1
|
Zeng Y, Liu X, Wang Z, Gao W, Zhang S, Wang Y, Liu Y, Yu H. Multi-scale characterization and analysis of cellular viscoelastic mechanical phenotypes by atomic force microscopy. Microsc Res Tech 2024; 87:1157-1167. [PMID: 38284615 DOI: 10.1002/jemt.24505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
The viscoelasticity of cells serves as a biomarker that reveals changes induced by malignant transformation, which aids the cytological examinations. However, differences in the measurement methods and parameters have prevented the consistent and effective characterization of the viscoelastic phenotype of cells. To address this issue, nanomechanical indentation experiments were conducted using an atomic force microscope (AFM). Multiple indentation methods were applied, and the indentation parameters were gradually varied to measure the viscoelasticity of normal liver cells and cancerous liver cells to create a database. This database was employed to train machine-learning algorithms in order to analyze the differences in the viscoelasticity of different types of cells and as well as to identify the optimal measurement methods and parameters. These findings indicated that the measurement speed significantly influenced viscoelasticity and that the classification difference between the two cell types was most evident at 5 μm/s. In addition, the precision and the area under the receiver operating characteristic curve were comparatively analyzed for various widely employed machine-learning algorithms. Unlike previous studies, this research validated the effectiveness of measurement parameters and methods with the assistance of machine-learning algorithms. Furthermore, the results confirmed that the viscoelasticity obtained from the multiparameter indentation measurement could be effectively used for cell classification. RESEARCH HIGHLIGHTS: This study aimed to analyze the viscoelasticity of liver cancer cells and liver cells. Different nano-indentation methods and parameters were used to measure the viscoelasticity of the two kinds of cells. The neural network algorithm was used to reverse analyze the dataset, and the methods and parameters for accurate classification and identification of cells are successfully found.
Collapse
Affiliation(s)
- Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Wei Gao
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
- School of Electronic Information Engineering, Changchun University, Changchun, China
| | - Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yunqing Liu
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Haiyue Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
3
|
Fuhs T, Flachmeyer B, Krueger M, Blietz A, Härtig W, Michalski D. Combining atomic force microscopy and fluorescence-based techniques to explore mechanical properties of naive and ischemia-affected brain regions in mice. Sci Rep 2023; 13:12774. [PMID: 37550347 PMCID: PMC10406906 DOI: 10.1038/s41598-023-39277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Knowledge of the brain's structure and function is essential for understanding processes in health and disease. Histochemical and fluorescence-based techniques have proven beneficial in characterizing brain regions and cellular compositions in pre-clinical research. Atomic force microscopy (AFM) has been introduced for mechanical tissue characterization, which may also help investigate pathophysiological aspects in disease-related models such as stroke. While combining AFM and fluorescence-based techniques, this study explored the mechanical properties of naive and ischemic brain regions in mice. Ischemia-affected regions were identified by the green signal of fluorescein isothiocyanate-conjugated albumin. A semi-automated protocol based on a brain atlas allowed regional allocations to the neocortex, striatum, thalamus, hypothalamus, hippocampus, and fiber tracts. Although AFM led to varying measurements, intra-individual analyses indicated a gradually increased tissue stiffness in the neocortex compared to subcortical areas, i.e., the striatum and fiber tracts. Regions affected by ischemia predominantly exhibited an increased tissue stiffness compared to those of the contra-lateral hemisphere, which might be related to cellular swelling. This study indicated intra-individual differences in mechanical properties among naive and ischemia-affected brain regions. The combination of AFM, semi-automated regional allocations, and fluorescence-based techniques thus qualifies for mechanical characterizations of the healthy and disease-affected brain in pre-clinical research.
Collapse
Affiliation(s)
- Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
- Institute for Physical Chemistry, Faculty of Chemistry and Physics, Technical University Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Bianca Flachmeyer
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Alexandra Blietz
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
5
|
Lei X, Li H, Han Y, Li J, Yu F, Liang Q. Modulus characterization of cells with submicron colloidal probes by atomic force microscope. Microsc Res Tech 2021; 85:882-891. [PMID: 34708461 DOI: 10.1002/jemt.23957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
Colloidal probes have been increasingly demanded for the characterization of cellular modulus in atomic force microscope because of their well-defined geometry and large contact area with cell. In this work, submicron colloidal probes are prepared by scanning electron microscope/focused ion beam and compared with sharp tip and micron colloidal probe, in conjunction with loading velocity and indentation depth on the apparent elastic modulus. NIM and cartilage cells are used as specimens. The results show that modulus value measured by sharp tip changes significantly with loading velocity while remains almost stable by colloidal probes. Also, submicron colloidal probe is superior in characterizing the modulus with increasing indentation depth, which could help reveal the mechanical details of cellular membrane and the modulus of the whole cell. To test the submicron colloidal probe further, the modulus distribution map of cell is scanned with submicron colloidal probe of 50 nm radius during small and large indentation depths with high spatial resolution. The outcome of this work will provide the effective submicron colloidal probe according to the effect of loading velocity and indentation depth, characterizing the mechanical properties of the cells.
Collapse
Affiliation(s)
- Xiaojiao Lei
- School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huiqin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Han
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liang
- School of Astronomy and Physics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|