1
|
Visco AS, Pawar AS, Schambach NA, Thapa NK, Zuo YY, Neumann AW, Policova Z, Plawsky JL, Garde S, Smart AE, Meyer WV, Belgovskiy AI, Mann JA, Mann EK. Surface Tension of Two Near-Ideal Binary Liquid Mixtures and the Influence of Adjacent Vapors. J Phys Chem B 2024; 128:10699-10708. [PMID: 39423302 DOI: 10.1021/acs.jpcb.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The measured surface tension of a binary liquid is found to depend strongly on the constituents of the adjacent vapor and on whether equilibrium has been achieved, giving insight into the complex interfacial configuration. This dependence is quantified by three techniques that offer complementary insights: surface tension measurements with a constrained sessile drop surrounded by different vapors, surface tension measurements by surface light scattering spectroscopy in a sealed cell at equilibrium, and molecular dynamics simulations of the equilibrium surface tension and excess surface concentration. Ensuring homogeneity of the binary liquid, which is essential for surface light scattering, was found to be nontrivial and was assured by high-sensitivity Schlieren imaging. Two pairs of liquids, n-pentane with 2-methylpentane and n-pentane with n-hexane, were investigated. The first pair was motivated by the observed improvement in the effectiveness of binary fluids versus a single constituent in wickless heat pipes studied in microgravity. The second pair was used for comparison. Experimental evaluation of different volume fractions of the two liquids showed strong dependence of surface tension on the relative concentration of different molecules near the interfacial region. For the above pairs of liquids, which appear to form ideal mixtures in bulk, we present sufficiently precise surface tension measurements to indicate unexpectedly complex behaviors at interfaces.
Collapse
Affiliation(s)
- Angelo S Visco
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Anisha S Pawar
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Nathaniel A Schambach
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nabin K Thapa
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - A Wilhelm Neumann
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zdenka Policova
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Joel L Plawsky
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Shekhar Garde
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Anthony E Smart
- Scattering Solutions, Inc., Costa Mesa, California 92626, United States
| | - William V Meyer
- Scattering Solutions, Inc., Lakewood, Ohio 44107, United States
| | | | - J Adin Mann
- Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Elizabeth K Mann
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
2
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|
3
|
Thiem DB, Szabo G, Burg TP. Model-Based Optimization of Solid-Supported Micro-Hotplates for Microfluidic Cryofixation. MICROMACHINES 2024; 15:1069. [PMID: 39337729 PMCID: PMC11434347 DOI: 10.3390/mi15091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
Cryofixation by ultra-rapid freezing is widely regarded as the gold standard for preserving cell structure without artefacts for electron microscopy. However, conventional cryofixation technologies are not compatible with live imaging, making it difficult to capture dynamic cellular processes at a precise time. To overcome this limitation, we recently introduced a new technology, called microfluidic cryofixation. The principle is based on micro-hotplates counter-cooled with liquid nitrogen. While the power is on, the sample inside a foil-embedded microchannel on top of the micro-hotplate is kept warm. When the heater is turned off, the thermal energy is drained rapidly and the sample freezes. While this principle has been demonstrated experimentally with small samples (<0.5 mm2), there is an important trade-off between the attainable cooling rate, sample size, and heater power. Here, we elucidate these connections by theoretical modeling and by measurements. Our findings show that cooling rates of 106 K s-1, which are required for the vitrification of pure water, can theoretically be attained in samples up to ∼1 mm wide and 5 μm thick by using diamond substrates. If a heat sink made of silicon or copper is used, the maximum thickness for the same cooling rate is reduced to ∼3 μm. Importantly, cooling rates of 104 K s-1 to 105 K s-1 can theoretically be attained for samples of arbitrary area. Such rates are sufficient for many real biological samples due to the natural cryoprotective effect of the cytosol. Thus, we expect that the vitrification of millimeter-scale specimens with thicknesses in the 10 μm range should be possible using micro-hotplate-based microfluidic cryofixation technology.
Collapse
Affiliation(s)
- Daniel B. Thiem
- Integrated Micro-Nano-Systems Laboratory, Technische Universität Darmstadt, 64283 Darmstadt, Germany;
| | - Greta Szabo
- Integrated Micro-Nano-Systems Laboratory, Technische Universität Darmstadt, 64283 Darmstadt, Germany;
| | - Thomas P. Burg
- Integrated Micro-Nano-Systems Laboratory, Technische Universität Darmstadt, 64283 Darmstadt, Germany;
- Centre for Synthetic Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
4
|
Kim N, Kant P, van der Meer D. Spreading of volatile droplets in a humidity-controlled environment. SOFT MATTER 2024. [PMID: 39007766 DOI: 10.1039/d4sm00583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
When a pure ethanol droplet is deposited on a dry, wettable and conductive substrate, it is expected to spread into a thin, uniform film. Here, we demonstrate that this uniform spreading behaviour can be altered significantly by controlling the ambient relative humidity. We show that higher relative humidity not only promotes faster spreading of the droplet, it also destabilizes the moving contact line, resulting in a fingering instability. We observe that these effects primarily emerge due to the hygroscopic nature of the pure droplet, which eventually leads to solutal-Marangoni effects. Additionally, heat transfer between the evaporating droplet and the underlying substrate also plays a crucial role in the overall dynamics. Thus, the overall spreading of a pure hygroscopic droplet is determined by a delicate interplay between solutal and thermal Marangoni effects.
Collapse
Affiliation(s)
- Nayoung Kim
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands.
| | - Pallav Kant
- School of Engineering, University of Manchester, M13 9PL UK, UK
| | - Devaraj van der Meer
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
5
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Role of viscoelasticity in the appearance of low-Reynolds turbulence: considerations for modelling. J Biol Eng 2024; 18:24. [PMID: 38589891 PMCID: PMC11476694 DOI: 10.1186/s13036-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Inertial effects caused by perturbations of dynamical equilibrium during the flow of soft matter constitute a hallmark of turbulence. Such perturbations are attributable to an imbalance between energy storage and energy dissipation. During the flow of Newtonian fluids, kinetic energy can be both stored and dissipated, while the flow of viscoelastic soft matter systems, such as polymer fluids, induces the accumulation of both kinetic and elastic energies. The accumulation of elastic energy causes local stiffening of stretched polymer chains, which can destabilise the flow. Migrating multicellular systems are hugely complex and are capable of self-regulating their viscoelasticity and mechanical stress generation, as well as controlling their energy storage and energy dissipation. Since the flow perturbation of viscoelastic systems is caused by the inhomogeneous accumulation of elastic energy, rather than of kinetic energy, turbulence can occur at low Reynolds numbers.This theoretical review is focused on clarifying the role of viscoelasticity in the appearance of low-Reynolds turbulence. Three types of system are considered and compared: (1) high-Reynolds turbulent flow of Newtonian fluids, (2) low and moderate-Reynolds flow of polymer solutions, and (3) migration of epithelial collectives, discussed in terms of two model systems. The models considered involve the fusion of two epithelial aggregates, and the free expansion of epithelial monolayers on a substrate matrix.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
6
|
Shi C, Shen X. Spontaneous Multi-scale Supramolecular Assembly Driven by Noncovalent Interactions Coupled with the Continuous Marangoni Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6980-6989. [PMID: 38513349 DOI: 10.1021/acs.langmuir.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Reported herein is the multi-scale supramolecular assembly (MSSA) process along with redox reactions driven by supramolecular interactions coupled with the spontaneous Marangoni effect in ionic liquid (IL)-based extraction systems. The black powder, the single sphere with a black exterior, and the single colorless sphere were formed step by step at the interface when an aqueous solution of KMnO4 was mixed with the IL phase 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (C2OHmimNTf2) bearing octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO). The mechanism of the whole process was studied systematically. The phenomena were related closely to the change in the valence state of Mn. The MnO4- ion could be reduced quickly to δ-MnO2 and further to Mn2+ slowly by the hydroxyl-functionalized IL C2OHmimNTf2. Based on Mn2+, Mn(CMPO)32+, elementary building blocks (EBBs), and [EBB]n clusters were generated step by step. The [EBB]n clusters with the large enough size that were transferred to the interface, together with the remaining δ-MnO2, assembled into the single sphere with a black exterior, driven by supramolecular interactions coupled with the spontaneous Marangoni effect. When the remaining δ-MnO2 was used up, the mixed single sphere turned completely colorless. It was found that the reaction site of C2OHmim+ with Mn(VII) and Mn(IV) was distributed mainly at the side chain with a hydroxyl group. The MSSA process presents unique spontaneous phase changes. This work paves the way for the practical application of the MSSA-based separation method developed recently. The process also provides a convenient way to observe in situ and characterize directly the continuous Marangoni effect.
Collapse
Affiliation(s)
- Ce Shi
- Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinghai Shen
- Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
7
|
Pajic-Lijakovic I, Milivojevic M. Collective durotaxis along a self-generated mobile stiffness gradient in vivo. Biosystems 2024; 237:105155. [PMID: 38367761 DOI: 10.1016/j.biosystems.2024.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
A crucial aspect of tissue self-organization during morphogenesis, wound healing, and cancer invasion is directed migration of cell collectives. The majority of in vivo directed migration has been guided by chemotaxis, whereby cells follow a chemical gradient. In certain situations, migrating cell collectives can also self-generate the stiffness gradient in the surrounding tissue, which can have a feedback effect on the directionality of the migration. The phenomenon has been observed during collective durotaxis in vivo. Along the biointerface between neighbouring tissues, heterotypic cell-cell interactions are the main cause of this self-generated stiffness gradient. The physical processes in charge of tissue self-organization along the biointerface, which are related to the interplay between cell signalling and the formation of heterotypic cell-cell adhesion contacts, are less well-developed than the biological mechanisms of the cellular interactions. This complex phenomenon is discussed here in the model system, such as collective migration of neural crest cells between ectodermal placode and mesoderm subpopulations within Xenopus embryos by pointing to the role of the dynamics along the biointerface between adjacent cell subpopulations on the subpopulation stiffness.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, Belgrade, 11000, Serbia.
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, Belgrade, 11000, Serbia
| |
Collapse
|
8
|
Pajic-Lijakovic I, Eftimie R, Milivojevic M, Bordas SPA. Segregation of co-cultured multicellular systems: review and modeling consideration. Q Rev Biophys 2024; 57:e5. [PMID: 38351868 DOI: 10.1017/s0033583524000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cell segregation caused by collective cell migration (CCM) is crucial for morphogenesis, functional development of tissue parts, and is an important aspect in other diseases such as cancer and its metastasis process. Efficiency of the cell segregation depends on the interplay between: (1) biochemical processes such as cell signaling and gene expression and (2) physical interactions between cells. Despite extensive research devoted to study the segregation of various co-cultured systems, we still do not understand the role of physical interactions in cell segregation. Cumulative effects of these physical interactions appear in the form of physical parameters such as: (1) tissue surface tension, (2) viscoelasticity caused by CCM, and (3) solid stress accumulated in multicellular systems. These parameters primarily depend on the interplay between the state of cell-cell adhesion contacts and cell contractility. The role of these physical parameters on the segregation efficiency is discussed on model systems such as co-cultured breast cell spheroids consisting of two subpopulations that are in contact. This review study aims to: (1) summarize biological aspects related to cell segregation, mechanical properties of cell collectives, effects along the biointerface between cell subpopulations and (2) describe from a biophysical/mathematical perspective the same biological aspects summarized before. So that overall it can illustrate the complexity of the biological systems that translate into very complex biophysical/mathematical equations. Moreover, by presenting in parallel these two seemingly different parts (biology vs. equations), this review aims to emphasize the need for experiments to estimate the variety of parameters entering the resulting complex biophysical/mathematical models.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Beograd, Serbia
| | - Raluca Eftimie
- Laboratoire Mathematiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comte, Besançon, France
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Beograd, Serbia
| | - Stéphane P A Bordas
- Faculty of Science, Technology and Communication, University of Luxembourg, Institute for Computational Engineering, Esch-sur-Alzette, Luxembourg
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Pajic-Lijakovic I, Milivojevic M. Cell jamming-to-unjamming transitions and vice versa in development: Physical aspects. Biosystems 2023; 234:105045. [PMID: 37813238 DOI: 10.1016/j.biosystems.2023.105045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Collective cell migration is essential for a wide range of biological processes such as: morphogenesis, wound healing, and cancer spreading. However, it is well known that migrating epithelial collectives frequently undergo jamming, stay trapped some period of time, and then start migration again. Consequently, only a part of epithelial cells actively contributes to the tissue development. In contrast to epithelial cells, migrating mesenchymal collectives successfully avoid the jamming. It has been confirmed that the epithelial unjamming cannot be treated as the epithelial-to-mesenchymal transition. Some other mechanism is responsible for the epithelial jamming/unjamming. Despite extensive research devoted to study the cell jamming/unjamming, we still do not understand the origin of this phenomenon. The origin is connected to physical factors such as: the cell compressive residual stress accumulation and surface characteristics of migrating (unjamming) and resting (jamming) epithelial clusters which depend primarily on the strength of cell-cell adhesion contacts and cell contractility. The main goal of this theoretical consideration is to clarify these cause-consequence relations.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
10
|
Pajic-Lijakovic I, Milivojevic M. Physics of collective cell migration. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:625-640. [PMID: 37707627 DOI: 10.1007/s00249-023-01681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Movement of cell clusters along extracellular matrices (ECM) during tissue development, wound healing, and early stage of cancer invasion involve various inter-connected migration modes such as: (1) cell movement within clusters, (2) cluster extension (wetting) and compression (de-wetting), and (3) directional cluster movement. It has become increasingly evident that dilational and volumetric viscoelasticity of cell clusters and their surrounding substrate significantly influence these migration modes through physical parameters such as: tissue and matrix surface tensions, interfacial tension between cells and substrate, gradients of surface and interfacial tensions, as well as, the accumulation of cell and matrix residual stresses. Inhomogeneous distribution of tissue surface tension along the cell-matrix biointerface can appear as a consequence of different contractility of various cluster regions. While the directional cell migration caused by the matrix stiffness gradient (i.e., durotaxis) has been widely elaborated, the structural changes of matrix surface caused by cell tractions which lead to the generation of the matrix surface tension gradient has not been considered yet. The main goal of this theoretical consideration is to clarify the roles of various physical parameters in collective cell migration based on the formulation of a biophysical model. This complex phenomenon is discussed with the help of model systems such as the movement of cell clusters on a collagen I gel matrix, simultaneously reviewing various experimental data with and without cells.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
11
|
Wang L, He K, Wang H. Phase-field-based lattice Boltzmann model for simulating thermocapillary flows. Phys Rev E 2023; 108:055306. [PMID: 38115446 DOI: 10.1103/physreve.108.055306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
This paper proposes a simple and accurate lattice Boltzmann model for simulating thermocapillary flows, which can deal with the contrast between thermodynamic parameters. In this model, two lattice Boltzmann equations are utilized to solve the conservative Allen-Cahn equation and the incompressible Navier-Stokes equations, while another lattice Boltzmann equation is used for solving the temperature field, where the collision term is delicately designed such that the influence of the contrast between thermodynamic parameters is incorporated. In contrast to the previous lattice Boltzmann models for thermocapillary flows, the most distinct feature of the current model is that the forcing term used in the present thermal lattice Boltzmann equation is not needed to calculate space derivatives of the heat capacitance or the order parameter, making the scheme much more straightforward and able to retain the main merits of the lattice Boltzmann method. The developed model is first validated by considering the thermocapillary flows in a heated microchannel with two superimposed planar fluids. It is then used to simulate the thermocapillary migration of a two-dimensional deformable droplet, and its accuracy is consistent with the theoretical prediction when the Marangoni number approaches zero. Finally, we numerically study the motion of two recalcitrant bubbles in a two-dimensional channel where the relationship between surface tension and temperature is assumed to be a parabolic function. It is observed that due to the competition between the inertia and thermal effects, the bubbles can move against the liquid's bulk motion and towards areas with low surface tension.
Collapse
Affiliation(s)
- Lei Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Kun He
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Huili Wang
- School of Mathematical and Computer Sciences, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
12
|
Agrawal S, Das PK, Dhar P. Marangoni Flows in a Bilayer Liquid Microfilm Interface on Wave-Contoured Hot Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14084-14101. [PMID: 37737123 DOI: 10.1021/acs.langmuir.3c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This study explores the thermal Marangoni hydrodynamics in an immiscible, binary-liquid thin-film system, which is open to the gas phase at the top and rests on a heated substrate with wavy topology. The sinusoidal contour of the heated (constant-temperature) substrate results in temperature gradients along the liquid-liquid and liquid-gas interfaces, causing fluctuations in the interfacial tension, ultimately leading to Marangoni hydrodynamics in the liquid-liquid films. This type of flow is notable in liquid film coatings on patterned surfaces, which are widely used in MEMS/NEMS applications (Weinstein, S. J.; Palmer, H. J. Liquid Film Coating: Scientific Principles and Their Technological Implications; 1997, pp 19-62; Palacio, M.; Bhushan, B. Adv. Mater. 2008, 20, 1194-1198) and biological cell sorting operations (Witek, M. A.; Freed, I. M.; Soper, S. A. Anal. Chem. 2019, 92, 105-131). We solve the coupled Navier-Stokes and energy equations by the perturbation technique to obtain approximate analytical solutions and an understanding of the thermal and hydrodynamic transport in the system domain. Our study explores the parametric influence of the relative thermal conductivity of the liquid layers (k), film thickness ratio (r), and the system's Biot number (Bi) on these transport phenomena. While the strength of the thermal Marangoni effect that is generated reduces with an increase in the relative thermal conductivity (k), the impact of r depends on the k value. We observe that for k > 1 the intensity of Marangoni flow increases with r; however, the opposite holds for k < 1. Furthermore, larger values of Bi induce higher resistance to the vertical conduction from the wavy substrate compared to the convection resistance offered at the top surface, destructively interfering with the ability of the patterned substrate to generate interfacial temperature fluctuations and hence weakening the Marangoni flow.
Collapse
Affiliation(s)
- Shubham Agrawal
- Hydrodynamics and Thermal Multiphysics Lab (HTML), Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Prasanta K Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Purbarun Dhar
- Hydrodynamics and Thermal Multiphysics Lab (HTML), Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
13
|
Gao S, Rui X, Zeng X, Zhou J. EWOD Chip with Micro-Barrier Electrode for Simultaneous Enhanced Mixing during Transportation. SENSORS (BASEL, SWITZERLAND) 2023; 23:7102. [PMID: 37631640 PMCID: PMC10459807 DOI: 10.3390/s23167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Digital microfluidic platforms have been extensively studied in biology. However, achieving efficient mixing of macromolecules in microscale, low Reynolds number fluids remains a major challenge. To address this challenge, this study presents a novel design solution based on dielectric electro-wetting (EWOD) by optimizing the geometry of the transport electrode. The new design integrates micro-barriers on the electrodes to generate vortex currents that promote mixing during droplet transport. This design solution requires only two activation signals, minimizing the number of pins required. The mixing performance of the new design was evaluated by analyzing the degree of mixing inside the droplet and quantifying the motion of the internal particles. In addition, the rapid mixing capability of the new platform was demonstrated by successfully mixing the sorbitol solution with the detection solution and detecting the resulting reaction products. The experimental results show that the transfer electrode with a micro-barrier enables rapid mixing of liquids with a six-fold increase in mixing efficiency, making it ideal for the development of EWOD devices.
Collapse
Affiliation(s)
- Shang Gao
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| | - Xichuan Rui
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
- Department of Micro/Nano Electronics State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University, Shanghai 200433, China
| | - Xiangyu Zeng
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| | - Jia Zhou
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| |
Collapse
|
14
|
Staples J, Dourou AM, Liampa I, Sjaarda C, Moslinger E, Wong H, Sheth PM, Arhondakis S, Prakash R. A Miniaturized System for Rapid, Isothermal Detection of SARS-CoV-2 in Human and Environmental Samples. Biomedicines 2023; 11:2038. [PMID: 37509680 PMCID: PMC10377682 DOI: 10.3390/biomedicines11072038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
We report a small-footprint cost-effective isothermal rapid DNA amplification system, with integrated microfluidics for automated sample analysis and detection of SARS-CoV-2 in human and environmental samples. Our system measures low-level fluorescent signals in real-time during amplification, while maintaining the desired assay temperature on a low power, portable system footprint. A unique soft microfluidic chip design was implemented to mitigate thermocapillary effects and facilitate optical alignment for automated image capture and signal analysis. The system-on-board prototype, coupled with the LAMP primers designed by BioCoS, was sensitive enough to detect large variations in viral loads of SARS-CoV-2 corresponding to a threshold cycle range of 16 to 39. Furthermore, tested samples consisted of a broad range of viral strains and lineages identified in Canada during 2021-2022. Clinical specimens were collected and tested at the Kingston Health Science Centre using a clinically validated PCR assay, and variants were determined using whole genome sequencing.
Collapse
Affiliation(s)
- Jake Staples
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | | | - Calvin Sjaarda
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | - Emily Moslinger
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | - Henry Wong
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | - Prameet M Sheth
- Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada
| | | | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Ma S, Zhao W, Zhang Q, Zhang K, Liang C, Wang D, Liu X, Zhan X. A portable microfluidic electrochemical sensing platform for rapid detection of hazardous metal Pb 2+ based on thermocapillary convection using 3D Ag-rGO-f-Ni(OH) 2/NF as a signal amplifying element. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130923. [PMID: 36738616 DOI: 10.1016/j.jhazmat.2023.130923] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution is causing a great threat to ecological environment and public health, which needs an efficient strategy for monitoring. A portable microfluidic electrochemical sensing system was developed for the determination of heavy metal ions. Herein, the detection of Pb2+ was chosen as a model, and a microfluidic electrochemical sensing chip relying on a smartphone-based electrochemical workstation was proposed for rapid detection Pb2+ with the assistance of thermocapillary convection result from the formed temperature gradient. The 3D Ag-rGO-f-Ni(OH)2/NF composites, prepared by one-step hydrothermal method without any Ni precursor salt, were used to further amplify electrochemical signals under the synergistic effect of thermocapillary convection. The thermocapillary convection could accelerate the preconcentration process and shorten the detection time (save 300 s of preconcentration time). The fabricated system exhibited the exceptional competence for monitoring of Pb2+ range from 0.01 μg/L to 2100 μg/L with a low detection limit (LOD) of 0.00464 μg/L. Furthermore, this portable system has been successfully demonstrated for detecting Pb2+ (0.01 μg/L to 2100 μg/L) in river water (LOD = 0.00498 μg/L), fish (LOD = 0.00566 μg/L) and human serum samples (LOD = 0.00836 μg/L), and the results were consistent with inductively coupled plasma-mass spectrometry (ICP-MS). The proposed novel sensing platform provides a cost-effectiveness, rapidly responding and ease-to-use pathway for analysis of heavy metal ions in real samples and shows great potential in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China.
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Chong Liang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Dingkai Wang
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou 221100, China
| | - Xijie Zhan
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
16
|
Roach L, Gonzalez-Rodriguez D, Gao J, Laurichesse E, Castro-Grijalba A, Oda R, Schmitt V, Pouget E, Tréguer-Delapierre M, Drisko GL. Effect of Solvent on Convectively Driven Silica Particle Assembly: Decoupling Surface Tension, Viscosity, and Evaporation Rate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4216-4223. [PMID: 36926905 PMCID: PMC10061933 DOI: 10.1021/acs.langmuir.2c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/09/2022] [Indexed: 06/18/2023]
Abstract
The process of convectively self-assembling particles in films suffers from low reproducibility due to its high dependency on particle concentration, as well as a variety of interactions and physical parameters. Inhomogeneities in flow rates and instabilities at the air-liquid interface are mostly responsible for reproducibility issues. These problems are aggravated by adding multiple components to the dispersion, such as binary solvent mixtures or surfactant/polymer additives, both common approaches to control stick-slip behavior. When an additive is used, not only does it change the surface tension, but also the viscosity and the evaporation rate. Worse yet, gradients in these three properties can form, which then lead to Marangoni currents. Here, we use a series of alcohols to study the role of viscosity independently of other solvent properties, to show its impact on stick-slip behavior and interband distances. We show that mixtures of glycerol and alcohol or poly(acrylic acid) and alcohol lead to more complex patterning. Marangoni currents are not always observed in co-solvent systems, being dependent on the rate of solvent evaporation. To produce homogeneous particle assemblies and control stick-slip behavior, gradients must be avoided, and the surface tension and viscosity need both be carefully controlled.
Collapse
Affiliation(s)
- Lucien Roach
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | | | - Jie Gao
- Université
de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Eric Laurichesse
- Université
de Bordeaux, CNRS, CRPP, UMR 5031, 33600 Pessac, France
| | | | - Reiko Oda
- Université
de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- WPI-Advanced
Institute for Materials Research, Tohoku
University, Katahira,
Aoba-Ku, 980-8577 Sendai, Japan
| | | | - Emilie Pouget
- Université
de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | | | - Glenna L. Drisko
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| |
Collapse
|
17
|
Pajic-Lijakovic I, Milivojevic M. Active wetting of epithelial tissues: modeling considerations. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:1-15. [PMID: 36593348 DOI: 10.1007/s00249-022-01625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Morphogenesis, tissue regeneration, and cancer invasion involve transitions in tissue morphology. These transitions, caused by collective cell migration (CCM), have been interpreted as active wetting/de-wetting transitions. This phenomenon is considered based on a model system as wetting of a cell aggregate on a rigid substrate, which includes cell aggregate movement and isotropic/anisotropic spreading of a cell monolayer around the aggregate depending on the substrate rigidity and aggregate size. This model system accounts for the transition between 3D epithelial aggregate and 2D cell monolayer as a product of: (1) tissue surface tension, (2) surface tension of substrate matrix, (3) cell-matrix interfacial tension, (4) interfacial tension gradient, (5) viscoelasticity caused by CCM, and (6) viscoelasticity of substrate matrix. These physical parameters depend on the cell contractility and state of cell-cell and cell-matrix adhesion contacts, as well as the stretching/compression of cellular systems caused by CCM. Despite extensive research devoted to study cell wetting, we still do not understand the interplay among these physical parameters which induces an oscillatory trend of cell rearrangement. This review focuses on these physical parameters in governing the cell rearrangement in the context of epithelial aggregate wetting/de-wetting, and on modeling approaches aimed at reproducing and understanding these biological systems. In this context, we not only review previously published biophysical models for cell rearrangement caused by CCM, but also propose new extensions of those models to point out the interrelation between cell-matrix interfacial tension and epithelial viscoelasticity and the role of the interfacial tension gradient in cell spreading.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| |
Collapse
|
18
|
Pajic-Lijakovic I, Eftimie R, Milivojevic M, Bordas SPA. The dynamics along the biointerface between the epithelial and cancer mesenchymal cells: Modeling consideration. Semin Cell Dev Biol 2023; 147:47-57. [PMID: 36631334 DOI: 10.1016/j.semcdb.2022.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Epithelial cancer is the one of most lethal cancer type worldwide. Targeting the early stage of disease would allow dramatic improvements in the survival of cancer patients. The early stage of the disease is related to cancer cell spreading across surrounding healthy epithelium. Consequently, deeper insight into cell dynamics along the biointerface between epithelial and cancer (mesenchymal) cells is necessary in order to control the disease as soon as possible. Cell dynamics along this epithelial-cancer biointerface is the result of the interplay between various biological and physical mechanisms. Despite extensive research devoted to study cancer cell spreading across the epithelium, we still do not understand the physical mechanisms which influences the dynamics along the biointerface. These physical mechanisms are related to the interplay between physical parameters such as: (1) interfacial tension between cancer and epithelial subpopulations, (2) established interfacial tension gradients, (3) the bending rigidity of the biointerface and its impact on the interfacial tension, (4) surface tension of the subpopulations, (5) viscoelasticity caused by collective cell migration, and (6) cell residual stress accumulation. The main goal of this study is to review some of these physical parameters in the context of the epithelial/cancer biointerface elaborated on the model system such as the biointerface between breast epithelial MCF-10A cells and cancer MDA-MB-231 cells and then to incorporate these parameters into a new biophysical model that could describe the dynamics of the biointerface. We conclude by discussing three biophysical scenarios for cell dynamics along the biointerface, which can occur depending on the magnitude of the generated shear stress: a smooth biointerface, a slightly-perturbed biointerface and an intensively-perturbed biointerface in the context of the Kelvin-Helmholtz instability. These scenarios are related to the probability of cancer invasion.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Serbia.
| | - Raluca Eftimie
- Laboratoire Mathematiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comte, 16 Route de Gray, Besançon 25000, France
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Serbia
| | - Stéphane P A Bordas
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
19
|
Onggowarsito C, Feng A, Mao S, Nguyen LN, Xu J, Fu Q. Water Harvesting Strategies through Solar Steam Generator Systems. CHEMSUSCHEM 2022; 15:e202201543. [PMID: 36163592 PMCID: PMC10098618 DOI: 10.1002/cssc.202201543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/25/2022] [Indexed: 05/27/2023]
Abstract
Solar steam generator (SSG) systems have attracted increasing attention, owing to its simple manufacturing, material abundance, cost-effectiveness, and environmentally friendly freshwater production. This system relies on photothermic materials and water absorbing substrates for a clean continuous distillation process. To optimize this process, there are factors that are needed to be considered such as selection of solar absorber and water absorbent materials, followed by micro/macro-structural system design for efficient water evaporation, floating, and filtration capability. In this contribution, we highlight the general interfacial SSG concept, review and compare recent progresses of different SSG systems, as well as discuss important factors on performance optimization. Furthermore, unaddressed challenges such as SSG's cost to performance ratio, filtration of untreatable micropollutants/microorganisms, and the need of standardization testing will be discussed to further advance future SSG studies.
Collapse
Affiliation(s)
- Casey Onggowarsito
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - An Feng
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Shudi Mao
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Luong Ngoc Nguyen
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular DesignSchool of Chemical EngineeringUNSW InstitutionSydneyNSW 2052Australia
| | - Qiang Fu
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| |
Collapse
|
20
|
Pajic-Lijakovic I, Eftimie R, Milivojevic M, Bordas SPA. The rearrangement of co-cultured cellular model systems via collective cell migration. Semin Cell Dev Biol 2022; 147:34-46. [PMID: 36307358 DOI: 10.1016/j.semcdb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Cancer invasion through the surrounding epithelium and extracellular matrix (ECM) is the one of the main characteristics of cancer progression. While significant effort has been made to predict cancer cells response under various drug therapies, much less attention has been paid to understand the physical interactions between cancer cells and their microenvironment, which are essential for cancer invasion. Considering these physical interactions on various co-cultured in vitro model systems by emphasizing the role of viscoelasticity, the tissue surface tension, solid stress, and their inter-relations is a prerequisite for establishing the main factors that influence cancer cell spread and develop an efficient strategy to suppress it. This review focuses on the role of viscoelasticity caused by collective cell migration (CCM) in the context of mono-cultured and co-cultured cancer systems, and on the modeling approaches aimed at reproducing and understanding these biological systems. In this context, we do not only review previously-published biophysics models for collective cell migration, but also propose new extensions of those models to include solid stress accumulated within the spheroid core region and cell residual stress accumulation caused by CCM.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Serbia.
| | - Raluca Eftimie
- Laboratoire Mathematiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comte, 16 Route de Gray, Besançon 25000, France
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Serbia
| | - Stéphane P A Bordas
- Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Pajic-Lijakovic I, Milivojevic M. Marangoni effect and cell spreading. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:419-429. [PMID: 35930028 DOI: 10.1007/s00249-022-01612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cells are very sensitive to the shear stress (SS). However, undesirable SS is generated during physiological process such as collective cell migration (CCM) and influences the biological processes such as morphogenesis, wound healing and cancer invasion. Despite extensive research devoted to study the SS generation caused by CCM, we still do not fully understand the main cause of SS appearance. An attempt is made here to offer some answers to these questions by considering the rearrangement of cell monolayers. The SS generation represents a consequence of natural and forced convection. While forced convection is dependent on cell speed, the natural convection is induced by the gradient of tissue surface tension. The phenomenon is known as the Marangoni effect. The gradient of tissue surface tension induces directed cell spreading from the regions of lower tissue surface tension to the regions of higher tissue surface tension and leads to the cell sorting. This directional cell migration is described by the Marangoni flux. The phenomenon has been recognized during the rearrangement of (1) epithelial cell monolayers and (2) mixed cell monolayers made by epithelial and mesenchymal cells. The consequence of the Marangoni effect is an intensive spreading of cancer cells through an epithelium. In this work, a review of existing literature about SS generation caused by CCM is given along with the assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Moradi Mehr S, Charsooghi MA, Businaro L, Habibi M, Moradi A. Capillary Pumping between Droplets on Superhydrophobic Surfaces. AIChE J 2022. [DOI: 10.1002/aic.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shiva Moradi Mehr
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad A. Charsooghi
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Luca Businaro
- Italian National Research Council ‐ Institute for Photonics and Nanotechnologies (CNR ‐ IFN), via Cineto Romano 42 Rome Italy
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods Wageningen University AA Wageningen The Netherlands
| | - Ali‐Reza Moradi
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM) Tehran Iran
| |
Collapse
|
23
|
Wang S, Zhou R, Hou Y, Wang M, Hou X. Photochemical effect driven fluid behavior control in microscale pores and channels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhou Y, Dai L, Jiao N. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. MICROMACHINES 2022; 13:1068. [PMID: 35888885 PMCID: PMC9324494 DOI: 10.3390/mi13071068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
In recent years, microbubbles have been widely used in the field of microrobots due to their unique properties. Microbubbles can be easily produced and used as power sources or tools of microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of bubble applications in microrobotics including propulsion, micromanipulation, and microassembly. First, we introduce the diverse bubble generation and control methods. Then, we review and discuss how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss the prospects of microbubbles in microrobotics.
Collapse
Affiliation(s)
- Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Dai
- College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
25
|
Roy T, Chaurasia SS, Cruz JM, Pimienta V, Parmananda P. Modes of synchrony in self-propelled pentanol drops. SOFT MATTER 2022; 18:1688-1695. [PMID: 35146497 DOI: 10.1039/d1sm01488a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report various modes of synchrony observed for a population of two, three and four pentanol drops in a rectangular channel at the air-water interface. Initially, the autonomous oscillations of a single 1-pentanol drop were studied in a ferroin DI water solution pre-mixed with some volume of pentanol. A pentanol drop performs continuous motion on the air-water interface due to Marangoni forces. A linear channel was prepared to study the uniaxial movement of the drop(s). Thereafter, a systematic study of the self-propelled motion of a 1-pentanol drop was reported as a function of the drop volume. Subsequently, the coupled dynamics were studied for two, three and four drops, respectively. We observed anti-phase oscillations in a pair of pentanol drops. In the case of three drops, relay synchronization was observed, wherein consecutive pairs of drops were exhibiting out-of-phase oscillations and alternate drops were performing in-phase oscillations. Four pentanol drops showed two different modes of synchrony: one was relay synchrony and the other was out-of-phase oscillations between two pairs of drops (within a pair, the drops exhibit in-phase oscillations).
Collapse
Affiliation(s)
- Tanushree Roy
- Department of Physics, IIT Bombay, Mumbai 400076, Maharashtra, India.
| | | | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - V Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne 31062, Toulouse Cedex 9, France
| | - P Parmananda
- Department of Physics, IIT Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
26
|
Abstract
Lab-on-a-chip devices leverage microfluidic technologies to enable chemical and biological processes at small scales. However, existing microfluidic channel networks are typically designed for the implementation of a single function or a well-defined protocol and do not allow the flexibility and real-time experimental decision-making essential to many scientific applications. In this Perspective, we highlight that reconfigurability and programmability of microfluidic platforms can support new functionalities that are beyond the reach of current lab-on-a-chip systems. We describe the ideal fully reconfigurable microfluidic device that can change its shape and function dynamically, which would allow researchers to tune a microscale experiment with the capacity to make real-time decisions. We review existing technologies that can dynamically control microscale flows, suggest additional physical mechanisms that could be leveraged towards the goal of reconfigurable microfluidics and highlight the importance of these efforts for the broad scientific community.
Collapse
|
27
|
Hauck N, Neuendorf TA, Männel MJ, Vogel L, Liu P, Stündel E, Zhang Y, Thiele J. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species. SOFT MATTER 2021; 17:10312-10321. [PMID: 34664052 PMCID: PMC8612358 DOI: 10.1039/d1sm01176f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Microscopic hydrogels, also referred to as microgels, find broad application in life and materials science. A well-established technique for fabricating uniform microgels is droplet microfluidics. Here, optimal mixing of hydrogel precursor components is crucial to yield homogeneous microgels with respect to their morphology, mechanics, and distribution of functional moieties. However, when processing premixed polymer precursors that are highly reactive, fast or even instantaneous gelation inside fluid reservoirs or the microchannels of the flow cell commonly occurs, leading to an increase of fluid viscosity over time, and thus exacerbating the intrinsic control over fluid flow rates, droplet and microgel uniformity, which are key selling points of microfluidics in material design. To address these challenges, we utilize microflow cells with integrated electrodes, which enable fast addition and mixing of hydrogel precursors on demand by means of emulsion droplet coalescence. Here, two populations of surfactant-stabilized aqueous droplets - the first containing the material basis of the microgel, and the second containing another gel-forming component (e.g., a crosslinker) are formed at two consecutive microchannel junctions and merged via temporary thin-film instability. Our approach provides the ability to process such hydrogel systems that are otherwise challenging to process into uniform droplets and microgels by conventional droplet microfluidics. To demonstrate its versatility, we fabricate microgels with uniform shape and composition using fast hydrogelation via thiol-Michael addition reaction or non-covalent self-assembly. Furthermore, we elucidate the limitations of electrocoalescence of reactive hydrogel precursors by processing sodium alginate, crosslinked by calcium-induced ionic interactions. For this instantaneous type of hydrogelation, electrocoalescence of alginate and calcium ions does not result in the formation of morphologically isotropic microgels. Instead, it enables the creation of anisotropic microgel morphologies with tunable shape, which have previously only been achieved by selective crosslinking of elaborate higher-order emulsions or by aqueous two-phase systems as microgel templates.
Collapse
Affiliation(s)
- Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Talika A Neuendorf
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Lucas Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Ping Liu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Enno Stündel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| |
Collapse
|
28
|
Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings. SENSORS 2021; 21:s21196671. [PMID: 34640991 PMCID: PMC8511991 DOI: 10.3390/s21196671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
The photothermocapillary (PTC) effect is a deformation of the free surface of a thin liquid layer on a solid material that is caused by the dependence of the coefficient of surface tension on temperature. The PTC effect is highly sensitive to variations in the thermal conductivity of solids, and this is the basis for PTC techniques in the non-destructive testing of solid non-porous materials. These techniques analyze thermal conductivity and detect subsurface defects, evaluate the thickness of thin varnish-and-paint coatings (VPC), and detect air-filled voids between coatings and metal substrates. In this study, the PTC effect was excited by a “pumped” Helium-Neon laser, which provided the monochromatic light source that is required to produce optical interference patterns. The light of a small-diameter laser beam was reflected from a liquid surface, which was contoured by liquid capillary action and variations in the surface tension. A typical contour produces an interference pattern of concentric rings with a bright and wide outer ring. The minimal or maximal diameter of this pattern was designated as the PTC response. The PTC technique was evaluated to monitor the thickness of VPCs on thermally conductive solid materials. The same PTC technique has been used to measure the thickness of air-filled delaminations between a metal substrate and a coating.
Collapse
|
29
|
Tönsmann M, Scharfer P, Schabel W. Critical Solutal Marangoni Number Correlation for Short-Scale Convective Instabilities in Drying Poly(vinyl acetate)-Methanol Thin Films. Polymers (Basel) 2021; 13:polym13172955. [PMID: 34502995 PMCID: PMC8433935 DOI: 10.3390/polym13172955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
A new empiric correlation for the critical solutal Marangoni number as function of the Péclet and Schmidt numbers is proposed. It is based on previously published experimental flow field data in drying poly(vinyl acetate)-methanol films with an initial thickness in the range of 20–100 μm and an initial solvent load of 1 to 2 gMeOH/gPVAc, as well as newly derived concentration profile measurements and 1D drying simulations. The analysis accounts for realistic transient material properties and describes the occurrence of short-scale convective Marangoni (in)stabilities during the entire drying process with an accuracy of 9%. In addition, the proposed correlation qualitatively follows trends known from theory. As convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, the correlation may facilitate future process design for either thin films with uniform thickness or deliberate self-assembly.
Collapse
|
30
|
Li J, Zhou X, Tao R, Zheng H, Wang Z. Directional Liquid Transport from the Cold Region to the Hot Region on a Topological Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5059-5065. [PMID: 33860666 DOI: 10.1021/acs.langmuir.1c00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manifested from the "tears of wine" to the "coffee-ring effect", the directional transport of a liquid governed by the Marangoni effect is highly pervasive in our daily life and has brought a great number of applications. Similar to this surface tension gradient-dominated process, the fluid preferentially flows from the hot region to the cold region. In contrast to this perception, in this study, we report that water liquid deposited on a specially designed topological surface can flow from the low-temperature region to the high-temperature region in a spontaneous, long-range, and unidirectional manner. We show that such a behavior is mainly owing to a strong topological effect that outweighs the thermal gradient imposed along the surface. Moreover, the specific temperature range applied on the topological surface for the occurrence of such a unidirectional liquid transport phenomenon is also identified. Our findings would find important insights for developing next-generation cooling devices where a rapid flow from the condensation region to the evaporation/boiling region is preferred.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaofeng Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
| | - Ran Tao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Huanxi Zheng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
31
|
Naji M, Yelekli Kirici E, Javili A, Erdem EY. Describing Droplet Motion on Surface-Textured Ratchet Tracks with an Inverted Double Pendulum Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4810-4816. [PMID: 33852311 DOI: 10.1021/acs.langmuir.0c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe the motion of a droplet on a textured ratchet track using a nonlinear resonator model. A textured ratchet track is composed of a semicircular pillar array that induces a net surface tension local gradient on a droplet placed on it. When a vertical vibration is applied, hysteresis is overcome, and the droplet moves toward the local lower energy barrier; however, due to the repetitive structure of texture, it keeps moving until the end of the track. The droplet motion depends on the amplitude and frequency of the vertical oscillation, and this dependence is nonlinear. Therefore, finding a fully analytic solution to represent this motion is not trivial. Consequently, the droplet motion remains poorly understood. In this study, we elaborate on the utility of a double pendulum as a basis for modeling the droplet motion on surfaces inducing asymmetric force. Similar to the droplet motion, resonators, such as a double pendulum, are simple, yet nonlinear systems. Moreover, an inverted double pendulum motion has key characteristics such as the two-phase motion and the double peak motion, which are also observed in the droplet motion. We use various data-processing methods to highlight the similarity between these two systems both qualitatively and quantitatively. After establishing this comparison, we propose a model that utilizes an inverted double pendulum mounted on a moving cart to successfully simulate the motion of a droplet on a ratchet track. This methodology will lead to the development of an accurate droplet-motion modeling approach, and we believe that it will be useful to understand droplet dynamics more deeply.
Collapse
Affiliation(s)
- Mayssam Naji
- Mechanical Engineering Department, Bilkent University, Ankara 06800, Turkey
| | | | - Ali Javili
- Mechanical Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - E Yegan Erdem
- Mechanical Engineering Department, Bilkent University, Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Ankara 06800, Turkey
| |
Collapse
|
32
|
Transient Three-Dimensional Flow Field Measurements by Means of 3D µPTV in Drying Poly(Vinyl Acetate)-Methanol Thin Films Subject to Short-Scale Marangoni Instabilities. Polymers (Basel) 2021; 13:polym13081223. [PMID: 33920103 PMCID: PMC8068913 DOI: 10.3390/polym13081223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, deteriorating product performance. While theoretic stability analyses are abundantly available, experimental data are scarce. We report transient three-dimensional flow field measurements in thin poly(vinyl acetate)-methanol films, drying under ambient conditions with several films exhibiting short-scale Marangoni convection cells. An initial assessment of the upper limit of thermal and solutal Marangoni numbers reveals that the solutal effect is likely to be the dominant cause for the observed instabilities.
Collapse
|
33
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
34
|
Patel M, Radhakrishnan ANP, Bescher L, Hunter-Sellars E, Schmidt-Hansberg B, Amstad E, Ibsen S, Guldin S. Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture. SOFT MATTER 2021; 17:947-954. [PMID: 33284300 DOI: 10.1039/d0sm01742f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4'-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
Collapse
Affiliation(s)
- Mehzabin Patel
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang K, Ren Y, Zhao M, Jiang T, Hou L, Jiang H. Flexible Microswimmer Manipulation in Multiple Microfluidic Systems Utilizing Thermal Buoyancy-Capillary Convection. Anal Chem 2021; 93:2560-2569. [DOI: 10.1021/acs.analchem.0c04614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kailiang Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Meiying Zhao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
36
|
Kauffman JE, Laskar A, Shklyaev OE, Balazs AC, Sen A. Light-Induced Dynamic Control of Particle Motion in Fluid-Filled Microchannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10022-10032. [PMID: 32787023 DOI: 10.1021/acs.langmuir.0c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of remotely programmable microfluidic systems with controlled fluid flow and particle transport is a significant challenge. Herein, we describe a system that harnesses the intrinsic thermal response of a fluid to spontaneously pump solutions and regulate the transport of immersed microparticles. Irradiating a silver-coated channel with ultraviolet (UV) light generates local convective vortexes, which, in addition to the externally imposed flow, can be used to guide particles along specific trajectories or to arrest their motion. The method provides the distinct advantage that the flow and the associated convective patterns can be dynamically altered by relocating the source of UV light. Moreover, the flow can be initiated and terminated "on-demand" by turning the light on or off.
Collapse
Affiliation(s)
- Joshua E Kauffman
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Abhrajit Laskar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Oleg E Shklyaev
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anna C Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ayusman Sen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
37
|
Caciagli A, Singh R, Joshi D, Adhikari R, Eiser E. Controlled Optofluidic Crystallization of Colloids Tethered at Interfaces. PHYSICAL REVIEW LETTERS 2020; 125:068001. [PMID: 32845661 DOI: 10.1103/physrevlett.125.068001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical binding. We show that the flow-induced force on the colloids can be described as the gradient of a potential. The nonequilibrium steady state due to local heating thus admits an effective equilibrium description. The optofluidic manipulation explored in this work opens novel ways to manipulate and assemble colloidal particles.
Collapse
Affiliation(s)
- Alessio Caciagli
- Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Rajesh Singh
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Darshana Joshi
- Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - R Adhikari
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- The Institute of Mathematical Sciences-HBNI, CIT Campus, Chennai 600113, India
| | - Erika Eiser
- Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
38
|
Hegde O, Kabi P, Basu S. Enhancement of mixing in a viscous, non-volatile droplet using a contact-free vapor-mediated interaction. Phys Chem Chem Phys 2020; 22:14570-14578. [PMID: 32596709 DOI: 10.1039/d0cp01004a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mixing at small fluidic length scales is especially challenging in viscous and non-volatile droplets frequently encountered in bio-chemical assays. In situ methods of mixing, which depend on diffusion or evaporation-driven capillary flow, are typically slow and inefficient, while thermal or electro-capillary methods that are either complicated to implement or may cause sample denaturing. This article demonstrates an enhanced mixing timescale in a sessile droplet of glycerol by simply introducing a droplet of ethanol in its near vicinity. The fast evaporation of ethanol introduces molecules in the proximity of the glycerol droplet, which are preferentially adsorbed (more on the side closer to ethanol) creating a gradient of surface tension driving the Marangoni convection in the droplet. We conclusively show that for the given volume of the droplet, the mixing time reduces by ∼10 hours due to the vapour-mediated Marangoni convection. Simple scaling arguments are used to predict the enhancement of the mixing timescale. Experimental evidence obtained from fluorescence imaging is used to quantify mixing and validate the analytical results. This is the first proof of concept of enhanced mixing in a viscous, sessile droplet using the vapour mediation technique.
Collapse
Affiliation(s)
- Omkar Hegde
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Prasenjit Kabi
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore-560012, India
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
39
|
Shen J, Shafiq M, Ma M, Chen H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1177. [PMID: 32560284 PMCID: PMC7353232 DOI: 10.3390/nano10061177] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The controlled synthesis and surface engineering of inorganic nanomaterials hold great promise for the design of functional nanoparticles for a variety of applications, such as drug delivery, bioimaging, biosensing, and catalysis. However, owing to the inadequate and unstable mass/heat transfer, conventional bulk synthesis methods often result in the poor uniformity of nanoparticles, in terms of microstructure, morphology, and physicochemical properties. Microfluidic technologies with advantageous features, such as precise fluid control and rapid microscale mixing, have gathered the widespread attention of the research community for the fabrication and engineering of nanomaterials, which effectively overcome the aforementioned shortcomings of conventional bench methods. This review summarizes the latest research progress in the microfluidic fabrication of different types of inorganic nanomaterials, including silica, metal, metal oxides, metal organic frameworks, and quantum dots. In addition, the surface modification strategies of nonporous and porous inorganic nanoparticles based on microfluidic method are also introduced. We also provide the readers with an insight on the red blocks and prospects of microfluidic approaches, for designing the next generation of inorganic nanomaterials.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Shafiq
- Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan;
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Bickel T. Effect of surface-active contaminants on radial thermocapillary flows. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:131. [PMID: 31586254 DOI: 10.1140/epje/i2019-11896-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
We study the thermocapillary creeping flow induced by a thermal gradient at the liquid-air interface in the presence of insoluble surfactants (impurities). Convective sweeping of the surfactants causes density inhomogeneities that confers in-plane elastic features to the interface. This mechanism is discussed for radially symmetric temperature fields, in both the deep and shallow water regimes. When mass transport is controlled by convection, it is found that surfactants are depleted from a region whose size is inversely proportional to the interfacial elasticity. Both the concentration and the velocity fields follow power laws at the border of the depleted region. Finally, it is shown that this singular behavior is smeared out when molecular diffusion is accounted for.
Collapse
Affiliation(s)
- T Bickel
- Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine (UMR 5798), 33400, Talence, France.
| |
Collapse
|
41
|
Sarma R, Mondal PK. Marangoni instability in a heated viscoelastic liquid film: Long-wave versus short-wave perturbations. Phys Rev E 2019; 100:013103. [PMID: 31499899 DOI: 10.1103/physreve.100.013103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/07/2022]
Abstract
We investigate the Marangoni instability in a thin layer of viscoelastic fluid, confined between its deformable free surface and a substrate of low thermal conductivity. Following a theoretical analysis, we study the stability of the present system for the case when the fluid layer is subjected to heating from below. Here, we use the Maxwell model to depict the rheology of the viscoelastic fluid. Linear stability analysis of the quiescent base state reveals that, in addition to the conventional short-wave mode, a long-wave instability can also emerge in this system. We demonstrate the appearance of both the long-wave monotonic and oscillatory instabilities in such a system. We study this long-wave mode analytically using the scaling k∼sqrt[Bi] (k is the wave number and Bi is the Biot number), whereas the short-wave mode is examined numerically. The influential role of elasticity of the fluid and the other involved parameters on the stability of the system is aptly discussed, and their ranges are identified within which a particular instability mode gets critical.
Collapse
Affiliation(s)
- Rajkumar Sarma
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Pranab Kumar Mondal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
42
|
Sato S, Sakuta H, Sadakane K, Yoshikawa K. Self-Synchronous Swinging Motion of a Pair of Autonomous Droplets. ACS OMEGA 2019; 4:12766-12770. [PMID: 31460400 PMCID: PMC6682140 DOI: 10.1021/acsomega.9b01533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Synchronized motion between two self-running oil droplets floating on an aqueous phase is reported. We describe the results of our observation on the interference between a pair of centimeter-sized nitrobenzene droplets undergoing back-and-forth motion on a waterway. The two droplets exhibit a swinging type of synchronization when a thin glass capillary is placed at the midpoint of the waterway with a narrow rectangle shape. Furthermore, 2:1 synchronized oscillation of the periodicities of this back-and-forth motion is generated when the capillary is shifted away from the center of the waterway. We discuss the mechanism of the emergence of synchronized swinging motion for the pair of droplets based on a simple mathematical model with nonlinear coupled differential equations.
Collapse
|
43
|
Amador GJ, Ren Z, Tabak AF, Alapan Y, Yasa O, Sitti M. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900472. [PMID: 30993841 DOI: 10.1002/smll.201900472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface-driven flows can be quite significant. By introducing fluid-fluid interfaces along the walls of microfluidic channels, bulk fluid flows driven by temperature gradients are observed. The temperature dependence of the fluid-fluid interfacial tension appears responsible for these flows. In this report, the design concept for a biocompatible microchannel capable of being powered by solar irradiation is provided. Using microscale particle image velocimetry, a bulk flow generated by apparent surface tension gradients along the walls is observed. The direction of flow relative to the imposed temperature gradient agrees with the expected surface tension gradient. The phenomenon's ability to replace bulky peripherals, like traditional syringe pumps, on a diagnostic microfluidic device that captures and detects leukocyte subpopulations within blood is demonstrated. Such microfluidic devices may be implemented for clinical assays at the point of care without the use of electricity.
Collapse
Affiliation(s)
- Guillermo J Amador
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Ahmet F Tabak
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
- Mechatronics Engineering Department, Bahcesehir University, Istanbul, 34353, Turkey
| | - Yunus Alapan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Oncay Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| |
Collapse
|
44
|
Oswald P, Ignés-Mullol J, Dequidt A. Lehmann rotation of cholesteric droplets driven by Marangoni convection. SOFT MATTER 2019; 15:2591-2604. [PMID: 30816902 DOI: 10.1039/c8sm02574f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We show experimentally and theoretically that the Lehmann effect recently observed by Yoshioka and Araoka (Nat. Commun., 2018, 9, 432) in emulsified cholesteric liquid crystal droplets under temperature gradients is due to Marangoni flows rather than to the thermomechanical or chemomechanical couplings often invoked to explain the phenomenon. Using colloidal tracers we visualize convection rolls surrounding stationary cholesteric droplets in vertical temperature gradients, while a shift in the position of internal point defects reveals the corresponding inner convection in nematic droplets thermomigrating in a horizontal temperature gradient. We attribute these phenomena to the temperature dependence of the surface tension at the interface between these partially-miscible liquids, and justify their absence in the usual case of purely lyophobic emulsions. We perform a theoretical analysis to help validate this hypothesis, demonstrating the strong dependence of the precession velocity on the configuration of the cholesteric director field.
Collapse
Affiliation(s)
- P Oswald
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | | | | |
Collapse
|
45
|
Huang M, Childs E, Roffi K, Karim F, Juneau J, Bhatnagar B, Tchessalov S. Investigation of Fogging Behavior in a Lyophilized Drug Product. J Pharm Sci 2019; 108:1101-1109. [DOI: 10.1016/j.xphs.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022]
|
46
|
Spraying dynamics in continuous wave laser printing of conductive inks. Sci Rep 2018; 8:7999. [PMID: 29789662 PMCID: PMC5964245 DOI: 10.1038/s41598-018-26304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
Laser-induced forward transfer (LIFT), though usually associated with pulsed lasers, has been recently shown to be feasible for printing liquid inks with continuous wave (CW) lasers. This is remarkable not only because of the advantages that the new approach presents in terms of cost, but also because of the surprising transfer dynamics associated with it. In this work we carry out a study of CW-LIFT aimed at understanding the new transfer dynamics and its correlation with the printing outcomes. The CW-LIFT of lines of Ag ink at different laser powers and scan speeds revealed a range of conditions that allowed printing conductive lines with good electrical properties. A fast-imaging study showed that liquid ejection corresponds to a spraying behavior completely different from the jetting characteristic of pulsed LIFT. We attribute the spray to pool-boiling in the donor film, in which bursting bubbles are responsible for liquid ejection in the form of projected droplets. The droplet motion is then modeled as the free fall of rigid spheres in a viscous medium, in good agreement with experimental observations. Finally, thermo-capillary flow in the donor film allows understanding the evolution of the morphology of the printed lines with laser power and scan speed.
Collapse
|
47
|
Karbalaei A, Cho HJ. Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. MICROMACHINES 2018; 9:E149. [PMID: 30424083 PMCID: PMC6187570 DOI: 10.3390/mi9040149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Taxis has been reported in many cells and microorganisms, due to their tendency to migrate toward favorable physical situations and avoid damage and death. Thermotaxis and chemotaxis are two of the major types of taxis that naturally occur on a daily basis. Understanding the details of the thermo- and chemotactic behavioral response of cells and microorganisms is necessary to reveal the body function, diagnosing diseases and developing therapeutic treatments. Considering the length-scale and range of effectiveness of these phenomena, advances in microfluidics have facilitated taxis experiments and enhanced the precision of controlling and capturing microscale samples. Microfabrication of fluidic chips could bridge the gap between in vitro and in situ biological assays, specifically in taxis experiments. Numerous efforts have been made to develop, fabricate and implement novel microchips to conduct taxis experiments and increase the accuracy of the results. The concepts originated from thermo- and chemotaxis, inspired novel ideas applicable to microfluidics as well, more specifically, thermocapillarity and chemocapillarity (or solutocapillarity) for the manipulation of single- and multi-phase fluid flows in microscale and fluidic control elements such as valves, pumps, mixers, traps, etc. This paper starts with a brief biological overview of the concept of thermo- and chemotaxis followed by the most recent developments in microchips used for thermo- and chemotaxis experiments. The last section of this review focuses on the microfluidic devices inspired by the concept of thermo- and chemotaxis. Various microfluidic devices that have either been used for, or inspired by thermo- and chemotaxis are reviewed categorically.
Collapse
Affiliation(s)
- Alireza Karbalaei
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Hyoung Jin Cho
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
48
|
Karapetsas G, Chamakos NT, Papathanasiou AG. Thermocapillary Droplet Actuation: Effect of Solid Structure and Wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10838-10850. [PMID: 28937224 DOI: 10.1021/acs.langmuir.7b02762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We examine the thermocapillary-driven flow of a droplet on a nonuniformly heated patterned surface. Using a sharp-interface scheme, capable of efficiently modeling the flow over complex surfaces, we perform 2D and 3D finite element simulations for a wide range of substrate wettabilities, i.e., from hydrophilic to superhydrophobic surfaces. Our results demonstrate that the contact angle hysteresis, due to the presence of the solid structures, is responsible for the appearance of a critical thermal gradient beyond which droplet migration is possible; the latter has been reported by experimental observations. The migration velocity as well as the direction of motion strongly depend on the combined action of the net mechanical force along the contact line and the thermocapillary induced flow at the liquid-air interface. We also show that through proper control and design of the substrate wettability, contact angle hysteresis, and induced flow field it is possible to manipulate the droplet dynamics: in particular, controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size, as well as providing appropriate conditions for enhanced mixing inside the droplet.
Collapse
Affiliation(s)
- George Karapetsas
- School of Chemical Engineering, National Technical University of Athens , Athens 15780, Greece
| | - Nikolaos T Chamakos
- School of Chemical Engineering, National Technical University of Athens , Athens 15780, Greece
| | | |
Collapse
|
49
|
Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. LAB ON A CHIP 2017; 17:1705-1724. [PMID: 28480466 DOI: 10.1039/c7lc00064b] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Untethered micron-scale mobile robots can navigate and non-invasively perform specific tasks inside unprecedented and hard-to-reach inner human body sites and inside enclosed organ-on-a-chip microfluidic devices with live cells. They are aimed to operate robustly and safely in complex physiological environments where they will have a transforming impact in bioengineering and healthcare. Research along this line has already demonstrated significant progress, increasing attention, and high promise over the past several years. The first-generation microrobots, which could deliver therapeutics and other cargo to targeted specific body sites, have just been started to be tested inside small animals toward clinical use. Here, we review frontline advances in design, fabrication, and testing of untethered mobile microrobots for bioengineering applications. We convey the most impactful and recent strategies in actuation, mobility, sensing, and other functional capabilities of mobile microrobots, and discuss their potential advantages and drawbacks to operate inside complex, enclosed and physiologically relevant environments. We lastly draw an outlook to provide directions in the veins of more sophisticated designs and applications, considering biodegradability, immunogenicity, mobility, sensing, and possible medical interventions in complex microenvironments.
Collapse
Affiliation(s)
- Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
50
|
Hoffmann WD, Kertesz V, Srijanto BR, Van Berkel GJ. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis. Anal Chem 2017; 89:3036-3042. [DOI: 10.1021/acs.analchem.6b04733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William D. Hoffmann
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vilmos Kertesz
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bernadeta R. Srijanto
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gary J. Van Berkel
- Mass
Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|