1
|
Iracane E, Buscaino A. Transposon load and RNAi loss synergize to drive intraspecies diversity in Cryptococcus. Proc Natl Acad Sci U S A 2024; 121:e2422896121. [PMID: 39680781 DOI: 10.1073/pnas.2422896121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent Canterbury, Kent CT2 7NZ, United Kingdom
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent Canterbury, Kent CT2 7NZ, United Kingdom
| |
Collapse
|
2
|
Chu W, Guo Y, Wu Y, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Enhancing Cellular and Enzymatic Properties Through In Vivo Continuous Evolution. Chembiochem 2024; 25:e202400564. [PMID: 39248206 DOI: 10.1002/cbic.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.
Collapse
Affiliation(s)
- Weiran Chu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Guo
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Huang J, Larmore CJ, Priest SJ, Xu Z, Dietrich FS, Yadav V, Magwene PM, Sun S, Heitman J. Distinct evolutionary trajectories following loss of RNA interference in Cryptococcus neoformans. Proc Natl Acad Sci U S A 2024; 121:e2416656121. [PMID: 39536081 PMCID: PMC11588098 DOI: 10.1073/pnas.2416656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
While increased mutation rates typically have negative consequences in multicellular organisms, hypermutation can be advantageous for microbes adapting to the environment. Previously, we identified two hypermutator Cryptococcus neoformans clinical isolates that rapidly develop drug resistance due to transposition of a retrotransposon, Cnl1. Cnl1-mediated hypermutation is caused by a nonsense mutation in a gene encoding an RNA interference (RNAi) component, ZNF3, combined with a tremendous transposon burden. To elucidate adaptive mechanisms following RNAi loss, two bioinformatic pipelines were developed to identify RNAi loss-of-function (LOF) mutations in a collection of 387 sequenced C. neoformans isolates. Remarkably, several RNAi-loss isolates were identified that are not hypermutators and have not accumulated transposons. To test whether these RNAi LOF mutations can cause hypermutation, the mutations were introduced into a nonhypermutator strain with a high transposon burden, which resulted in a hypermutator phenotype. To further investigate whether RNAi-loss isolates can become hypermutators, in vitro passaging was performed. Although no hypermutators were found in two C. neoformans RNAi-loss strains after short-term passage, hypermutation was observed in a passaged Cryptococcus deneoformans strain with an increased transposon burden. Consistent with a two-step evolution, when an RNAi-loss isolate was crossed with an isolate containing a high Cnl1 burden, F1 hypermutator progeny inheriting a high transposon burden were identified. In addition to Cnl1 transpositions, insertions of a gigantic DNA transposon KDZ1 (~11 kb) contributed to hypermutation in the progeny. Our results suggest that RNAi loss is relatively common (7/387, ~1.8%) and enables distinct evolutionary trajectories: hypermutation following transposon accumulation or survival without hypermutation.
Collapse
Affiliation(s)
- Jun Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Connor J. Larmore
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
4
|
Huang J, Larmore CJ, Priest SJ, Xu Z, Dietrich FS, Yadav V, Magwene PM, Sun S, Heitman J. Distinct evolutionary trajectories following loss of RNA interference in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608186. [PMID: 39185155 PMCID: PMC11343200 DOI: 10.1101/2024.08.15.608186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While increased mutation rates typically have negative consequences in multicellular organisms, hypermutation can be advantageous for microbes adapting to the environment. Previously, we identified two hypermutator Cryptococcus neoformans clinical isolates that rapidly develop drug resistance due to transposition of a retrotransposon, Cnl1. Cnl1-mediated hypermutation is caused by a nonsense mutation in the gene encoding a novel RNAi component, Znf3, combined with a tremendous transposon burden. To elucidate adaptative mechanisms following RNAi loss, two bioinformatic pipelines were developed to identify RNAi loss-of-function mutations in a collection of 387 sequenced C. neoformans isolates. Remarkably, several RNAi-loss isolates were identified that are not hypermutators and have not accumulated transposons. To test if these RNAi loss-of-function mutations can cause hypermutation, the mutations were introduced into a non-hypermutator strain with a high transposon burden, which resulted in a hypermutator phenotype. To further investigate if RNAi-loss isolates can become hypermutators, in vitro passaging was performed. Although no hypermutators were found in two C. neoformans RNAi-loss strains after short-term passage, hypermutation was observed in a passaged C. deneoformans strain with increased transposon burden. Consistent with a two-step evolution, when an RNAi-loss isolate was crossed with an isolate containing a high Cnl1 burden, F1 hypermutator progeny inheriting a high transposon burden were identified. In addition to Cnl1 transpositions, insertions of a novel gigantic DNA transposon KDZ1 (~11 kb), contributed to hypermutation in the progeny. Our results suggest that RNAi loss is relatively common (7/387, ~1.8%) and enables distinct evolutionary trajectories: hypermutation following transposon accumulation or survival without hypermutation.
Collapse
Affiliation(s)
- Jun Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Connor J. Larmore
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Luo Y, Payne M, Kaur S, Octavia S, Lan R. Genomic evidence of two-staged transmission of the early seventh cholera pandemic. Nat Commun 2024; 15:8504. [PMID: 39353924 PMCID: PMC11445481 DOI: 10.1038/s41467-024-52800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The seventh cholera pandemic started in 1961 in Indonesia and spread across the world in three waves in the decades that followed. Here, we utilised genomic evidence to detail the first wave of the seventh pandemic. Genomes of 22 seventh pandemic Vibrio cholerae isolates from 1961 to 1979 were completely sequenced. Together with 152 publicly available genomes from the same period, they fell into seven phylogenetic clusters (CL1-CL7). By multilevel genome typing (MGT), all were assigned to MGT2 ST1 (Wave 1) except three isolates in CL7 which were typed as MGT2 ST2 (Wave 2). The Wave 1 seventh pandemic expanded in two stages, with Stage 1 (CL1-CL5) spread across Asia and Stage 2 (CL6 and CL7) spread to the Middle East and Africa. Three non-synonymous mutations, one each, in three regulatory genes, csrD (global regulator), acfB (chemotaxis), and luxO (quorum sensing) may have critically contributed to its pandemicity. The three MGT2 ST2 isolates in CL7 were the progenitors of Wave 2 and evolved from within Wave 1 with acquisition of a novel IncA/C plasmid. Our findings provide new insight into the evolution and transmission of the early seventh pandemic, which may aid future cholera prevention and control.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Bing J, Guan Z, Zheng T, Ennis CL, Nobile CJ, Chen C, Chu H, Huang G. Rapid evolution of an adaptive multicellular morphology of Candida auris during systemic infection. Nat Commun 2024; 15:2381. [PMID: 38493178 PMCID: PMC10944540 DOI: 10.1038/s41467-024-46786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Candida auris has become a serious threat to public health. The mechanisms of how this fungal pathogen adapts to the mammalian host are poorly understood. Here we report the rapid evolution of an adaptive C. auris multicellular aggregative morphology in the murine host during systemic infection. C. auris aggregative cells accumulate in the brain and exhibit obvious advantages over the single-celled yeast-form cells during systemic infection. Genetic mutations, specifically de novo point mutations in genes associated with cell division or budding processes, underlie the rapid evolution of this aggregative phenotype. Most mutated C. auris genes are associated with the regulation of cell wall integrity, cytokinesis, cytoskeletal properties, and cellular polarization. Moreover, the multicellular aggregates are notably more recalcitrant to the host antimicrobial peptides LL-37 and PACAP relative to the single-celled yeast-form cells. Overall, to survive in the host, C. auris can rapidly evolve a multicellular aggregative morphology via genetic mutations.
Collapse
Affiliation(s)
- Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Zhangyue Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, 95343, USA
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Gervasio JHDB, da Costa Oliveira H, da Costa Martins AG, Pesquero JB, Verona BM, Cerize NNP. How close are we to storing data in DNA? Trends Biotechnol 2024; 42:156-167. [PMID: 37673693 DOI: 10.1016/j.tibtech.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
DNA is an intelligent data storage medium due to its stability and high density. It has been used by nature for over 3.5 billion years. Compared with traditional methods, DNA offers better compression and physical density. DNA can retain information for thousands of years. However, challenges exist in scalability, standardization, metadata gathering, biocybersecurity, and specialized tools. Addressing these challenges is crucial for widespread implementation. Collaboration among experts, as well as keeping the future in mind, is needed to unlock the full potential of DNA data storage, which promises low energy costs, high-density storage, and long-term stability.
Collapse
Affiliation(s)
- Joao Henrique Diniz Brandao Gervasio
- Bionanomanufacturing Center, IPT - Institute for Technological Research, Sao Paulo, SP, Brazil; Department of Bioinformatics, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Statistics, University of Oxford, Oxford, UK.
| | | | | | | | - Bruno Marinaro Verona
- Bionanomanufacturing Center, IPT - Institute for Technological Research, Sao Paulo, SP, Brazil
| | | |
Collapse
|
9
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
10
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
11
|
Horton JS, Taylor TB. Mutation bias and adaptation in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001404. [PMID: 37943288 PMCID: PMC10710837 DOI: 10.1099/mic.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Genetic mutation, which provides the raw material for evolutionary adaptation, is largely a stochastic force. However, there is ample evidence showing that mutations can also exhibit strong biases, with some mutation types and certain genomic positions mutating more often than others. It is becoming increasingly clear that mutational bias can play a role in determining adaptive outcomes in bacteria in both the laboratory and the clinic. As such, understanding the causes and consequences of mutation bias can help microbiologists to anticipate and predict adaptive outcomes. In this review, we provide an overview of the mechanisms and features of the bacterial genome that cause mutational biases to occur. We then describe the environmental triggers that drive these mechanisms to be more potent and outline the adaptive scenarios where mutation bias can synergize with natural selection to define evolutionary outcomes. We conclude by describing how understanding mutagenic genomic features can help microbiologists predict areas sensitive to mutational bias, and finish by outlining future work that will help us achieve more accurate evolutionary forecasts.
Collapse
Affiliation(s)
- James S. Horton
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| |
Collapse
|
12
|
Zeng Z, Gu J, Lin S, Li Q, Wang W, Guo Y. Molecular basis of the phenotypic variants arising from a Pseudoalteromonas lipolytica mutator. Microb Genom 2023; 9:001118. [PMID: 37850970 PMCID: PMC10634453 DOI: 10.1099/mgen.0.001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Bacterial deficiencies in the DNA repair system can produce mutator strains that promote adaptive microevolution. However, the role of mutator strains in marine Pseudoalteromonas, capable of generating various gain-of-function genetic variants within biofilms, remains largely unknown. In this study, inactivation of mutS in Pseudoalteromonas lipolytica conferred an approximately 100-fold increased resistance to various antibiotics, including ciprofloxacin, rifampicin and aminoglycoside. Furthermore, the mutator of P. lipolytica generated variants that displayed enhanced biofilm formation but reduced swimming motility, indicating a high phenotypic diversity within the ΔmutS population. Additionally, we observed a significant production rate of approximately 50 % for the translucent variants, which play important roles in biofilm formation, when the ΔmutS strain was cultured on agar plates or under shaking conditions. Using whole-genome deep-sequencing combined with genetic manipulation, we demonstrated that point mutations in AT00_17115 within the capsular biosynthesis cluster were responsible for the generation of translucent variants in the ΔmutS subpopulation, while mutations in flagellar genes fliI and flgP led to a decrease in swimming motility. Collectively, this study reveals a specific mutator-driven evolution in P. lipolytica, characterized by substantial genetic and phenotypic diversification, thereby offering a reservoir of genetic attributes associated with microbial fitness.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
13
|
Garte S. Targeted Hypermutation as a Survival Strategy: A Theoretical Approach. Acta Biotheor 2023; 71:20. [PMID: 37668864 DOI: 10.1007/s10441-023-09471-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Targeted hypermutation has proven to be a useful survival strategy for bacteria under severe stress and is also used by multicellular organisms in specific instances such as the mammalian immune system. This might appear surprising, given the generally observed deleterious effects of poor replication fidelity/high mutation rate. A previous theoretical model designed to explore the role of replication fidelity in the origin of life was applied to a simulated hypermutation scenario. The results confirmed that the same model is useful for analyzing hypermutation and can predict the effects of the same parameters (survival probability, replication fidelity, mutation effect, and others) on the survival of cellular populations undergoing hypermutation as a result of severe stress.
Collapse
Affiliation(s)
- Seymour Garte
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
| |
Collapse
|
14
|
Huynh TQ, Tran VN, Thai VC, Nguyen HA, Nguyen NTG, Tran MK, Nguyen TPT, Le CA, Ho LTN, Surian NU, Chen S, Nguyen TTH. Genomic alterations involved in fluoroquinolone resistance development in Staphylococcus aureus. PLoS One 2023; 18:e0287973. [PMID: 37494330 PMCID: PMC10370734 DOI: 10.1371/journal.pone.0287973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
AIM Fluoroquinolone (FQ) is a potent antibiotic class. However, resistance to this class emerges quickly which hinders its application. In this study, mechanisms leading to the emergence of multidrug-resistant (MDR) Staphylococcus aureus (S. aureus) strains under FQ exposure were investigated. METHODOLOGY S. aureus ATCC 29213 was serially exposed to ciprofloxacin (CIP), ofloxacin (OFL), or levofloxacin (LEV) at sub-minimum inhibitory concentrations (sub-MICs) for 12 days to obtain S. aureus -1 strains and antibiotic-free cultured for another 10 days to obtain S. aureus-2 strains. The whole genome (WGS) and target sequencing were applied to analyze genomic alterations; and RT-qPCR was used to access the expressions of efflux-related genes, alternative sigma factors, and genes involved in FQ resistance. RESULTS A strong and irreversible increase of MICs was observed in all applied FQs (32 to 128 times) in all S. aureus-1 and remained 16 to 32 times in all S. aureus-2. WGS indicated 10 noticeable mutations occurring in all FQ-exposed S. aureus including 2 insdel mutations in SACOL0573 and rimI; a synonymous mutation in hslO; and 7 missense mutations located in an untranslated region. GrlA, was found mutated (R570H) in all S. aureus-1 and -2. Genes encoding for efflux pumps and their regulator (norA, norB, norC, and mgrA); alternative sigma factors (sigB and sigS); acetyltransferase (rimI); methicillin resistance (fmtB); and hypothetical protein BJI72_0645 were overexpressed in FQ-exposed strains. CONCLUSION The emergence of MDR S. aureus was associated with the mutations in the FQ-target sequences and the overexpression of efflux pump systems and their regulators.
Collapse
Affiliation(s)
- Thuc Quyen Huynh
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Research Center for Infectious Diseases, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van Nhi Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van Chi Thai
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang An Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Thuy Giang Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Khang Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thi Phuong Truc Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Cat Anh Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Le Thanh Ngan Ho
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Swaine Chen
- Genome Institute of Singapore, Singapore, Singapore
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Research Center for Infectious Diseases, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Fernández-Caso B, Miqueleiz A, Alarcón T. Whole Genome Sequencing for Studying Helicobacter pylori Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1135. [PMID: 37508231 PMCID: PMC10376898 DOI: 10.3390/antibiotics12071135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance (AMR) is an alarming concern worldwide and Helicobacter pylori, one of the most prevalent bacteria, is not an exception. With antibiotics being its primary therapy, increasing resistance leads to a higher rate of treatment failure. Understanding the genomic mechanisms of resistance to clarithromycin, levofloxacin, metronidazole, amoxicillin, tetracycline, and rifampicin through next-generation sequencing-based molecular tools, such as whole genome sequencing (WGS), can be of great value, not only to direct a patient's treatment, but also to establish and optimize treatment guidelines according to the local epidemiology and to avoid the use of inappropriate antibiotics. WGS approaches allow us to gain insight into the genomic determinants involved in AMR. To this end, different pipelines and platforms are continuously being developed. In this study, we take a more detailed view of the use and progression of WGS for in-depth study of H. pylori's AMR.
Collapse
Affiliation(s)
| | - Ana Miqueleiz
- Department of Microbiology, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Teresa Alarcón
- Department of Microbiology, Hospital Universitario La Princesa, 28006 Madrid, Spain
| |
Collapse
|
16
|
Savitskaya VY, Monakhova MV, Iakushkina IV, Borovikova II, Kubareva EA. Neisseria gonorrhoeae: DNA Repair Systems and Their Role in Pathogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:965-982. [PMID: 36180987 DOI: 10.1134/s0006297922090097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Neisseria gonorrhoeae (a Gram-negative diplococcus) is a human pathogen and causative agent of gonorrhea, a sexually transmitted infection. The bacterium uses various approaches for adapting to environmental conditions and multiplying efficiently in the human body, such as regulation of expression of gene expression of surface proteins and lipooligosaccharides (e.g., expression of various forms of pilin). The systems of DNA repair play an important role in the bacterium ability to survive in the host body. This review describes DNA repair systems of N. gonorrhoeae and their role in the pathogenicity of this bacterium. A special attention is paid to the mismatch repair system (MMR) and functioning of the MutS and MutL proteins, as well as to the role of these proteins in regulation of the pilin antigenic variation of the N. gonorrhoeae pathogen.
Collapse
Affiliation(s)
| | - Mayya V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Iuliia V Iakushkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina I Borovikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
17
|
Olovnikov AM. Eco-crossover, or environmentally regulated crossing-over, and natural selection are two irreplaceable drivers of adaptive evolution: Eco-crossover hypothesis. Biosystems 2022; 218:104706. [DOI: 10.1016/j.biosystems.2022.104706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
|