1
|
Traipop S, Jesadabundit W, Khamcharoen W, Pholsiri T, Naorungroj S, Jampasa S, Chailapakul O. Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications. Curr Top Med Chem 2024; 24:986-1009. [PMID: 38584544 DOI: 10.2174/0115680266304711240327072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.
Collapse
Affiliation(s)
- Surinya Traipop
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Whitchuta Jesadabundit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Khamcharoen
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand
| | - Tavechai Pholsiri
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Hassan Q, Riley C, Noroozifar M, Kerman K. Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091509. [PMID: 37177060 PMCID: PMC10180489 DOI: 10.3390/nano13091509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In this proof-of-concept study, a novel hybrid nanomaterial-based electrochemical sensor was developed for the simultaneous detection of four DNA bases. For the modification of the working electrode surface, graphene oxide quantum dots (GOQDs) were synthesized using a solvothermal method. GOQDs were then used for the preparation of a hybrid nanomaterial with multi-walled carbon nanotubes (GOQD-MWCNT) using a solvothermal technique for the first time. Transmission electron microscopy (TEM) was used to characterize the GOQDs-MWCNTs. A glassy carbon electrode (GCE) was modified with the GOQDs-MWCNTs using Nafion™ to prepare a GOQD-MWCNT/GCE for the simultaneous determination of four DNA bases in phosphate buffer solution (PBS, pH 7.0) using differential pulse voltammetry (DPV). The calibration plots were linear up to 50, 50, 500, and 500 µM with a limit of detection at 0.44, 0.2, 1.6, and 5.6 µM for guanine (G), adenine (A), thymine (T) and cytosine (C), respectively. The hybrid-modified sensor was used for the determination of G, A, T, and C spiked in the artificial saliva samples with the recovery values ranging from 95.9 to 106.8%. This novel hybrid-modified electrochemical sensor provides a promising platform for the future development of a device for cost-effective and efficient simultaneous detection of DNA bases in real biological and environmental samples.
Collapse
Affiliation(s)
- Qusai Hassan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Chevon Riley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
3
|
Önem A, Sözgen Başkan K, Apak R. Voltammetric Measurement of Antioxidant Activity by Prevention of Cu(II)-Induced Oxidative Damage on DNA Bases Using a Modified Electrode. ACS OMEGA 2023; 8:5103-5115. [PMID: 36777598 PMCID: PMC9910100 DOI: 10.1021/acsomega.2c08055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The protective effect of antioxidants using electrochemical techniques can be evaluated by examining the oxidative changes in deoxyribonucleic acid (DNA) nucleobases. In this study, a gold nanoparticle (AuNP)-decorated and multiwalled carbon nanotube (MWCNT)-Nafion-modified glassy carbon electrode (GCE/AuNP/MWCNT-Nafion) was developed to evaluate the preventive ability of antioxidants on oxidative DNA damage. A modified working electrode was prepared and characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The developed electrochemical method relies on two phenomena: (i) reactive species (RS) produced by dissolved oxygen in the presence of copper(II) partially damage the DNA immobilized on the electrode surface and (ii) antioxidant compounds prevent this damage by scavenging the formed RS. Changes in guanine, adenine, and cytosine oxidation signals resulting from DNA damage were measured using differential pulse stripping voltammetry before/after the interaction of dsDNA with Cu(II) while antioxidants were absent or present. The DNA protective ability of antioxidants was assessed for a number of antioxidant compounds (i.e., ascorbic acid, gallic acid, epicatechin, catechin, epicatechin gallate, glutathione, chlorogenic acid, N-acetyl cysteine, rosmarinic acid, quercetin, and rutin). Quercetin was found to show the highest antioxidant effect, and its limit of detection was determined as 1 μM. The manufactured biosensor was put in an application for the determination of antioxidant activity of herbal teas.
Collapse
Affiliation(s)
- Ayşe
Nur Önem
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Kevser Sözgen Başkan
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
- Turkish
Academy of Sciences (TUBA), Çankaya, Ankara 06690, Turkey
| |
Collapse
|
4
|
Abazar F, Sharifi E, Noorbakhsh A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Salve M, Amreen K, Pattnaik PK, Goel S. Integrated Microfluidic Device with Carbon-Thread Microelectrodes for Electrochemical DNA Elemental Analysis. IEEE Trans Nanobioscience 2021; 21:322-329. [PMID: 34673493 DOI: 10.1109/tnb.2021.3121659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evidently, any alternation in the concentration of the essential DNA elements, adenine (A), guanine (G), cytosine (C), and thymine (T), leads to several deformities in the physiological process causing various disorders. So, to realize a simple and precise technique for simultaneous determination of the DNA elements continue to remain a challenge. Microfluidic devices offer numerous advantage, such as low volume consumption, rapid response, highly sensitive and accurate real time analysis, for point of care testing (POCT). Herein, a microfluidic electrochemical device has been developed with three electrodes fabricated using a carbon-thread microelectrode (CTME) for DNA elemental detection. CTME, functionalized with graphitize mesoporous carbon (GMC), worked as a working electrode, bare CTME functioned as an auxiliary electrode while CTME coated with Ag/AgCl ink performed as a reference electrode. The developed device was used for evaluating individual DNA elemental base pairs simultaneously using various electrochemical techniques. The anodic peak current obtained for the DNA bases were 0.56 ± 0.04 V (G), 0.92 ± 0.02 V (A), 1.09 ± 0.05 V (T) and 1.24 ± 0.04 V (C) in a potential window of 0.2 V to 1.5 V. The device was corroborated for simultaneous sensing, and detection limits were found to be 36.73 μM (G), 20 μM (A), 22 μM (T) and 19.78 μM (C) in the linear range of 50 μM - 500 μM. Finally, the device was successfully used for instantaneous determination of DNA bases in the human blood serum sample. Overall, this work demonstrates the use of a simple microfluidic device with CTMEs for electrochemical determination of DNA bases amenable for POCT.
Collapse
|
6
|
Arul P, Huang ST, Gowthaman NSK, Shankar S. Simultaneous electrochemical determination of DNA nucleobases using AgNPs embedded covalent organic framework. Mikrochim Acta 2021; 188:358. [PMID: 34596766 DOI: 10.1007/s00604-021-05021-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023]
Abstract
An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2-1000 µM (guanine; (G)), 0.1-500 µM (adenine (A)), 0.25-250 µM (thymine (T)) and 0.15-500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%-2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%-2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60-99.11%, 97.80-99.21%, and 98.69-99.74%, respectively).
Collapse
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, Republic of China.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - N S K Gowthaman
- School of Engineering, Monash University, 47500, Bandar Sunway, Malaysia
| | - Sekar Shankar
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| |
Collapse
|
7
|
Strojny B, Jaworski S, Misiewicz-Krzemińska I, Isidro I, Rojas EA, Gutiérrez NC, Grodzik M, Koczoń P, Chwalibog A, Sawosz E. Effect of Graphene Family Materials on Multiple Myeloma and Non-Hodgkin's Lymphoma Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3420. [PMID: 32756412 PMCID: PMC7436021 DOI: 10.3390/ma13153420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
The interest around the graphene family of materials is constantly growing due to their potential application in biomedical fields. The effect of graphene and its derivatives on cells varies amongst studies depending on the cell and tissue type. Since the toxicity against non-adherent cell lines has barely been studied, we investigated the effect of graphene and two different graphene oxides against four multiple myeloma cell lines, namely KMS-12-BM, H929, U226, and MM.1S, as well as two non-Hodgkin lymphoma cells lines, namely KARPAS299 and DOHH-2. We performed two types of viability assays, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion) and ATP (adenosine triphosphate detection), flow cytometry analysis of apoptosis induction and cell cycle, cell morphology, and direct interaction analysis using two approaches-visualization of living cells by two different systems, and visualization of fixed and dyed cells. Our results revealed that graphene and graphene oxides exhibit low to moderate cytotoxicity against cells, despite visible interaction between the cells and graphene oxide. This creates possibilities for the application of the selected graphene materials for drug delivery systems or theragnostics in hematological malignancies; however, further detailed studies are necessary to explain the nature of interactions between the cells and the materials.
Collapse
Affiliation(s)
- Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Irena Misiewicz-Krzemińska
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Isabel Isidro
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Elizabeta A. Rojas
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| |
Collapse
|