1
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
2
|
Selim MI, Sonbol FI, El-Banna TE, Negm WA, Elekhnawy E. Antibacterial and wound healing potential of biosynthesized zinc oxide nanoparticles against carbapenem-resistant Acinetobacter baumannii: an in vitro and in vivo study. Microb Cell Fact 2024; 23:281. [PMID: 39415253 PMCID: PMC11484456 DOI: 10.1186/s12934-024-02538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii denotes a significant menace to public health, and it mandates an urgent development of new effective medications. Here, we aimed to estimate the efficiency of the zinc oxide nanoparticles (ZnO NP) biosynthesized from Arthrospira maxima (Spirulina) both in vitro and in vivo. Carbapenem-resistant A. baumannii isolates were collected, identified, tested for their antibiotic susceptibility, and then subjected to PCR to detect carbapenemase-producing genes. The most predominant carbapenemase resistance gene was blaKPC. The biosynthesized ZnO NP were characterized using UV, FTIR, XRD, SEM, and TEM. The prepared ZnO NP was then tested against A. baumannii isolates to determine the minimum inhibitory concentration (MIC), which ranged from 250 to 1000 μg/ml. Burn wound was persuaded in twenty rats and inoculated with carbapenem-resistant A. baumannii isolate. Rats were allocated into four groups: a negative control group, a positive control group treated with topical 0.9% saline, a test treatment group that received topical ZnO NP, and a standard treatment group. All groups received treatment for 15 consecutive days and then euthanized. Skin samples were harvested and then subjected to histopathological and immunochemical investigations. ZnO NP revealed a comparable antibacterial activity to colistin as it revealed a lower level of fibrosis, mature surface epithelization with keratinization, and restoration of the normal skin architecture. In addition, it significantly decreased the immunoreactivity of the studied inflammatory markers. Thus, ZnO NP synthesized by A. maxima could be considered a promising, safe, and biocompatible alternative to traditional antibiotics in the therapy of carbapenem-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma I Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek E El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
El-Zahed MM, Abou-Dobara MI, El-Khodary MM, Mousa MMA. Antimicrobial activity and nanoremediation of heavy metals using biosynthesized CS/GO/ZnO nanocomposite by Bacillus subtilis ATCC 6633 alone or immobilized in a macroporous cryogel. Microb Cell Fact 2024; 23:278. [PMID: 39402571 PMCID: PMC11475717 DOI: 10.1186/s12934-024-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health. RESULTS The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of the nanocomposite and its cryogel on the WI-38 line which implies its safety. In addition, water treatment with the CS/GO/ZnO cryogel decreased turbidity (0.58 NTU), total coliform (2 CFU/100 ml), fecal coliform (1 CFU/100 ml), fecal Streptococcus (2 CFU/100 ml), and heterotrophic plate counts (53 CFU/1 ml) not only in comparison with the chlorine-treated samples (1.69 NTU, 4 CFU/100 ml, 6 CFU/100 ml, 57 CFU/100 ml, and 140 CFU/1 ml, respectively) but also with the raw water samples (6.9 NTU, 10800 CFU/100 ml, 660 CFU/100 ml, 800 CFU/100 ml, and 4400 CFU/1 ml, respectively). Moreover, cryogel significantly decreased the concentration of different heavy metals, especially cobalt compared to chlorine (0.004 ppm, 0.002 ppm, and 0.001 ppm for raw water, chlorine-treated, and cryogel-treated groups, respectively) which helped in the reduction of their toxic effects. CONCLUSION This study provides an effective, promising, safe, and alternative nanocomposite to treat different human and animal pathogenic microbes that might be used in different environmental, industrial, and medical applications.
Collapse
Affiliation(s)
- Mohamed M El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Mohamed I Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Marwa M El-Khodary
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed M A Mousa
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
4
|
Muthu S, Lakshmikanthan M, Edward-Sam E, Subramanian M, Govindan L, Patcha ABM, Krishnan K, Duraisamy N, Jeyaperumal S, Aziz AT. Encapsulation of Phloroglucinol from Rosenvingea intricata Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells. Pharmaceutics 2024; 16:1300. [PMID: 39458629 PMCID: PMC11510838 DOI: 10.3390/pharmaceutics16101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Phloroglucinol (PHL), a phenolic compound extracted from the brown alga Rosenvingea intricata, exhibits potent antioxidant and anticancer properties. This study aims to extract, purify, and characterize PHL, and further develop functionalized zinc oxide nanoparticles (ZnO NPs) loaded with PHL to enhance its therapeutic potential. METHODS PHL was extracted using acetone and purified through Sephadex LH-20 column chromatography, yielding a highly enriched fraction (F-3). The purified compound was characterized by FTIR, HPLC, NMR, and LC-MS. ZnO NPs were synthesized, PEGylated, and conjugated with PHL, forming ZnO-PEG-PHL NPs. Their characterization included DLS, zeta potential, XRD, SEM-EDAX, and encapsulation efficiency studies. Antioxidant assays (DPPH, FRAP, ABTS, RPA) were performed and in vitro cytotoxicity on A549 lung cancer cells were determined to evaluate the therapeutic efficacy of PHL. RESULTS The purified PHL fraction showed a high phenolic content (45.65 PHL mg/g), which was was confirmed by spectral analysis. The ZnO-PEG-PHL NPs increased in size from 32.36 nm to 46.68 nm, with their zeta potential shifting from -37.87 mV to -26.82 mV. The antioxidant activity was superior for the ZnO-PEG-PHL NPs in all assays, while the in vitro cytotoxicity tests showed an IC50 of 40 µg/mL compared to 60 µg/mL for the ZnO NPs and 70 µg/mL for PHL. Apoptotic studies revealed significant cell cycle arrest and apoptosis induction. CONCLUSIONS The synthesized ZnO-PEG-PHL NPs demonstrated enhanced antioxidant and anticancer properties, making them promising candidates for cancer therapy and antioxidant applications.
Collapse
Affiliation(s)
- Sakthivel Muthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mythileeswari Lakshmikanthan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Edwin Edward-Sam
- Department of Microbiology, Division of Virology and Molecular Biology, St. Peters Medical College Hospital & Research Institute, Hosur 635130, Tamil Nadu, India;
| | - Mutheeswaran Subramanian
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tirunelveli 627002, Tamil Nadu, India;
| | - Lakshmanan Govindan
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Afrina Begum Mithen Patcha
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Kathiravan Krishnan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Nallusamy Duraisamy
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai 600078, Tamil Nadu, India;
| | - Selvakumari Jeyaperumal
- National Centre for Disease Control, Thiruvananthapuram Field Unit, Iranimuttam, Thiruvananthapuram 695009, Kerala, India;
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
5
|
Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, El-Shetry ES, Albaqami A, Mawkili W, Alosaimi ME, Alotaibi BS, ElAshmouny N, Dahran N, Alsharif G, Samak MA. Alleviative effects of green-fabricated zinc oxide nanoparticles on acrylamide-induced oxidative and inflammatory reactions in the rat stomach via modulating gastric neuroactive substances and the MiR-27a-5p/ROS/NF-κB axis. Tissue Cell 2024; 91:102574. [PMID: 39353228 DOI: 10.1016/j.tice.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Little is known about the effects of acrylamide (AMD) on the stomach. So, this study evaluated the effect of oral AMD exposure (20 mg/kg b.wt) on oxidative status, apoptotic, and inflammatory reactions in rat's stomach for 60 days. To explore novel targets of AMD toxicity, a more detailed molecular and immune-expression study was performed. Besides, the possible protective effect of green synthesized zinc oxide nanoparticles (G-ZNP) (10 mg/kg b.wt) was explored. The results revealed that AMD significantly provoked oxidative and lipid peroxidative damage of the stomach in terms of increased ROS and MDA but reduced SOD, CAT, GSH, and GSH/GSSG. Additionally, the stomachs of AMD-exposed rats showed a significant increment of PGE2 but reduced NO. Histopathologically, AMD induced a significant increase in PAS stain and the immunoexpression of iNOS and NF-κB in the glandular stomach. A significant upregulation of CART, VACHT, EGFR, caspase-3, NOS-1, and miR-27a-5p was evident in the stomach of the AMD group. Yet, G-ZNP oral dosing significantly rescued the AMD-induced oxidative damage, apoptotic reaction, inflammatory effect, and altered miR-27a-5p and gene expressions in the stomach. Conclusively, these findings demonstrated the efficacy of G-ZNP in protecting against the harmful impacts of acrylamide on stomach tissues.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman S El-Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Naira ElAshmouny
- Department of Histology and cell biology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O.Box 9515, Jeddah 21423, Saudi Arabia; Department of Biomedical Research, King Abdullah International Medical Research Center, P.O.Box 9515, Jeddah 21423, Saudi Arabia
| | - Mai A Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; College of medicine, University of Ha'il, Ha'il 2240, Saudi Arabia
| |
Collapse
|
6
|
Afreen A, Hameed H, Tariq M, Sharif MS, Ahmed R, Waheed A, Kousar MB, Akram Z. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa-mediated gold nanoparticles with advanced microscopy techniques. Microsc Res Tech 2024; 87:1984-1996. [PMID: 38619301 DOI: 10.1002/jemt.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.
Collapse
Affiliation(s)
- Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Clinical and Translational Oncology, Scuola Superiore Meridionale Via Mezzocannone, Naples, Italy
| | - Rashid Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Momina Bint Kousar
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zeeshan Akram
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| |
Collapse
|
7
|
Kavipriya R, Ramasubburayan R. Phytofabrication of biocompatible zinc oxide nanoparticle using Gymnema sylvestre and its potent in vitro antibacterial, antibiofilm, and cytotoxicity against human breast cancer cells (MDA-MB-231). Bioprocess Biosyst Eng 2024; 47:1377-1391. [PMID: 38819452 DOI: 10.1007/s00449-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 μg/mL) than gram-negative bacteria (201.46-236.19 μg/mL). Microscopic visualization inferred that at 250 μg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.
Collapse
Affiliation(s)
- R Kavipriya
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - R Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Aouadi A, Hamada Saud D, Rebiai A, Achouri A, Benabdesselam S, Mohamed Abd El-Mordy F, Pohl P, Ahmad SF, Attia SM, Abulkhair HS, Ararem A, Messaoudi M. Introducing the antibacterial and photocatalytic degradation potentials of biosynthesized chitosan, chitosan-ZnO, and chitosan-ZnO/PVP nanoparticles. Sci Rep 2024; 14:14753. [PMID: 38926522 PMCID: PMC11208610 DOI: 10.1038/s41598-024-65579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.
Collapse
Affiliation(s)
- Abdelatif Aouadi
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Djamila Hamada Saud
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Abdelhak Achouri
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
- Water, Environment and Sustainable Development Laboratory (2E2D), Faculty of Technology, University of Blida 1, Route Soumâa, BP 270, Blida, Algeria
| | - Soulef Benabdesselam
- Laboratory of Water and Environmental Engineering in the Saharan Environment, Process Engineering Department, Faculty of Applied Sciences, Kasdi Merbah-Ouargla University, Ouargla, Algeria
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Abderrahmane Ararem
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria.
| |
Collapse
|
9
|
Ahmad A, Khawar MR, Ahmad I, Javed MH, Ahmad A, Rauf A, Younas U, Nazir A, Choi D, Karami AM. Green synthesis of ZnO nanocubes from Ceropegia omissa H. Huber extract for photocatalytic degradation of bisphenol An under visible light to mitigate water pollution. ENVIRONMENTAL RESEARCH 2024; 249:118093. [PMID: 38237759 DOI: 10.1016/j.envres.2023.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024]
Abstract
Plastic pollution has become a major environmental problem because it does not break down and poses risks to ecosystems and human health. This study focuses on the environmentally friendly synthesis of ZnO nanocubes using an extract from Ceropegia omissa H. Huber plant leaves. The primary goal is to investigate the viability of these nanocubes as visible-light photocatalysts for the degradation of bisphenol A (BPA). The synthesized ZnO nanocubes have a highly crystalline structure and a bandgap of 3.1 eV, making them suitable for effective visible-light photocatalysis. FTIR analysis, which demonstrates that the pertinent functional groups are present, demonstrates the chemical bonding and reducing processes that take place in the plant extract. The XPS method also studies zinc metals, oxygen valencies, and binding energies. Under visible light irradiation, ZnO nanocubes degrade BPA by 86% in 30 min. This plant-extract-based green synthesis method provides a long-term replacement for traditional procedures, and visible light photocatalysis has advantages over ultraviolet light. The study's results show that ZnO nanocubes may be good for the environment and can work well as visible light photocatalysts to break down organic pollutants. This adds to what is known about using nanoparticles to clean up the environment. As a result, this study highlights the potential of using environmentally friendly ZnO nanocubes as a long-lasting and efficient method of reducing organic pollutant contamination in aquatic environments.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Muhammad Ramzan Khawar
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-Daero, Yongin, Gyeonggi, 17104, South Korea
| | - Ikram Ahmad
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Muhammad Hassan Javed
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Anees Ahmad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Abdul Rauf
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-Daero, Yongin, Gyeonggi, 17104, South Korea.
| | - Abdulnasser M Karami
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Abdelrahman SESAH, El Hawary S, Mohsen E, El Raey MA, Selim HMRM, Hamdan AME, Ghareeb MA, Hamed AA. Bio-fabricated zinc oxide nanoparticles mediated by endophytic fungus Aspergillus sp. SA17 with antimicrobial and anticancer activities: in vitro supported by in silico studies. Front Microbiol 2024; 15:1366614. [PMID: 38803373 PMCID: PMC11128569 DOI: 10.3389/fmicb.2024.1366614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.
Collapse
Affiliation(s)
| | - Seham El Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Cairo, Egypt
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, Giza, Egypt
| |
Collapse
|
11
|
Manikandan R, Thomas J. Sustainable Approaches in Green Synthesis of Silica Nanoparticles Using Extracts of Chlorella and Its Application. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04949-9. [PMID: 38662321 DOI: 10.1007/s12010-024-04949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Silica nanoparticles, also known as SiO2 nanoparticles, have wider applications in biomedical, building, water treatment, agriculture, and food industries. It is used as an anticaking agent in the food industry, used to remove heavy metals from water, and used in cement-based materials. SiO2 nanoparticles synthesized by physical and chemical methods require high energy and use of toxic chemicals which is quite expensive, have a greater impact causing health-related issues, and have environmental side effects. Hence, there is a need to synthesize nanoparticles in an eco-friendly way. The biological or green synthesis method uses microbes, such as bacteria, fungi, algae, and plants for synthesizing nanoparticles. Algae contain natural biochemicals that act as reducing agents. These biomolecules are non-toxic as they are naturally occurring compounds and can be used to fabricate nanoparticles by avoiding the use of toxic chemicals in an eco-friendly method. In this study, silica nanoparticles were synthesized by green synthesis methods using microalgae extract. Further, the green synthesized silica nanoparticles were characterized using ultra violet-visible (UV-VIS) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray analysis (EDAX). The antimicrobial activity of the silica nanoparticles against E. coli was studied. This study revealed that the nanoparticles can be synthesized using green synthesis methods with low cost, less toxic chemicals, eco-friendly, and have antimicrobial activity against E. coli.
Collapse
Affiliation(s)
- Ragul Manikandan
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | - Jibu Thomas
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
12
|
El-Sayed AF, Aboulthana WM, Sherief MA, El-Bassyouni GT, Mousa SM. Synthesis, structural, molecular docking, and in vitro biological activities of Cu-doped ZnO nanomaterials. Sci Rep 2024; 14:9027. [PMID: 38641640 PMCID: PMC11031592 DOI: 10.1038/s41598-024-59088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.
Collapse
Affiliation(s)
- Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt.
| | - Marwa A Sherief
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| |
Collapse
|
13
|
Sivakumar A, Suresh V, Sethuraman S, Sivaperumal P. Biosynthesis of Zinc Nanoparticles From Actinobacterium Streptomyces Species and Their Biological Potential. Cureus 2024; 16:e54124. [PMID: 38487111 PMCID: PMC10938190 DOI: 10.7759/cureus.54124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In today's world, antibiotic-resistant microorganisms are a major concern. There is solid evidence that metal nanoparticles (NPs) tend to have antimicrobial properties. The most effective substitute for antibiotic resistance is the incorporation of metal NPs. The antibacterial properties of NPs are currently being explored and shown to be successful. Zinc (Zn) NPs that are biosynthesized from marine Actinobacterium proved to be more biocompatible, bioactive, and affordable. Aim: This study aims to investigate the synthesis of ZnNPs from Actinobacterium Streptomyces species and their antimicrobial effects against gram-positive and gram-negative bacteria. MATERIALS AND METHODS The current study uses natural, considerably safer processes to synthesize ZnNPs from marine Actinobacteria with little to no negative side effects. It involves sample collection, identification, and isolation of Actinobacterium Streptomyces species. The isolated sample was air-dried, and extracts of ZnNPs were taken. Among the isolates from marine sediment, two Actinobacteria that generate bioactive secondary metabolites-Streptomyces species (MOSEL-ME28) and Rhodococcus rhodochrous (MOSEL-ME29)-were selected for extracellular synthesis of ZnNPs. The antimicrobial activity of the biosynthesized ZnNPs from marine Actinobacteria was analyzed against Staphylococcus (MRSA), Klebsiella pneumoniae, and Streptococcus mutans. The results were statistically analyzed and graphs were created. RESULTS ZnNPs obtained from Actinobacterium Streptomyces species exhibited antimicrobial effects against Staphylococcus (MRSA), Klebsiella, and Streptococcus mutans. At 280 nm wavelength, analysis of the UV spectrum showed a notable absorbance value of 1.8. The antibacterial efficacy against Staphylococcus MRSA, Klebsiella species, and Streptococcus mutans was assessed by measuring the zone of inhibition in diameter. The zones of inhibition were 8, 8, and 7 mm on the evaluation for Streptococcus mutans, S. aureus, and Klebsiella species, respectively, at a dose of 75 μg/mL. When the dosage was increased to 100 μg/mL, the inhibition zones were found to be 9.5, 9, and 7.5 mm for the respective bacterial strains. CONCLUSION ZnNPs are biosynthesized from marine Actinobacterium Streptomyces species in this research study. They have a significant antimicrobial activity against both gram-positive and negative bacteria. This indicates that ZnNPs have enormous antimicrobial potential and have an extensive spectrum of applications. However, clinical trials must be completed before it can be used safely on patients.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sathya Sethuraman
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pitchiah Sivaperumal
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
14
|
T S, R SK, Nair AR. Biosynthesis of Zinc Oxide-Zerumbone (ZnO-Zer) Nanoflakes Towards Evaluating Its Antibacterial and Reactive Oxygen Species (ROS)-Dependent Cytotoxic Activity. J Fluoresc 2023:10.1007/s10895-023-03560-1. [PMID: 38148408 DOI: 10.1007/s10895-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Being the second most prevalent metal oxide, zinc oxide (ZnO) nanomaterials have been widely studied and found to exhibit promising applications in various domains of biomedicine and agriculture. Considering the enhanced bioactivities displayed by secondary metabolite (SM) derived ZnO nanomaterials, present study was undertaken to evaluate the efficacy of ZnO nanoflake (NF) derived from Zerumbone (Zer), a sesquiterpenoid from Zingiber zerumbet rhizome with diverse pharmacological properties. ZnO NF prepared by homogeneous precipitation method using ZnSO4.7H2O (0.1 M) and NaOH (0.2 M) as precursors with and without the addition of Zer (0.38 mM) were characterized by powder UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and Field emission scanning electron microscope (FESEM) analysis. Optical and physical properties of ZnO-Zer NF were found to match with the typical ZnO nanomaterial properties. XRD analysis revealed reduction in size (15 nm) of the green synthesized ZnO-Zer NF compared to ZnO NF (21 nm). ZnO-Zer NF displayed linear correlation between concentration and antimicrobial activity to Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Determination of cytotoxic potential of the synthesized ZnO-Zer NF in cervical cancer cells (HeLa) showed higher cytotoxicity of ZnO-Zer NF (39.32 ± 3.01%) compared to Zer alone (27.02 ± 1.22%). Present study revealing improvement in bioactivity of Zer following conjugation with ZnO NF signifies potential of NF formation in improving therapeutic application of Zer that otherwise displays low solubility limiting its bioavailability.
Collapse
Affiliation(s)
- Shilpa T
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Sanjay Kumar R
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Aswati R Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
15
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|