1
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Afsharian MH, Mahdavian R, Jafari S, Allahverdi A, Soleymani H, Naderi-Manesh H. Investigation of synergic effects of nanogroove topography and polyaniline-chitosan nanocomposites on PC12 cell differentiation and axonogenesis. iScience 2024; 27:108828. [PMID: 38303727 PMCID: PMC10831943 DOI: 10.1016/j.isci.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Axonal damage is the main characteristic of neurodegenerative diseases. This research was focused on remodeling cell morphology and developing a semi-tissue nanoenvironment via mechanobiological stimuli. The combination of nanogroove topography and polyaniline-chitosan enabled the manipulation of the cells by changing the morphology of PC12 cells to spindle shape and inducing the early stage of signal transduction, which is vital for differentiation. The nanosubstarte embedded with nanogooves induced PC12 cells to elongate their morphology and increase their size by 51% as compared with controls. In addition, the use of an electroconductive nanocomposite alongside nanogrooves resulted in the differentiation of PC12 cells into neurons with an average length of 193 ± 7 μm for each axon and an average number of seven axons for each neurite. Our results represent a combined tool to initiate a promising future for cell reprogramming by inducing cell differentiation and specific cellular morphology in many cases, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Hossein Afsharian
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Hossein Soleymani
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
3
|
Wang Z, Zhang Y, Li Z, Wang H, Li N, Deng Y. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304427. [PMID: 37653590 DOI: 10.1002/smll.202304427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 09/02/2023]
Abstract
As an ideal in vitro model, brain-on-chip (BoC) is an important tool to comprehensively elucidate brain characteristics. However, the in vitro model for the definition scope of BoC has not been universally recognized. In this review, BoC is divided into brain cells-on-a- chip, brain slices-on-a-chip, and brain organoids-on-a-chip according to the type of culture on the chip. Although these three microfluidic BoCs are constructed in different ways, they all use microfluidic chips as carrier tools. This method can better meet the needs of maintaining high culture activity on a chip for a long time. Moreover, BoC has successfully integrated cell biology, the biological material platform technology of microenvironment on a chip, manufacturing technology, online detection technology on a chip, and so on, enabling the chip to present structural diversity and high compatibility to meet different experimental needs and expand the scope of applications. Here, the relevant core technologies, challenges, and future development trends of BoC are summarized.
Collapse
Affiliation(s)
- Zhaohe Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. MATERIALS HORIZONS 2023; 10:4724-4745. [PMID: 37697735 DOI: 10.1039/d3mh00755c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
5
|
Luttge R. Editorial for the Special Issue on Microfluidic Brain-on-a-Chip. MICROMACHINES 2021; 12:mi12091100. [PMID: 34577743 PMCID: PMC8470451 DOI: 10.3390/mi12091100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
A little longer than a decade of Organ-on-Chip (OoC) developments has passed [...].
Collapse
Affiliation(s)
- Regina Luttge
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems and Institute of Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
7
|
Akcay G, Luttge R. Stiff-to-Soft Transition from Glass to 3D Hydrogel Substrates in Neuronal Cell Culture. MICROMACHINES 2021; 12:mi12020165. [PMID: 33567528 PMCID: PMC7915240 DOI: 10.3390/mi12020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Over the past decade, hydrogels have shown great potential for mimicking three- dimensional (3D) brain architectures in vitro due to their biocompatibility, biodegradability, and wide range of tunable mechanical properties. To better comprehend in vitro human brain models and the mechanotransduction processes, we generated a 3D hydrogel model by casting photo-polymerized gelatin methacryloyl (GelMA) in comparison to poly (ethylene glycol) diacrylate (PEGDA) atop of SH-SY5Y neuroblastoma cells seeded with 150,000 cells/cm2 according to our previous experience in a microliter-sized polydimethylsiloxane (PDMS) ring serving for confinement. 3D SH-SY5Y neuroblastoma cells in GelMA demonstrated an elongated, branched, and spreading morphology resembling neurons, while the cell survival in cast PEGDA was not supported. Confocal z-stack microscopy confirmed our hypothesis that stiff-to-soft material transitions promoted neuronal migration into the third dimension. Unfortunately, large cell aggregates were also observed. A subsequent cell seeding density study revealed a seeding cell density above 10,000 cells/cm2 started the formation of cell aggregates, and below 1500 cells/cm2 cells still appeared as single cells on day 6. These results allowed us to conclude that the optimum cell seeding density might be between 1500 and 5000 cells/cm2. This type of hydrogel construct is suitable to design a more advanced layered mechanotransduction model toward 3D microfluidic brain-on-a-chip applications.
Collapse
|
8
|
Gaining Micropattern Fidelity in an NOA81 Microsieve Laser Ablation Process. MICROMACHINES 2020; 12:mi12010021. [PMID: 33375445 PMCID: PMC7823379 DOI: 10.3390/mi12010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022]
Abstract
We studied the micropattern fidelity of a Norland Optical Adhesive 81 (NOA81) microsieve made by soft-lithography and laser micromachining. Ablation opens replicated cavities, resulting in three-dimensional (3D) micropores. We previously demonstrated that microsieves can capture cells by passive pumping. Flow, capture yield, and cell survival depend on the control of the micropore geometry and must yield high reproducibility within the device and from device to device. We investigated the NOA81 film thickness, the laser pulse repetition rate, the number of pulses, and the beam focusing distance. For NOA81 films spin-coated between 600 and 1200 rpm, the pulse number controls the breaching of films to form the pore’s aperture and dominates the process. Pulse repetition rates between 50 and 200 Hz had no observable influence. We also explored laser focal plane to substrate distance to find the most effective ablation conditions. Scanning electron micrographs (SEM) of focused ion beam (FIB)-cut cross sections of the NOA81 micropores and inverted micropore copies in polydimethylsiloxane (PDMS) show a smooth surface topology with minimal debris. Our studies reveal that the combined process allows for a 3D micropore quality from device to device with a large enough process window for biological studies.
Collapse
|
9
|
Bastiaens A, Sabahi-Kaviani R, Luttge R. Nanogrooves for 2D and 3D Microenvironments of SH-SY5Y Cultures in Brain-on-Chip Technology. Front Neurosci 2020; 14:666. [PMID: 32670014 PMCID: PMC7326937 DOI: 10.3389/fnins.2020.00666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/29/2020] [Indexed: 02/02/2023] Open
Abstract
Brain-on-chip (BOC) technology such as nanogrooves and microtunnel structures can advance in vitro neuronal models by providing a platform with better means to maintain, manipulate and analyze neuronal cell cultures. Specifically, nanogrooves have been shown to influence neuronal differentiation, notably the neurite length and neurite direction. Here, we have drawn new results from our experiments using both 2D and 3D neuronal cell culture implementing both flat and nanogrooved substrates. These are used to show a comparison between the number of cells and neurite length as a first indicator for valuable insights into baseline values and expectations that can be generated from these experiments toward design optimization and predictive value of the technology in our BOC toolbox. Also, as a new step toward neuronal cell models with multiple compartmentalized neuronal cell type regions, we fabricated microtunnel devices bonded to both flat and nanogrooved substrates to assess their compatibility with neuronal cell culture. Our results show that with the current experimental protocols using SH-SY5Y cells, we can expect 200 – 400 cells with a total neurite length of approximately 4,000–5,000 μm per 1 mm2 within our BOC devices, with a lower total neurite length for 3D neuronal cell cultures on flat substrates only. There is a statistically significant difference in total neurite length between 2D cell culture on nanogrooved substrates versus 3D cell culture on flat substrates. As extension of our current BOC toolbox for which these indicative parameters would be used, the microtunnel devices show that culture of SH-SY5Y was feasible, though a limited number of neurites extended into microtunnels away from the cell bodies, regardless of using nanogrooved or flat substrates. This shows that the novel combination of microtunnel devices with nanogrooves can be implemented toward neuronal cell cultures, with future improvements to be performed to ensure neurites extend beyond the confines of the wells between the microtunnels. Overall, these results will aid toward creating more robust BOC platforms with improved predictive value. In turn, this can be used to better understand the brain and brain diseases.
Collapse
Affiliation(s)
- Alex Bastiaens
- Neuro-Nanoscale Engineering Group, Mechanical Engineering and the Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Rahman Sabahi-Kaviani
- Neuro-Nanoscale Engineering Group, Mechanical Engineering and the Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Regina Luttge
- Neuro-Nanoscale Engineering Group, Mechanical Engineering and the Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
10
|
Torisawa YS, Tung YC. Editorial for the Special Issue on Organs-on-Chips. MICROMACHINES 2020; 11:mi11040369. [PMID: 32244638 PMCID: PMC7230893 DOI: 10.3390/mi11040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in microsystems technology and cell culture techniques have led to the development of organ-on-chip microdevices to model functional units of organs [...].
Collapse
Affiliation(s)
- Yu-suke Torisawa
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8540, Japan
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
- Correspondence: (Y.-s.T.); (Y.-C.T.)
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-s.T.); (Y.-C.T.)
| |
Collapse
|
11
|
Kim BJ, Choi JY, Choi H, Han S, Seo J, Kim J, Joo S, Kim HM, Oh C, Hong S, Kim P, Choi IS. Astrocyte-Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Adv Healthc Mater 2020; 9:e1901072. [PMID: 31957248 DOI: 10.1002/adhm.201901072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Astrocytes, the most representative glial cells in the brain, play a multitude of crucial functions for proper neuronal development and synaptic-network formation, including neuroprotection as well as physical and chemical support. However, little attention has been paid, in the neuroregenerative medicine and related fields, to the cytoprotective incorporation of astrocytes into neuron-culture scaffolds and full-fledged functional utilization of encapsulated astrocytes for controlled neuronal development. In this article, a 3D neurosupportive culture system for enhanced induction of neuronal circuit generation is reported, where astrocytes are confined in hydrogel microfibers and protected from the outside. The astrocyte-encapsulated microfibers significantly accelerate the neurite outgrowth and guide its directionality, and enhance the synaptic formation, without any physical contact with the neurons. This astrocyte-laden system provides a pivotal culture scaffold for advanced development of cell-based therapeutics for neural injuries, such as spinal cord injury.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Ji Yu Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyunwoo Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sol Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jeongyeon Seo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sunghoon Joo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyo Min Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Chungik Oh
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Pilnam Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| |
Collapse
|