1
|
Suominen H, Suominen N, Syrjänen K, Waterboer T, Grénman S, Syrjänen S, Louvanto K. Effect of a Second Pregnancy on the HPV Serology in Mothers Followed Up in the Finnish Family HPV Study. Viruses 2023; 15:2109. [PMID: 37896886 PMCID: PMC10612095 DOI: 10.3390/v15102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The impact of pregnancy on human papillomavirus (HPV) natural antibody levels is not fully understood. We tested the seroprevalence and levels of HPV 6, 11, 16, 18 and 45 antibodies at different time points among 89 women with a second pregnancy and 238 nonpregnant women during their 36-month followup. All participants were unvaccinated for HPV and pregnant at the enrollment of the study. Serum samples were collected from the mothers at baseline and at the 12-month, 24-month, and 36-month followup visits. No statistically significant differences in mean antibody levels were observed in women who developed a second pregnancy compared to their nonpregnant counterparts. Between these two groups, statistically significant differences in serostatus were observed, particularly if the second pregnancy was ongoing at the 24-month timepoint. Accordingly, women with a second pregnancy were more likely to be seronegative for HPV 6, 11, 18, and 45 as compared to the nonpregnant women, the reverse being true for HPV16. In contrast, the women with an ongoing second pregnancy showed a higher prevalence of HPV16 seropositivity at the 36-month followup. These data suggest that a second pregnancy does not seem to have a major impact on the levels of HPV antibodies, but it might influence the serological outcomes.
Collapse
Affiliation(s)
- Helmi Suominen
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Nelli Suominen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, 20014 Turku, Finland; (N.S.); (S.G.)
- Department of Obstetrics and Gynecology, Vaasa Central Hospital, 65130 Vaasa, Finland
| | | | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Seija Grénman
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, 20014 Turku, Finland; (N.S.); (S.G.)
| | - Stina Syrjänen
- Department of Pathology, Turku University Hospital, 20014 Turku, Finland;
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Karolina Louvanto
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33100 Tampere, Finland
| |
Collapse
|
2
|
Mazziotta C, Lanzillotti C, Govoni M, Falzoni S, Tramarin ML, Mazzoni E, Tognon M, Martini F, Rotondo JC. Immunological evidence of an early seroconversion to oncogenic Merkel cell polyomavirus in healthy children and young adults. Immunology 2023; 168:671-683. [PMID: 36321356 DOI: 10.1111/imm.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
Oncogenic Merkel cell polyomavirus (MCPyV) provokes a widespread and asymptomatic infection in humans. Herein, sera from healthy children and young adults (HC, n = 344) aged 0-20 years old were evaluated for anti-MCPyV immunoglobulin G (IgG) and IgM antibodies employing a recently developed immunoassay. Serum MCPyV IgG data from healthy subjects (HS, n = 510) and elderlies (ES, n = 226), aged 21-65/66-100 years old, from our previous studies, were included. The anti-MCPyV IgG and IgM rates in HC sera were 40.7% and 29.7%, respectively. A lower prevalence of anti-MCPyV IgGs was found in HC aged 0-5 years old (13%) compared to 6-10 (52.3%), 11-15 (60.5%) and 16-20 years old (61.6%) cohorts. Age-stratified HCs exhibited similar anti-MCPyV IgM rates (27.9%-32.9%). Serological profiles indicated that anti-MCPyV IgGs and IgMs had low optical densities (ODs) during the first years of life, while IgM ODs appeared to decrease throughout young adulthood. A lower anti-MCPyV IgGs rate was found in HC (40.7%) than HS (61.8%) and ES (63.7%). Upon the 5-years range age-stratification, a lower anti-MCPyV IgGs rate was found in the younger HC cohort aged 0-5 years old compared to the remaining older HC/HS/ES cohorts (52.3%-72%). The younger HC cohort exhibited the lowest anti-MCPyV IgG ODs than the older cohorts. Low anti-MCPyV IgMs rates and ODs were found in the 21-25 (17.5%) and 26-30 (7.7%) years old cohorts. Our data indicate that, upon an early-in-life seroconversion, the seropositivity for oncogenic MCPyV peaks in late childhood/young adulthood and remains at high prevalence and relatively stable throughout life.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, Rheumatology Unit, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elisa Mazzoni
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Herpes Simplex Virus Seroprevalence among Pregnant Finnish Women and Their Spouses-A Six-Year Follow-Up Cohort Study. Microorganisms 2022; 10:microorganisms10081506. [PMID: 35893566 PMCID: PMC9331543 DOI: 10.3390/microorganisms10081506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022] Open
Abstract
The aim was to evaluate the herpes simplex virus (HSV) seroprevalence and seroconversion among 285 pregnant women and their 120 male spouses in Finland during a six-year follow-up (FU) between 1998–2008. We also studied the effect of sexual habits, pregnancy, and other demographic factors on the acquisition of HSV infection. Combined HSV-1 and HSV-2-IgG antibodies were assessed in the first baseline serum samples with an indirect enzyme immunoassay method. The individuals with seronegative or borderline HSV serology at baseline were additionally tested using their latest FU serum sample available. The overall HSV seroprevalence during the FU was 58.9% (168/285) among the women and 53.3% (64/120) among their spouses. The seroconversion rate was 11.4% (15/132) and 12.5% (8/64) among women and their spouses, respectively. Both spouses were HSV seropositive in 39.2% (47/120). To determine the HSV-2 seroprevalence, we also tested all HSV-seropositive participants using HSV-2-specific antigen. HSV-2 seropositivity was detected in 10.9% (44/405) of the participants. The age (p = 0.006) and history of genital warts (p = 0.006) of the women were associated with combined HSV-1 and/or HSV-2 seropositivity, while a younger age was related to HSV seroconversion (p = 0.023). Among the male spouses, HSV seropositivity was associated with the practice of oral sex (p = 0.033). To conclude, women of childbearing age acquire primary HSV infections and the presence of HSV in oral epithelium is common among HSV-seropositive individuals.
Collapse
|
4
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|