1
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Puttaningaiah KPCH, Hur J. Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors. MICROMACHINES 2024; 15:1061. [PMID: 39337721 PMCID: PMC11433738 DOI: 10.3390/mi15091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Biosensors are smart devices that convert biochemical responses to electrical signals. Designing biosensor devices with high sensitivity and selectivity is of great interest because of their wide range of functional operations. However, the major obstacles in the practical application of biosensors are their binding affinity toward biomolecules and the conversion and amplification of the interaction to various signals such as electrical, optical, gravimetric, and electrochemical signals. Additionally, the enhancement of sensitivity, limit of detection, time of response, reproducibility, and stability are considerable challenges when designing an efficient biosensor. In this regard, hybrid composites have high sensitivity, selectivity, thermal stability, and tunable electrical conductivities. The integration of phthalocyanines (Pcs) with conductive materials such as carbon nanomaterials or metal nanoparticles (MNPs) improves the electrochemical response, signal amplification, and stability of biosensors. This review explores recent advancements in hybrid Pcs for biomolecule detection. Herein, we discuss the synthetic strategies, material properties, working mechanisms, and integration methods for designing electrochemical biosensors. Finally, the challenges and future directions of hybrid Pc composites for biosensor applications are discussed.
Collapse
Affiliation(s)
| | - Jaehyun Hur
- Department of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Fiska V, Papanikolaou E, Patila M, Prodromidis MI, Trachioti MG, Tzianni EI, Spyrou K, Angelidis P, Tsipouras MG. DEMIGOD: A Low-Cost Microcontroller-Based Closed-Loop System Integrating Nanoengineered Sweat-Based Glucose Monitoring and Controlled Transdermal Nanoemulsion Release of Hypoglycemic Treatment with a Software Application for Noninvasive Personalized Diabetes Care. MICROMACHINES 2024; 15:887. [PMID: 39064398 PMCID: PMC11278575 DOI: 10.3390/mi15070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024]
Abstract
This study endeavored to design and develop an innovative closed-loop diagnostic and therapeutic system with the following objectives: (a) the noninvasive detection of glucose concentration in sweat utilizing nanonengineered screen-printed biosensors; (b) the management of measured data through a specialized computer system comprising both hardware and software components, thereby enabling the precise control of therapeutic responses via a patch-based nanomedicine delivery system. This initiative addresses the significant challenges inherent in the management of diabetes mellitus, including the imperative need for glucose-level monitoring to optimize glycemic control. Leveraging chronoamperometric results as a foundational dataset and the in vivo hypoglycemic activity of nanoemulsion formulations, this research underscores the efficacy and accuracy of glucose concentration estimation, decision-making mechanism responses, and transdermal hypoglycemic treatment effects, within the proposed system.
Collapse
Affiliation(s)
- Vasiliki Fiska
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece; (V.F.); (P.A.)
| | - Eirini Papanikolaou
- Laboratory of Physiology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece;
| | - Mamas I. Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (M.I.P.); (M.G.T.); (E.I.T.)
| | - Maria G. Trachioti
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (M.I.P.); (M.G.T.); (E.I.T.)
| | - Eleni I. Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (M.I.P.); (M.G.T.); (E.I.T.)
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Pantelis Angelidis
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece; (V.F.); (P.A.)
| | - Markos G. Tsipouras
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece; (V.F.); (P.A.)
| |
Collapse
|
4
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
5
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Yasir M, Peinetti F, Savi P. Correlation of Transmission Properties with Glucose Concentration in a Graphene-Based Microwave Resonator. MICROMACHINES 2023; 14:2163. [PMID: 38138332 PMCID: PMC10745533 DOI: 10.3390/mi14122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Carbon-based materials, such as graphene, exhibit interesting physical properties and have been recently investigated in sensing applications. In this paper, a novel technique for glucose concentration correlation with the resonant frequency of a microwave resonator is performed. The resonator exploits the variation of the electrical properties of graphene at radio frequency (RF). The described approach is based on the variation in transmission coefficient resonating frequency of a microstrip ring resonator modified with a graphene film. The graphene film is doctor-bladed on the ring resonator and functionalised in order to detect glucose. When a drop with a given concentration is deposited on the graphene film, the resonance peak is shifted. The graphene film is modelled with a lumped element analysis. Several prototypes are realised on Rogers Kappa substrate and their transmission coefficient measured for different concentrations of glucose. Results show a good correlation between the frequency shift and the concentration applied on the film.
Collapse
Affiliation(s)
- Muhammad Yasir
- Division of Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Fabio Peinetti
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| | - Patrizia Savi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| |
Collapse
|
7
|
Wasfi A, Sulieman M, Sefelnasr Z, Alteneiji A, Shafiqurrahman A, Alharairi A, Awwad F. Detection of butane and propane gases via C 2N sensors: first principles modeling. Sci Rep 2023; 13:19314. [PMID: 37935831 PMCID: PMC10630447 DOI: 10.1038/s41598-023-46870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Gas sensing is a critical research area in aerospace, military, medical, and industrial environments, as it helps prevent risks to human health and the environment caused by toxic gases. Propane and butane, commonly used as fuels in household and industrial settings, are toxic and flammable gases that need to be effectively detected to avoid leakage or explosion accidents. To address this, nanomaterial-based gas sensors are being developed with low power consumption and operating temperatures. In this study, two-dimensional nitrogenated holey graphene (C2N) based sensors are used for the first time for the identification of butane and propane gases. The sensor consists of two C2N electrodes connected via a C2N channel. The C2N sensor design was enhanced by replacing the C2N electrodes with gold electrodes and adding a gate terminal under the channel. The resistive method is employed to detect butane and propane gases by measuring the variation in the electrical conductivity of the sensor due to exposure to these target molecules. To investigate the electronic transport properties, such as transmission spectra, density of states and current, first principles simulations of the C2N-based sensors is conducted using Quantumwise Atomistix Toolkit (ATK). The detection method relies on the alteration of the FET's electrical current at specific gate voltages due to the presence of these gases. This proposed sensor offers the potential for small size and low-cost gas sensing applications. The designed sensor aims to effectively detect propane and butane gases. By leveraging the unique properties of C2N and utilizing advanced simulation tools, this sensor could provide high sensitivity and accuracy in detecting propane and butane gases. Such an advancement in gas sensing technology holds significant promise for ensuring safety in various environments.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mawahib Sulieman
- College of Engineering, Al Ain University, Al Ain, United Arab Emirates
| | - Ziad Sefelnasr
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Abdulla Alteneiji
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Atawulrahman Shafiqurrahman
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Ammar Alharairi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
8
|
Meshesha M, Sardar A, Supekar R, Bhattacharjee L, Chatterjee S, Halder N, Mohanta K, Bhattacharyya TK, Pal B. Development and Analytical Evaluation of a Point-of-Care Electrochemical Biosensor for Rapid and Accurate SARS-CoV-2 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:8000. [PMID: 37766054 PMCID: PMC10534802 DOI: 10.3390/s23188000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The COVID-19 pandemic has underscored the critical need for rapid and accurate screening and diagnostic methods for potential respiratory viruses. Existing COVID-19 diagnostic approaches face limitations either in terms of turnaround time or accuracy. In this study, we present an electrochemical biosensor that offers nearly instantaneous and precise SARS-CoV-2 detection, suitable for point-of-care and environmental monitoring applications. The biosensor employs a stapled hACE-2 N-terminal alpha helix peptide to functionalize an in situ grown polypyrrole conductive polymer on a nitrocellulose membrane backbone through a chemical process. We assessed the biosensor's analytical performance using heat-inactivated omicron and delta variants of the SARS-CoV-2 virus in artificial saliva (AS) and nasal swab (NS) samples diluted in a strong ionic solution, as well as clinical specimens with known Ct values. Virus identification was achieved through electrochemical impedance spectroscopy (EIS) and frequency analyses. The assay demonstrated a limit of detection (LoD) of 40 TCID50/mL, with 95% sensitivity and 100% specificity. Notably, the biosensor exhibited no cross-reactivity when tested against the influenza virus. The entire testing process using the biosensor takes less than a minute. In summary, our biosensor exhibits promising potential in the battle against pandemic respiratory viruses, offering a platform for the development of rapid, compact, portable, and point-of-care devices capable of multiplexing various viruses. The biosensor has the capacity to significantly bolster our readiness and response to future viral outbreaks.
Collapse
Affiliation(s)
- Mesfin Meshesha
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
| | - Anik Sardar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Ruchi Supekar
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Lopamudra Bhattacharjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Soumyo Chatterjee
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Nyancy Halder
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Kallol Mohanta
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| | - Tarun Kanti Bhattacharyya
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Biplab Pal
- Department of Virology, Opteev Technologies Inc., Baltimore, MD 21225, USA;
- Research and Development Laboratory, Opteev Healthtech, GN-4, Sector-V, Kolkata 700091, India; (A.S.); (R.S.); (L.B.); (S.C.); (N.H.); (K.M.)
| |
Collapse
|
9
|
Mishra S, Aamna B, Parida S, Dan AK. Carbon-based biosensors: Next-generation diagnostic tool for target-specific detection of SARS-CoV-2 (COVID-19). TALANTA OPEN 2023; 7:100218. [PMID: 37131405 PMCID: PMC10125215 DOI: 10.1016/j.talo.2023.100218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was declared a global pandemic in 2020. Having rapidly spread around the globe, with the emergence of new variants, there is a crucial need to develop diagnostic kits for its rapid detection. Since it validated accuracy and reliability, the reverse transcription polymerase chain reaction (RT-PCR) test has been declared the gold standard for disease detection. However, despite its reliability, the requirement of specialized facilities, reagents, and duration of a PCR run limits its usage for rapid detection. There is thus a continuous increase in the design and development of rapid, point-of-care (PoC), and cost-effective diagnostic kits. In this review, we discuss the potential of carbon-based biosensors for target-specific detection of coronavirus disease 19 (COVID-19) and present an overview of investigation within the timeframe of the last four years (2019-2022), which have developed novel platforms using carbon nanomaterial-based approaches for viral detection. The approaches discussed offer rapid, accurate, and cost-effective strategies for COVID-19 detection for healthcare personnel and research workers.
Collapse
Affiliation(s)
- Shivam Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Sagarika Parida
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
10
|
Wasfi A, Awwad S, Hussein M, Awwad F. Sugar Molecules Detection via C 2N Transistor-Based Sensor: First Principles Modeling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:700. [PMID: 36839068 PMCID: PMC9967288 DOI: 10.3390/nano13040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Real-time detection of sugar molecules is critical for preventing and monitoring diabetes and for food quality evaluation. In this article, a field effect transistor (FET) based on two-dimensional nitrogenated holey graphene (C2N) was designed, developed, and tested to identify the sugar molecules including xylose, fructose, and glucose. Both density functional theory and non-equilibrium Green's function (DFT + NEGF) were used to study the designed device. Several electronic characteristics were studied, including work function, density of states, electrical current, and transmission spectrum. The proposed sensor is made of a pair of gold electrodes joint through a channel of C2N and a gate was placed underneath the channel. The C2N monolayer distinctive characteristics are promising for glucose sensors to detect blood sugar and for sugar molecules sensors to evaluate food quality. The electronic transport characteristics of the sensor resulted in a unique signature for each of the sugar molecules. This proposed work suggests that the developed C2N transistor-based sensor could detect sugar molecules with high accuracy.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Awwad
- Specialized Rehabilitation Hospital, Abu Dhabi, United Arab Emirates
| | - Mousa Hussein
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park SJ. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. BIOSENSORS 2023; 13:bios13010080. [PMID: 36671915 PMCID: PMC9855997 DOI: 10.3390/bios13010080] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/04/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, which is also the second most public cancer worldwide. When detected early, BC can be treated more easily and prevented from spreading beyond the breast. In recent years, various BC biosensor strategies have been studied, including optical, electrical, electrochemical, and mechanical biosensors. In particular, the high sensitivity and short detection time of electrochemical biosensors make them suitable for the recognition of BC biomarkers. Moreover, the sensitivity of the electrochemical biosensor can be increased by incorporating nanomaterials. In this respect, the outstanding mechanical and electrical performances of graphene have led to an increasingly intense study of graphene-based materials for BC electrochemical biosensors. Hence, the present review examines the latest advances in graphene-based electrochemical biosensors for BC biosensing. For each biosensor, the detection limit (LOD), linear range (LR), and diagnosis technique are analyzed. This is followed by a discussion of the prospects and current challenges, along with potential strategies for enhancing the performance of electrochemical biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Seyyed Behnam Abdollahi Boraei
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
Plekhanova YV, Reshetilov AN. Nanomaterials for Controlled Adjustment of the Parameters of Electrochemical Biosensors and Biofuel Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials. BIOSENSORS 2022; 12:bios12070460. [PMID: 35884263 PMCID: PMC9312944 DOI: 10.3390/bios12070460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and magnetic properties, which in turn have been exploited to create simple, quick, and low-cost biosensing platforms. In this review, graphene and two-dimensional carbon material-based fluorescent biosensors are covered between 2010 and 2021, for the detection of different human viruses. This review specifically focuses on the new developments in graphene and two-dimensional carbon nanomaterials for fluorescent biosensing based on the Förster resonance energy transfer (FRET) mechanism. The high-efficiency quenching capability of graphene via the FRET mechanism enhances the fluorescent-based biosensors. The review provides a comprehensive reference for the different types of carbon nanomaterials employed for the detection of viruses such as Rotavirus, Ebola virus, Influenza virus H3N2, HIV, Hepatitis C virus (HCV), and Hepatitis B virus (HBV). This review covers the various multiplexing detection technologies as a new direction in the development of biosensing platforms for virus detection. At the end of the review, the different challenges in the use of fluorescent biosensors, as well as some insights into how to overcome them, are highlighted.
Collapse
|
14
|
Gangwar R, Ray D, Rao KT, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Plasma Functionalized Carbon Interfaces for Biosensor Application: Toward the Real-Time Detection of Escherichia coli O157: H7. ACS OMEGA 2022; 7:21025-21034. [PMID: 35755381 PMCID: PMC9219096 DOI: 10.1021/acsomega.2c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nonthermal plasma, a nondestructive, fast, and highly reproducible surface functionalization technique, was used to introduce desired functional groups onto the surface of carbon powder. The primary benefit is that it is highly scalable, with a high throughput, making it easily adaptable to bulk production. The plasma functionalized carbon powder was later used to create highly specific and low-cost electrochemical biosensors. The functional groups on the carbon surface were confirmed using NH3-temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) analysis. In addition, for biosensing applications, a novel, cost-effective, robust, and scalable electrochemical sensor platform comprising in-house-fabricated carbon paste electrodes and a miniaturized E-cell was developed. Biotin-Streptavidin was chosen as a model ligand-analyte combination to demonstrate its applicability toward biosensor application, and then, the specific identification of the target Escherchia coli O157:H7 was accomplished using an anti-E. coli O157:H7 antibody-modified electrode. The proposed biosensing platform detected E. coli O157:H7 in a broad linear range of (1 × 10-1-1 × 106) CFU/mL, with a limit of detection (LOD) of 0.1 CFU/mL. In addition, the developed plasma functionalized carbon paste electrodes demonstrated high specificity for the target E. coli O157:H7 spiked in pond water, making them ideal for real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Debjyoti Ray
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Hyderabad 502284, India
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, NT 00000, Hong Kong SAR, China
| | - Karri Trinadha Rao
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Sajmina Khatun
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | | | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Siva Rama Krishna Vanjari
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|
15
|
A Short Review on Detection of Antibiotics in Milk Using Nanomaterial-Based Biosensor. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
17
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
18
|
Plekhanova Y, Tarasov S, Kitova A, Kolesov V, Kashin V, Sundramoorthy AK, Reshetilov A. Modification of thermally expanded graphite and its effect on the properties of the amperometric biosensor. 3 Biotech 2022; 12:42. [PMID: 35096499 PMCID: PMC8761185 DOI: 10.1007/s13205-021-03107-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/29/2021] [Indexed: 02/03/2023] Open
Abstract
The work considered the properties of a biosensor based on a novel nanomaterial-modified thermally expanded graphite (TEGM). The main focus was on whether the procedure of additional graphite thermal expansion would affect the electrochemical properties of biosensors based on membrane fractions of acetic acid bacteria Gluconobacter oxydans. Raman spectroscopy, scanning electron microscopy and electrochemical analysis were used for the study. Raman spectra showed that the formation of TEGM led to its stratification into smaller particles and a better orderly layered structure with high "graphenization" degree. Modification of TEG led to the formation of additional cavities into which bacterial cells or bacterial membrane fractions could be immobilized and affect the electrical conductivity of the biosensors positively. Calculation of the heterogeneous charge transfer constants showed that processes occurring on the electrodes are quasi-reversible. The limiting stage of these processes is the transfer of an electron from a biological component on the electrode surface, not the diffusion of the analyte from the solution to the active centers of the enzyme. We showed the possibility of developing third-generation mediator-free biosensors for glucose detection based on TEGM, as well as of second-generation mediator biosensors for glucose, ethanol and glycerol detection.
Collapse
Affiliation(s)
- Yulia Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei Tarasov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Anna Kitova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Vladimir Kolesov
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russian Federation
| | - Vadim Kashin
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russian Federation
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu India
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
19
|
Electrocatalytic Properties of a BaTiO3/MWCNT Composite for Citric Acid Detection. Catalysts 2022. [DOI: 10.3390/catal12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although barium titanate (BaTiO3) shows prominent dielectric properties for fabricating electronic devices, its utilization in electrochemical applications is limited. Thus, this study examined the potential of a BaTiO3-based composite in the detection of a food additive, i.e., citric acid. First, a submicron-scale BaTiO3 powder was synthesized using the solution combustion method. Then, a BaTiO3/multiwalled carbon nanotube (MWCNT) composite was hydrothermally synthesized at BaTiO3:MWCNT mass ratios of 1:1 and 2:1. This composite was used as a working electrode in a nonenzymatic sensor to evaluate its electrocatalytic activity. Cyclic voltammetric measurements revealed that the BaTiO3/MWCNT composite (2:1) exhibited the highest electrocatalytic activity. Reduction reactions were observed at applied voltages of approximately 0.02 and −0.67 V, whereas oxidation reactions were detected at −0.65 and 0.47 V. With acceptable sensitivity, decent selectivity, and fair stability, the BaTiO3/MWCNT composite (2:1) showed good potential for citric acid detection.
Collapse
|
20
|
Emran MY, El‐Safty SA, Elmarakbi A, Reda A, El Sabagh A, Shenashen MA. Chipset Nanosensor Based on N‐Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202101473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 09/01/2023]
Abstract
AbstractChipset nanosensor design and fabrication are important for healthcare research and development. Herein, a functionalized chipset nanosensor is designed to monitor neurotransmitters (i.e., epinephrine (EP)) in human fluids. An interdigitated electrode array (IDA) is functionalized by N‐doped carbon nanobud (N‐CNB) and N‐doped carbon nanostructure (N‐CNS). The surface morphology of N‐CNB shows the formation of nanotubular‐like branches on sheets and micrometer‐size tubes. The N‐CNS design consists of the formation of aggregated sheets and particles in nanometer size. The irregular shape formation provides surface heterogeneity and numerous free spaces between the stacked nanostructures. N‐atoms ascertain highly active N‐CNS with multifunctional active centers, electron‐rich charged surface, and short distance pathway. The N‐CNB/IDA exhibits the best performance for EP signaling with high sensitivity and selectivity. The N‐CNB/IDA sensing performance for EP detection indicates the successful design of a highly selective and sensitive assay with low detection limit of 0.011 × 10−6 m and a broad linear range of 0.5 × 10−6 to 3 × 10−6 m. The N‐CNB/IDA exhibits a high degree of accuracy and reproducibility with RSD of 2.7% and 3.9%, respectively. Therefore, the chipset nanosensor of N‐CNB/IDA can be used for on‐site monitoring of EP in human serum samples and further used in daily monitoring of neuronal disorders.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Sherif A. El‐Safty
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Abduallah Reda
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
| | - Ayman El Sabagh
- Department of Field Crops Faculty of Agriculture Siirt University Siirt 56100 Turkey
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS) Research Center for Functional Materials 1‐2‐1 Sengen Tsukuba‐shi Ibaraki‐ken 305‐0047 Japan
- Department of Petrochemical Egyptian Petroleum Research Institute (EPRI) Nasr City Cairo 11727 Egypt
| |
Collapse
|
21
|
Lee J, Na HK, Lee S, Kim WK. Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Mikrochim Acta 2021; 189:35. [PMID: 34940914 DOI: 10.1007/s00604-021-05140-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs), found in blood and body fluids, have emerged as potential non-invasive biomarkers for disease and injury. miRNAs are quantitatively evaluated using typical RNA analysis methods such as the quantitative reverse transcription polymerase chain reaction, microarrays, and Northern blot, all of which require complex procedures and expensive reagents. To utilize miRNAs as practical biomarkers, it will be helpful to develop simple and user-friendly sensors. In this study, a paper-based miRNA sensor was developed by combining two methods: (1) target-recycled DNAzyme (Dz) amplification and (2) graphene oxide-assisted Dz blotting on paper. The Dz spots on paper caused a miRNA-dependent color change in presence of colorimetric reagents and facilitated the quantification of absolute amount of the target miRNA, irrespective of the volume, with high reproducibility. This approach is technologically straightforward and enables quantification of as low as 7.75 fmol miRNA using a portable smartphone.
Collapse
Affiliation(s)
- Jieon Lee
- Predictive Toxicology Department, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Korea.
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Korea.
| | - Hee-Kyung Na
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Korea
| | - Sangwoo Lee
- Predictive Toxicology Department, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Korea
| | - Woo-Keun Kim
- Predictive Toxicology Department, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
22
|
Park H, Kim G, Seo Y, Yoon Y, Min J, Park C, Lee T. Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes. BIOSENSORS 2021; 11:525. [PMID: 34940282 PMCID: PMC8699174 DOI: 10.3390/bios11120525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| |
Collapse
|
23
|
Wang J, Khorasani Motlagh M, Noroozifar M, Kerman K, Kraatz H. Ferrocene‐Functionalized Multiwalled Carbon Nanotubes for the Simultaneous Determination of Dopamine, Uric Acid, and Xanthine. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junyan Wang
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Mozhgan Khorasani Motlagh
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Meissam Noroozifar
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Kagan Kerman
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St., Toronto M5S 3H6 Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St., Toronto M5S 3H6 Ontario Canada
| |
Collapse
|
24
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
25
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
26
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
27
|
Sinolits AV, Chernysheva MG, Popov AG, Egorov AV, Badun GA. Hyaluronic acid adsorption on nanodiamonds: Quantitative characteristics and mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosens Bioelectron 2021; 179:113052. [DOI: 10.1016/j.bios.2021.113052] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
|
29
|
Li Z, Li J, Dou Y, Wang L, Song S. A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. BIOSENSORS 2021; 11:118. [PMID: 33921226 PMCID: PMC8069255 DOI: 10.3390/bios11040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Electrochemical biosensing relies on electron transport on electrode surfaces. However, electrode inactivation and biofouling caused by a complex biological sample severely decrease the efficiency of electron transfer and the specificity of biosensing. Here, we designed a three-dimensional antifouling nano-biosensing interface to improve the efficiency of electron transfer by a layer of bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNTs) cross-linked with glutaraldehyde (GA). The electrochemical properties of the BSA/MWCNTs/GA layer were investigated using both cyclic voltammetry and electrochemical impedance to demonstrate its high-efficiency antifouling nano-biosensing interface. The BSA/MWCNTs/GA layer kept 92% of the original signal in 1% BSA and 88% of that in unprocessed human serum after a 1-month exposure, respectively. Importantly, we functionalized the BSA/MWCNTs/GA layer with HbA1c antibody (anti-HbA1c) and 3-aminophenylboronic acid (APBA) for sensitive detection of glycated hemoglobin A (HbA1c). The label-free direct electrocatalytic oxidation of HbA1c was investigated by cyclic voltammetry (CV). The linear dynamic range of 2 to 15% of blood glycated hemoglobin A (HbA1c) in non-glycated hemoglobin (HbAo) was determined. The detection limit was 0.4%. This high degree of differentiation would facilitate a label-free POCT detection of HbA1c.
Collapse
Affiliation(s)
- Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianyong Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Emran MY, Shenashen MA, El-Safty SA, Reda A, Selim MM. Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Mikrochim Acta 2021; 188:138. [PMID: 33772377 DOI: 10.1007/s00604-021-04782-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
An electrochemical sensor-based phosphorus-doped microporous carbon spheroidal structures (P-MCSs) has been designed for selective adrenaline (ADR) signaling in human blood serum. The P-MCS electrode sensor is built with heterogeneous surface alignments including multiple porous sizes with open holes and meso-/macro-grooves, rough surface curvatures, and integral morphology with interconnected and conjugated microspheres. In addition, the P atom-doped graphitic carbon forms highly active centers, increases charge mobility on the electrode surface, creates abundant active centers with facile functionalization, and induces binding to ADR molecules. The designed P-MCS electrode exhibits ultrasensitive monitoring of ADR with a low detection limit of 0.002 μM and high sensitivity of 4330 μA μM-1 cm-2. In addition, two electrochemical techniques, namely, square wave voltammetry (SWV) and chronoamperometry (CA), were used; these techniques achieve high stability, fast response, and a wide linear range from 0.01 to 6 μM. The sensing assays based on P-MCSs provide evidence of the formation of active interfacial surface-to-ADR binding sites, high electron diffusion, and heavy target loads along with/without a plane of spheroids. Thus, P-MCSs can be used for the routine monitoring of ADR in human blood serum, providing a fast response, and requiring highly economical materials at extremely low concentrations. Electrode surface modulation based on P-doped carbon spheres (P-MCS) exhibits high electrochemical activity with fast charge transport, multi-diffusible active centers, high loading of ADR, and facile molecular/electron diffusion at its surface. The P-MCS sensitively and selectively detects the ADR in human fluids and can be used for clinical investigation of some neuronal diseases such as Alzheimer diseases.
Collapse
Affiliation(s)
- Mohammed Y Emran
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Mohamed A Shenashen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan
| | - Sherif A El-Safty
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan.
| | - Abdullah Reda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 305-0047, Japan
| | - Mahmoud M Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Saudi Arabia
| |
Collapse
|
31
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
32
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|