1
|
Khonina SN, Kazanskiy NL, Butt MA. Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review. MICROMACHINES 2024; 15:1321. [PMID: 39597133 PMCID: PMC11596922 DOI: 10.3390/mi15111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Lithography serves as a fundamental process in the realms of microfabrication and nanotechnology, facilitating the transfer of intricate patterns onto a substrate, typically in the form of a wafer or a flat surface. Grayscale lithography (GSL) is highly valued in precision manufacturing and research endeavors because of its unique capacity to create intricate and customizable patterns with varying depths and intensities. Unlike traditional binary lithography, which produces discrete on/off features, GSL offers a spectrum of exposure levels. This enables the production of complex microstructures, diffractive optical elements, 3D micro-optics, and other nanoscale designs with smooth gradients and intricate surface profiles. GSL plays a crucial role in sectors such as microelectronics, micro-optics, MEMS/NEMS manufacturing, and photonics, where precise control over feature depth, shape, and intensity is critical for achieving advanced functionality. Its versatility and capacity to generate tailored structures make GSL an indispensable tool in various cutting-edge applications. This review will delve into several lithographic techniques, with a particular emphasis on masked and maskless GSL methods. As these technologies continue to evolve, the future of 3D micro- and nanostructure manufacturing will undoubtedly assume even greater significance in various applications.
Collapse
|
2
|
Garciamendez-Mijares CE, Aguilar FJ, Hernandez P, Kuang X, Gonzalez M, Ortiz V, Riesgo RA, Ruiz DSR, Rivera VAM, Rodriguez JC, Mestre FL, Castillo PC, Perez A, Cruz LM, Lim KS, Zhang YS. Design considerations for digital light processing bioprinters. APPLIED PHYSICS REVIEWS 2024; 11:031314. [PMID: 39221036 PMCID: PMC11284760 DOI: 10.1063/5.0187558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs.
Collapse
Affiliation(s)
- Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Javier Aguilar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Pavel Hernandez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Mauricio Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Vanessa Ortiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Ricardo A. Riesgo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - David S. Rendon Ruiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Juan Carlos Rodriguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Lugo Mestre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Penelope Ceron Castillo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Abraham Perez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Lourdes Monserrat Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Khoon S. Lim
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Pradhan A, Thimons LA, Lavrik N, Kravchenko II, Jacobs TDB. Tuning Surface Adhesion Using Grayscale Electron-beam Lithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14257-14265. [PMID: 38949567 PMCID: PMC11256748 DOI: 10.1021/acs.langmuir.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Surface texturing of manufactured products tailors their properties, such as friction, adhesion, biocompatibility, or fluid interactions. However, advancements in this area are largely the result of trial-and-effort testing and generally lack a science-guided framework for determining the surface topography that will optimize performance. The present investigation explores grayscale electron-beam lithography as a means to create multiscale surface patterns to control surface performance. Here, we created and characterized a set of surface textures on a silicon wafer; the textures were superpositions of sine waves of varying wavelengths and amplitudes. First, the multiscale topography of the patterned surface was characterized, using profilometry and atomic force microscopy, to understand its fidelity to the designed-in pattern. The results of this analysis demonstrated how grayscale lithography accurately controlled the lateral size of features but was less precise on the vertical height of the surface, and also introduced inherent roughness below the scale of patterning. Second, a micromechanical tester was used to characterize the adhesion of the surfaces with large-scale polished silicon spheres. The results showed that adhesion could be tailored, with significant contribution from all of the designed-in length scales of topography. The strength of adhesion did not correlate with conventional roughness parameters but could be accurately modeled using simple numerical integration. Taken together, this investigation demonstrates the promise and challenges of grayscale e-beam lithography with multiscale patterns as a method for the tailoring of surface performance.
Collapse
Affiliation(s)
- Arushi Pradhan
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208, United States
| | - Luke A. Thimons
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208, United States
| | - Nickolay Lavrik
- Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Ivan I. Kravchenko
- Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Tevis D. B. Jacobs
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208, United States
| |
Collapse
|
4
|
Song D, Kotz-Helmer F, Rapp B, Rühe J. Substrate-Independent Maskless Writing of Functionalized Microstructures Using CHic Chemistry and Digital Light Processing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50288-50295. [PMID: 36288785 PMCID: PMC9650689 DOI: 10.1021/acsami.2c12000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Maskless photolithography based on digital light processing (DLP) is an attractive technique for the rapid, flexible, and cost-effective fabrication of complex structures with arbitrary surface profiles on the microscale. In this work, we introduce a new material system for structure formation by DLP that is based on photoreactive polymers for the local and light-induced C,H-insertion cross-linking (CHic). This approach allows a simple and versatile generation of microstructures with a broad spectrum of geometries and chemistries irrespective of the nature of the chosen substrates and thus allows direct writing of surface functionalization patterns with high spatial control. The CHicable prepolymer is first coated on a substrate to form a solvent-free (glassy) film, and then the DLP system patterns the light with arbitrary shape to induce local cross-linking of the prepolymer. Using this method, the desired structures with complex features with a lateral resolution of several microns and a topography of tens of nanometers could be fabricated within 30 s. Furthermore, the universal applicability of the CHic reaction enables the printing on a wide variety of substrates, which greatly broadens the using scenarios of this printing approach.
Collapse
Affiliation(s)
- Dan Song
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Frederik Kotz-Helmer
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Bastian Rapp
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Hazra S, Zhang C, Wu Q, Asheghi M, Goodson K, Dede EM, Palko J, Narumanchi S. A novel hardmask-to-substrate pattern transfer method for creating 3D, multi-level, hierarchical, high aspect-ratio structures for applications in microfluidics and cooling technologies. Sci Rep 2022; 12:12180. [PMID: 35842450 PMCID: PMC9288478 DOI: 10.1038/s41598-022-16281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
This letter solves a major hurdle that mars photolithography-based fabrication of micro-mesoscale structures in silicon. Conventional photolithography is usually performed on smooth, flat wafer surfaces to lay a 2D design and subsequently etch it to create single-level features. It is, however, unable to process non-flat surfaces or already etched wafers and create more than one level in the structure. In this study, we have described a novel cleanroom-based process flow that allows for easy creation of such multi-level, hierarchical 3D structures in a substrate. This is achieved by introducing an ultra-thin sacrificial silicon dioxide hardmask layer on the substrate which is first 3D patterned via multiple rounds of lithography. This 3D pattern is then scaled vertically by a factor of 200–300 and transferred to the substrate underneath via a single shot deep etching step. The proposed method is also easily characterizable—using features of different topographies and dimensions, the etch rates and selectivities were quantified; this characterization information was later used while fabricating specific target structures. Furthermore, this study comprehensively compares the novel pattern transfer technique to already existing methods of creating multi-level structures, like grayscale lithography and chip stacking. The proposed process was found to be cheaper, faster, and easier to standardize compared to other methods—this made the overall process more reliable and repeatable. We hope it will encourage more research into hybrid structures that hold the key to dramatic performance improvements in several micro-mesoscale devices.
Collapse
Affiliation(s)
- Sougata Hazra
- Department of Mechanical Engineering, Stanford University, Stanford, USA.
| | - Chi Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Qianying Wu
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Mehdi Asheghi
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Kenneth Goodson
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Ercan M Dede
- Electronics Research Department, Toyota Research Institute of North America, Ann Arbor, MI, USA
| | - James Palko
- Department of Mechanical Engineering, University of California-Merced, Merced, CA, USA
| | | |
Collapse
|
6
|
Lamprecht B, Ulm A, Lichtenegger P, Leiner C, Nemitz W, Sommer C. Origination of free-form micro-optical elements using one- and two-photon grayscale laser lithography. APPLIED OPTICS 2022; 61:1863-1875. [PMID: 35297875 DOI: 10.1364/ao.448897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
We discuss and describe the development of an origination process for planar free-form micro-optical elements from a given optical design. The targeted masters serve as origination structures for a roll-to-roll mass fabrication process. Specifically targeted are complex, optically smooth, surface relief structures with variable structure heights in the range of 1-20 µm, with typical lateral sizes of more than 5 µm. The area of the targeted masters is in the range of 1cm2. The main part of the paper is devoted to the description of a self-developed grayscale laser direct-write platform enabling one- and two-photon absorption lithography, also in combination on one and the same sample. In the following, we describe both methods and show that both lead to excellent structural quality of surface micro-relief structures. As a showcase of what the system can do in principle, we designed and fabricated free-form micro-optical elements to project light from an LED as a defined light pattern onto a wall. The proper optical functionality of the fabricated element was shown within a demonstrator setup.
Collapse
|
7
|
Aguiam DE, Santos JD, Silva C, Gentile F, Ferreira C, Garcia IS, Cunha J, Gaspar J. Fabrication and optical characterization of large aperture diffractive lenses using greyscale lithography. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. MICROMACHINES 2021; 13:mi13010049. [PMID: 35056214 PMCID: PMC8778126 DOI: 10.3390/mi13010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023]
Abstract
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
Collapse
|
9
|
Zhu C, Qu C, Kinzel EC. Direct-write microsphere photolithography of hierarchical infrared metasurfaces. APPLIED OPTICS 2021; 60:7122-7130. [PMID: 34612997 DOI: 10.1364/ao.427705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
A direct-write configuration of microsphere photolithography (MPL) is investigated for the patterning of IR metasurfaces at large scales. MPL uses a self-assembled hexagonal close-packed array of microspheres as an optical element to generate photonic nanojets within a photoresist layer. The photonic jets can be positioned within the microsphere-defined unit cells by controlling the illumination's angle of incidence (AOI). This allows the definition of complex antenna elements. A digital micromirror device is used to provide spatial modulation across the microsphere arrays and coordinated with a set of stages providing AOI control. This provides hierarchical patterning at the sub- and super-unit cell levels and is suitable for a range of metasurfaces. The constraints of this approach are analyzed and demonstrated with a polarization-dependent infrared perfect absorber/emitter, which agrees well with modeling.
Collapse
|
10
|
Wang X, Deng C, Huang Y, Zhang F, Zhang R, Zhang X, Wang T. Spherical concave micro-mirror fabricated using gray-tone optical lithography for vertical coupling. OPTICS EXPRESS 2021; 29:13288-13301. [PMID: 33985066 DOI: 10.1364/oe.424832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Based on gray-tone optical lithography technology combined with the overlay alignment method, a spherical concave micro-mirror is fabricated at the end of a rectangular optical waveguide (ROW) for low vertical coupling loss. The optimal structures of the spherical concave micro-mirrors were designed through ray-tracing simulation. The results indicate that the minimal vertical coupling loss is only 1.02 dB for the ROW core size of 20 μm × 20 μm. The surface roughness of the micro-mirror is considered, and it should be less than 106 nm to ensure that the vertical coupling loss is less than 1.5 dB. The radius of the fabricated spherical concave micro-mirror was measured as 263.3 μm and the surface roughness of the micro-mirror is 29.19 nm. The vertical coupling loss induced by the micro-mirror was measured as 1.39 dB. 1-dB tolerances in the direction of x-, y-, and z-axes are calculated to be ± 6.9 μm, ± 6.3 μm, and 46.2 μm, respectively.
Collapse
|
11
|
Kimoto T, Suzuki K, Fukuda T, Emoto A. An on-demand bench-top fabrication process for fluidic chips based on cross-diffusion through photopolymerization. BIOMICROFLUIDICS 2020; 14:044104. [PMID: 32699564 PMCID: PMC7354092 DOI: 10.1063/5.0014956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we propose a novel approach to fabricate fluidic chips. The method utilizes molecular cross-diffusion, induced by photopolymerization under ultraviolet (UV) irradiation in a channel pattern, to form the channel structures. During channel structure formation, the photopolymer layer still contains many uncured molecules. Subsequently, a top substrate is attached to the channel structure under adequate pressure, and the entire chip is homogenously irradiated by UV light. Immediately thereafter, a sufficiently sealed fluidic chip is formed. Using this fabrication process, the channel pattern of a chip can be designed quickly by a computer as binary images, and practical chips can be produced on demand at a benchtop, instead of awaiting production in specialized factories.
Collapse
Affiliation(s)
- Takumi Kimoto
- Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Kou Suzuki
- Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Takashi Fukuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Akira Emoto
- Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima 770-8506, Japan
| |
Collapse
|
12
|
Li Q, Ji MG, Kim J. Grayscale Nanopixel Printing at Sub-10-nanometer Vertical Resolution via Light-Controlled Nanocapillarity. ACS NANO 2020; 14:6058-6066. [PMID: 32336089 DOI: 10.1021/acsnano.0c01791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotextures play increasingly important roles in nanotechnology. Recent studies revealed that their functionalities can be further enhanced by spatially modulating the height of their nanoscale pixels. Realizing the concept, however, is very challenging as it requires "grayscale" printing of the nanopixels in which their height is controlled within a few nanometers as a micrometric function of position. This work demonstrates such a high vertical and lateral resolution grayscale printing of polymeric nanopixels. We realize the height modulation by exploiting the discovery that the capillary rise of certain photopolymers can be optically controlled to stop at a predetermined height with sub-10-nm accuracy. Microscale spatial patterning of the control light directly extends the height modulation into a two-dimensionally patterned, grayscale nanopixel printing. Its utility is verified through readily reconfigurable, maskless printing of grayscale nanopixel arrays in dielectric and metallo-dielectric forms. This work also reveals the highly nonlinear and unstable nature of the polymeric nanocapillary effect, expanding its understanding and application scope.
Collapse
Affiliation(s)
- Qiang Li
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Myung Gi Ji
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jaeyoun Kim
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Li X, Kundaliya D, Tan ZJ, Anc M, Fang NX. Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion. OPTICS EXPRESS 2019; 27:30864-30874. [PMID: 31684329 DOI: 10.1364/oe.27.030864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Pixelated color converters are envisioned to achieve full-color high-resolution display through down conversion of blue/ultraviolet(UV) micro-LEDs. Quantum dots (QDs) are promising narrow-band converters of high quantum efficiency and brightness enabling saturated colors with wide color gamut in displays. Here we demonstrate high-resolution pixelated red and green QDs/thiol-ene photo-polymer converters (single pixel down to 6 µm; converters array of 21 µm pixel, 30 µm pitch and sub 10 µm thickness) patterned through projection lithography. QDs capped with amine surface group are uniformly dispersed in thiol-ene photo-polymer matrix at high concentrations (up to 100 mg/mL), which reduces aggregation and improves conversion efficiency by 0.5-1 times compared to drop-cast QDs. Color cross-talk is also reduced through patterning light blocking walls between converter pixels.
Collapse
|
14
|
Ouyang X, Yin Z, Wu J, Zhou C, Zhang AP. Rapid optical μ-printing of polymer top-lensed microlens array. OPTICS EXPRESS 2019; 27:18376-18382. [PMID: 31252782 DOI: 10.1364/oe.27.018376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Microlenses have wide applications for light beam focusing or shaping in micro-optical systems. However, it remains challenging for conventional microfabrication methods to rapidly fabricate arrays of microlenses with complex profiles like lens-on-lens structures. In this paper, we present the rapid fabrication of polymer microlenses with lens-on-lens structures by using a digital optical μ-printing technology. An improved dynamic optical exposure method is developed to directly and precisely fabricate polymer top-lensed microlenses (TLMLs). Arrays of TLMLs with either elongated focal depth or two separate foci have been numerically investigated and experimentally demonstrated.
Collapse
|
15
|
McDonnell C, Coyne E, O'Connor GM. Grey-scale silicon diffractive optics for selective laser ablation of thin conductive films. APPLIED OPTICS 2018; 57:6966-6970. [PMID: 30129585 DOI: 10.1364/ao.57.006966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Laser beam shaping can play a crucial role in improving many laser processes, especially in selective laser patterning of thin films for display devices and solar cells. Typical Gaussian spatial energy distributions can increase damage to the substrate and lead to large crater edge ridges, which are sub-optimal for typical industrial thin film processes. We report on the design, fabrication, and testing of reflective silicon diffractive optics developed for spatial beam shaping at a wavelength of 355 nm. The application of the elements for laser-selective removal of 20 nm indium tin oxide thin films on glass substrates is demonstrated. The design of the phase profile is first generated using the numerical method of computer-generated holography. The phase profiles are realized on a silicon substrate using a novel two-step fabrication technique consisting of a calibrated focused ion beam and an inductively coupled plasma etch. This results in truly grey-scale, blazed diffractive optics, which were analyzed using white light interferometry and atomic force microscopy. Using the diffractive elements with 355 nm nanosecond pulses shows excellent focused spot profiles with a good reproduction of the intended design with a first-order off-axis diffractive efficiency of approximately 80% at a 45 deg angle of incidence.
Collapse
|
16
|
Xie H. Editorial for the Special Issue on MEMS Mirrors. MICROMACHINES 2018; 9:E99. [PMID: 30424033 PMCID: PMC6187328 DOI: 10.3390/mi9030099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/17/2022]
Abstract
MEMS mirrors can steer, modulate, and switch light, as well as control the wavefront for focusing or phase modulation.[...].
Collapse
Affiliation(s)
- Huikai Xie
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|