, diagnosis, and treatment of sports injuries in both professional and non-professional athletes. It can also be used in other fields, such as biological analysis, chemical synthesis, optics, and acceleration in the treatment of critical sports injuries. The objective of this review is to provide a comprehensive overview of microfluidic technology, including its fabrication methods, current platform materials, and its applications in sports medicine. Biocompatible, biodegradable, and semi-crystalline polymers with unique mechanical and thermal properties are one of the promising materials in microfluidic technology. Despite the numerous advantages of microfluidic technology, further research and development are necessary. Although the technology offers benefits such as ease of operation and cost efficiency, it is still in its early stages. In conclusion, this review emphasizes the potential of microfluidic technology and highlights the need for continued research to fully exploit its potential in the biomedical field and sport applications.
Collapse
Affiliation(s)
- Xuehui Lei
- Graduate School of Wuhan Institute of Physical Education, Wuhan 430079, China
| | - Weiwu Ye
- National Traditional Sports College of Harbin Sports University, Harbin 150008, China.
| | - F Safdarin
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| | - Sh Baghaei
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| |
Collapse
|
2
|
Jung YK, Son MH. Polydiacetylene-based aptasensors for rapid and specific colorimetric detection of malignant exosomes. Talanta 2024; 268:125342. [PMID: 37918246 DOI: 10.1016/j.talanta.2023.125342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Exosomes (50-150 nm) play significant biological functions in intercellular communication and transportation of diverse biomolecules, including proteins and nucleic acids. In particular, malignant exosomes have received a great deal of attention as possible indicators for cancer detection and treatment. To swiftly and precisely identify malignant exosomes from normal exosomes in diverse bodily fluids, we developed polydiacetylene (PDA)-based aptasensors with distinct optical features exhibiting color shift in response to biological recognition. To identify epithelial cell adhesion molecules (EpCAM) overexpressed on the surface of malignant exosomes, anti-EpCAM aptamer-conjugated diacetylene monomer (TCDA-Apt) was synthesized and used to create anti-EpCAM aptamer-conjugated PDA (anti-EpCAM Apt-PDA) vesicles. In just 15 min following the reaction with malignant exosomes, the anti-EpCAM Apt-PDA vesicles underwent a visible color change from blue to purple. They showed high specificity to EpCAM-positive malignant exosomes over non-malignant exosomes, bovine serum albumin (BSA), and fibrinogen. Moreover, its effectiveness in the point-of-care (POC) detection of malignant exosomes was evaluated using human sera. Therefore, our PDA-based aptasensors have tremendous potential for on-site cancer diagnosis.
Collapse
Affiliation(s)
- Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| | - Min Hyeong Son
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| |
Collapse
|
3
|
Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New Opportunities and Old Challenges in the Clinical translation of Nanotheranostics. NATURE REVIEWS. MATERIALS 2023; 8:783-798. [PMID: 39022623 PMCID: PMC11251001 DOI: 10.1038/s41578-023-00581-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2024]
Abstract
Nanoparticle-based systems imbued with both diagnostic and therapeutic functions, known as nanotheranostics, have enabled remarkable progress in guiding focal therapy, inducing active responses to endogenous and exogenous biophysical stimuli, and stratifying patients for optimal treatment. However, although in recent years more nanotechnological platforms and techniques have been implemented in the clinic, several important challenges remain that are specific to nanotheranostics. In this Review, we first discuss some of the many ways of 'constructing' nanotheranostics, focusing on the different imaging modalities and therapeutic strategies. We then outline nanotheranostics that are currently used in humans at different stages of clinical development, identifying specific advantages and opportunities. Finally, we define critical steps along the winding road of preclinical and clinical development and suggest actions to overcome technical, manufacturing, regulatory and economical challenges for the safe and effective clinical translation of nanotheranostics.
Collapse
Affiliation(s)
- Peter J. Gawne
- UCL Cancer Institute, University College London, London, UK
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary, University of London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Miguel Ferreira
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Marisa Papaluca
- School of Public Health, Imperial College of London, South Kensington CampusLondon, UK
| | - Jan Grimm
- Molecular Pharmacology Program and Department of Radiology, Memorial Sloan-Kettering Cancer, Center, New York, NY, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via, Morego 30, 16163, Genoa, IT
| |
Collapse
|
4
|
Bouquerel C, Dubrova A, Hofer I, Phan DTT, Bernheim M, Ladaigue S, Cavaniol C, Maddalo D, Cabel L, Mechta-Grigoriou F, Wilhelm C, Zalcman G, Parrini MC, Descroix S. Bridging the gap between tumor-on-chip and clinics: a systematic review of 15 years of studies. LAB ON A CHIP 2023; 23:3906-3935. [PMID: 37592893 DOI: 10.1039/d3lc00531c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.
Collapse
Affiliation(s)
- Charlotte Bouquerel
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Fluigent, 67 avenue de Fontainebleau, 94270, Le Kremlin-Bicêtre, France
| | - Anastasiia Dubrova
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Isabella Hofer
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Duc T T Phan
- Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | - Moencopi Bernheim
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Ségolène Ladaigue
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Charles Cavaniol
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, 26 rue d'Ulm, 75005, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Claire Wilhelm
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| | - Gérard Zalcman
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
- Université Paris Cité, Thoracic Oncology Department, INSERM CIC1425, Bichat Hospital, Cancer Institute AP-HP. Nord, Paris, France.
| | - Maria Carla Parrini
- Stress and Cancer Laboratory, Inserm, U830, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Stéphanie Descroix
- Macromolécules et Microsystèmes en Biologie et Médecine, UMR 168, Institut Curie, Institut Pierre Gilles de Gennes, 6 rue Jean Calvin, 75005, Paris, France
| |
Collapse
|
5
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
6
|
Formulation Development of Doxycycline-Loaded Lipid Nanocarriers using Microfluidics by QbD Approach. J Pharm Sci 2023; 112:740-750. [PMID: 36170906 DOI: 10.1016/j.xphs.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Liposomes have been used to improve therapeutic efficacy of drugs by increasing their bioavailability and altering biodistribution. The loading capacity of small molecules in liposomes remains a critical issue. Besides, the manufacturing process of liposomes requires multi-step procedures which hinders the clinical development. In this study, we developed a promising lipid-based nanocarriers (LN) delivery system for hydrophilic charged compounds using doxycycline (Doxy) as a model drug. This Doxy-loaded lipid nanocarrier (LN-Doxy) was fabricated by microfluidic technology. Design of experiments (DoE) was constructed to outline the interactions among the critical attributes of formulation, the parameters of microfluidic systems and excipient compositions. Response surface methodology (RSM) was furthered used for the optimization of LN-Doxy formulation. The LN-Doxy developed in this study showed high drug to lipid ratio and uniform distribution of particle size. Compared to Doxy solution, this LN-Doxy has reduced in vitro cellular toxicity and significant therapeutic efficacy which was verified in a peritonitis animal model. These results show the feasibility of using microfluidic technology combined with QbD approach to develop the LN formulation with high loading efficiency for ionizable hydrophilic drugs.
Collapse
|
7
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
8
|
Sisodia Y, Shah K, Ali Sayyed A, Jain M, Ali SA, Gondaliya P, Kalia K, Tekade RK. Lung-on-chip microdevices to foster pulmonary drug discovery. Biomater Sci 2023; 11:777-790. [PMID: 36537540 DOI: 10.1039/d2bm00951j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Respiratory diseases account for unprecedented mortality owing to a lack of personalized or insufficient therapeutic interventions. Fostering pulmonary research into managing pulmonary threat requires a potential alternative approach that can mimick the in vivo complexities of the human body. The in vitro miniaturized bionic simulation of the lung holds great potential in the quest for a successful therapeutic intervention. This review discusses the emerging roles of lung-on-chip microfluidic simulator devices in fostering translational pulmonary drug discovery and personalized medicine. This review also explicates how the lung-on-chip model emulates the breathing patterns, elasticity, and vascularization of lungs in creating a 3D pulmonary microenvironment.
Collapse
Affiliation(s)
- Yashi Sisodia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Komal Shah
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Adil Ali Sayyed
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Transplantation, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Meenakshi Jain
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Syed Ansar Ali
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Transplantation, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.
| |
Collapse
|
9
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
10
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
11
|
Geometry effect in multi-step crossflow microfluidic devices for red blood cells separation and deformability assessment. Biomed Microdevices 2022; 24:20. [PMID: 35670892 DOI: 10.1007/s10544-022-00616-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
The efficient separation of blood components using microfluidic systems can help to improve the detection and diagnosis of several diseases, such as malaria and diabetes. Therefore, a novel multi-step microfluidic device, based on passive crossflow filters was developed. Three different designs were proposed, fabricated and tested in order to evaluate the most suitable geometry to perform, simultaneously, blood cells separation and cell deformability measurements. All the proposed geometries include a main channel and three sequential separation steps, all comprised of symmetrical crossflow filters, with multiple rows of pillars, to reduce the amount of red blood cells (RBCs) flowing to the outlets of the microfluidic device (MD). Sets of hyperbolic constrictions located at the outlets allow the assessment of cells deformability. Based on the proposed geometries, the three correspondent MD were evaluated and compared, by measuring the RBCs velocities, the cell-free layer (CFL) effect through the microchannels and by quantifying the amount of RBCs at the outlets. The results suggest that the proposed MD 3 configuration was the most effective one for the desired application, due to the formation of a wider CFL. As a result, a minor amount of RBCs flow through the hyperbolic contraction at the third separation level of the device. Nevertheless, for all the proposed geometries, the existence of three separation levels shows that it is possible to achieve a highly efficient cell separation. If needed, such microdevices have the potential for further improvements by increasing the number of separation levels, aiming the total separation of blood cells from plasma.
Collapse
|
12
|
Micro-particle entrapment dynamics in microfluidic pulmonary capillary networks. J Biomech 2022; 137:111082. [PMID: 35489235 DOI: 10.1016/j.jbiomech.2022.111082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.
Collapse
|
13
|
Recent Developments on the Thermal Properties, Stability and Applications of Nanofluids in Machining, Solar Energy and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this review work, the recent progress made in the use of nanofluids (NFs) applied in three specific areas will be presented: machining, solar energy, and biomedical engineering. Within this context, the discussions will be guided by emphasizing the thermal and stability properties of these fluids. In machining, NFs play a prominent role in the processes of turning, milling, drilling, and grinding, being responsible for their optimization as well as improving the useful life of the tools and reducing costs. In the solar energy field, NFs have been used in the thermal management of the panels, controlling and homogenizing the operating temperature of these systems. In the biomedical area, the advantages of using NFs come from the treatment of cancer cells, the development of vaccines before the improvement of diagnostic imaging, and many others. In all lines of research mentioned in this study, the main parameters that have limited or encouraged the use of these fluids are also identified and debated. Finally, the discussions presented in this review will inspire and guide researchers in developing new techniques to improve the applications of NFs in several fields.
Collapse
|
14
|
Predeina AL, Prilepskii AY, de Zea Bermudez V, Vinogradov VV. Bioinspired In Vitro Brain Vasculature Model for Nanomedicine Testing Based on Decellularized Spinach Leaves. NANO LETTERS 2021; 21:9853-9861. [PMID: 34807626 DOI: 10.1021/acs.nanolett.1c01920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Animal testing is often criticized due to ethical issues and complicated translation of the results obtained to the clinical stage of drug development. Existing alternative models for nanopharmaceutical testing still have many limitations and do not significantly decrease the number of animals used. We propose a simple, bioinspired in vitro model for nanopharmaceutical drug testing based on the decellularized spinach leaf's vasculature. This system is similar to human arterioles and capillaries in terms of diameter (300-10 μm) and branching. The model has proven its suitability to access the maneuverability of magnetic nanoparticles, particularly those composed of Fe3O4. Moreover, the thrombosis has been recreated in the model's vasculature. We have tested and compared the effects of both a single-chain urokinase plasminogen activator (scuPA) and a magnetically controlled nanocomposite prepared by heparin-mediated cross-linking of scuPA with Fe3O4 nanoparticles. Compositions were tested both in static and flow conditions.
Collapse
Affiliation(s)
| | - Artur Y Prilepskii
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | | |
Collapse
|
15
|
Illath K, Kar S, Gupta P, Shinde A, Wankhar S, Tseng FG, Lim KT, Nagai M, Santra TS. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2021; 280:121247. [PMID: 34801251 DOI: 10.1016/j.biomaterials.2021.121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, UK
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Syrpailyne Wankhar
- Department of Bioengineering, Christian Medical College Vellore, Vellore, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, South Korea
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
16
|
Badhe RV, Bijukumar D, Mesquita P, Cheng KY, Ramachandran RA, Lin Y, Mathew MT. Dynamic microfluidic bioreactor-Hip simulator (DMBH) system for implant toxicity monitoring. Biotechnol Bioeng 2021; 118:4829-4839. [PMID: 34596239 DOI: 10.1002/bit.27946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
The generation of degradation products (DPs) like ions and organo-metallic particles from corroding metallic implants is an important healthcare concern. These DPs generate local and systemic toxicity. The impact on local toxicity is well documented, however, little is known about systemic toxicity. This is mainly due to the limited scope of the current microtiter plate-based (static) toxicity assay techniques. These methods do not mimic the systemic (dynamic) conditions. In this study, it is hypothesized that DPs incubated with cells in static conditions might provide improper systemic toxicity results, as there is no movement mimicking the blood circulation around cells. This study reports the development of a three-chambered prototype microfluidic system connected to the operational hip implant simulator to test the cellular response induced by the DPs. This setup is called a dynamic microfluidic bioreactor-hip simulator system. We hypothesize that a dynamic microfluidic system will provide a realistic toxicology response induced by DPs than a static cell culture plate. To prove the hypothesis, Neuro2a (N2a) cells were used as representative cells to study systemic neurotoxicity by the implant DPs. The microfluidic bioreactor system was validated by comparing the cell toxicity against the traditional static system and using COMSOL modeling for media flow with DPs. The hip implant simulator used in this study was a state-of-the-art sliding hip simulator developed in our lab. The results suggested that static toxicity was significantly more compared to dynamic microfluidic-based toxicity. The newly developed DMBH system tested for in situ systemic toxicity on N2a cells and demonstrated very minimum toxicity level (5.23%) compared to static systems (31.16%). Thus, the new DMBH system is an efficient tool for in situ implant metal systemic toxicity testing.
Collapse
Affiliation(s)
- Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Pedro Mesquita
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kai Yuan Cheng
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Remya Ampadi Ramachandran
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| |
Collapse
|
17
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
18
|
Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003517. [PMID: 33236819 DOI: 10.1002/smll.202003517] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Despite the progress achieved in nanomedicine during the last decade, the translation of new nanotechnology-based therapeutic systems into clinical applications has been slow, especially due to the lack of robust preclinical tissue culture platforms able to mimic the in vivo conditions found in the human body and to predict the performance and biotoxicity of the developed nanomaterials. Organ-on-a-chip (OoC) platforms are novel microfluidic tools that mimic complex human organ functions at the microscale level. These integrated microfluidic networks, with 3D tissue engineered models, have been shown high potential to reduce the discrepancies between the results derived from preclinical and clinical trials. However, there are many challenges that still need to be addressed, such as the integration of biosensor modules for long-time monitoring of different physicochemical and biochemical parameters. In this review, recent advances on OoC platforms, particularly on the preclinical validation of nanomaterials designed for cancer, as well as the current challenges and possible future directions for an end-use perspective are discussed.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Patrícia C Sousa
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - João Gaspar
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Rui Lima
- Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Portugal
- Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| |
Collapse
|
19
|
Valcourt DM, Kapadia CH, Scully MA, Dang MN, Day ES. Best Practices for Preclinical In Vivo Testing of Cancer Nanomedicines. Adv Healthc Mater 2020; 9:e2000110. [PMID: 32367687 PMCID: PMC7473451 DOI: 10.1002/adhm.202000110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Indexed: 01/06/2023]
Abstract
Significant advances have been made in the development of nanoparticles for cancer treatment in recent years. Despite promising results in preclinical animal models, cancer nanomedicines often fail in clinical trials. This failure rate could be reduced by defining stringent criteria for testing and quality control during the design and development stages, and by performing carefully planned preclinical studies in relevant animal models. This article discusses best practices for the evaluation of nanomedicines in murine tumor models. First, a recommended set of experiments to perform is introduced, including discussion of the types of data to collect during these studies. This is followed by an outline of various tumor models and their clinical relevance. Next, different routes of nanoparticle administration are overviewed, followed by a summary of important controls to include in in vivo studies of nanomedicine. Finally, animal welfare considerations are discussed, and an overview of the steps involved in achieving US Food and Drug Administration approval after animal studies are completed is provided. Researchers should use this report as a guideline for effective preclinical evaluation of cancer nanomedicine. As the community adopts best practices for in vivo testing, the rate of clinical translation of cancer nanomedicines is likely to improve.
Collapse
Affiliation(s)
- Danielle M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Chintan H Kapadia
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Mackenzie A Scully
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA
| |
Collapse
|
20
|
Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M. Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases. Int J Mol Sci 2019; 20:ijms20246126. [PMID: 31817343 PMCID: PMC6940944 DOI: 10.3390/ijms20246126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
There is a huge demand for pro-/anti-angiogenic nanomedicines to treat conditions such as ischemic strokes, brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Nanomedicines are therapeutic particles in the size range of 10–1000 nm, where the drug is encapsulated into nano-capsules or adsorbed onto nano-scaffolds. They have good blood–brain barrier permeability, stability and shelf life, and able to rapidly target different sites in the brain. However, the relationship between the nanomedicines’ physical and chemical properties and its ability to travel across the brain remains incompletely understood. The main challenge is the lack of a reliable drug testing model for brain angiogenesis. Recently, microfluidic platforms (known as “lab-on-a-chip” or LOCs) have been developed to mimic the brain micro-vasculature related events, such as vasculogenesis, angiogenesis, inflammation, etc. The LOCs are able to closely replicate the dynamic conditions of the human brain and could be reliable platforms for drug screening applications. There are still many technical difficulties in establishing uniform and reproducible conditions, mainly due to the extreme complexity of the human brain. In this paper, we review the prospective of LOCs in the development of nanomedicines for brain angiogenesis–related conditions.
Collapse
Affiliation(s)
- Subhathirai Subramaniyan Parimalam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
- Correspondence: or
| | - Simona Badilescu
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada;
| | - Rama Bhat
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada;
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| |
Collapse
|
21
|
Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, remarkable developments have taken place, leading to significant improvements in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic devices are getting sophisticated, design optimization through experimentations is becoming more challenging. As a result, numerical simulations have contributed to this trend by offering a better understanding of cellular microenvironments hydrodynamics and optimizing the functionality of the current/emerging designs. The need for new marketable designs with advantageous hydrodynamics invokes easier access to efficient as well as time-conservative numerical simulations to provide screening over cellular microenvironments, and to emulate physiological conditions with high accuracy. Therefore, an excerpt overview on how each numerical methodology and associated handling software works, and how they differ in handling underlying hydrodynamic of lab-on-chip microfluidic is crucial. These numerical means rely on molecular and continuum levels of numerical simulations. The current review aims to serve as a guideline for researchers in this area by presenting a comprehensive characterization of various relevant simulation techniques.
Collapse
|