1
|
García-Anaya MC, Sepúlveda DR, Acosta-Muñiz CH. Contributing factors to the migration of antimicrobials in active packaging films. Food Res Int 2025; 200:115514. [PMID: 39779145 DOI: 10.1016/j.foodres.2024.115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Antimicrobial active packaging plays a key role in food quality and safety. The addition of antimicrobial agents in packaging production aims to release these agents from film to food, thereby preventing, reducing, or eliminating the contamination caused by pathogens or food spoilage microorganisms. This review provides an overview of the antimicrobial active packaging and gives an insight of the antimicrobials that have been used to manufacture antimicrobial active films. Additionally, it discusses the findings of studies that have developed active films, identifying the related factors with the release of antimicrobials from film to packaged food, as well as their possible mechanisms of release. Four interrelated factors that affect the release of antimicrobial agents have been identified. The first one addresses the film properties, the second one corresponds to food characteristics, the third one environmental condition, and the last one the attributes of the antimicrobial agent itself. There have been reported two mechanisms for explaining the antimicrobial release. The first mechanism addresses the water as the main regulator, and the second implies a natural diffusion of antimicrobials. The identification of related factors with the release can contribute to optimizing new methods in the design of antimicrobial active packaging.
Collapse
Affiliation(s)
- Mayra C García-Anaya
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México
| | - David R Sepúlveda
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, A. C. Departamento de Microbiología y Biología Molecular. Av, Río Conchos S/N Parque Industrial. Z.C. 31570. Cd. Cuauhtémoc, Chihuahua, México.
| |
Collapse
|
2
|
Mrvová M, Medo J, Lakatošová J, Barboráková Z, Golian M, Mašková Z, Tančinová D. Vapor-Phase Essential Oils as Antifungal Agents against Penicillium olsonii Causing Postharvest Cherry Tomato Rot. Foods 2024; 13:3202. [PMID: 39410236 PMCID: PMC11475856 DOI: 10.3390/foods13193202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Recent reports of P. olsonii causing postharvest rot of cherry tomatoes emphasize the need for effective strategies to prolong fruit shelf life. This study is the first to explore the use of essential oils (EOs), recognized for their antimicrobial properties, as a potential method to prevent postharvest losses from P. olsonii. Antifungal activity was tested for ten EOs at a concentration of 625 μL/L using the vapor diffusion method. Thyme, wild thyme, savory, oregano, and marjoram completely inhibited fungal growth over 14 days. Thyme EO, at a minimum inhibitory concentration (MIC) of 250 μL/L, fully inhibited all strains, while oregano, wild thyme, and savory were effective at 500 μL/L. Marjoram EO showed weaker activity. The lowest IC90 values, ranging from 35.72 to 162.72 μL/L, were estimated for thyme and oregano. In cherry tomatoes, oregano EO completely halted P. olsonii growth at 250 μL/L; thyme was effective for seven days; wild thyme and savory for two days. Thyme EO prevented P. olsonii spore germination at 500 μL/L for seven days, though germination occurred at half that concentration. The IC90 values varied between 256.2 and 138.7 μL/L depending on the strain. The vapor phase of EOs at 125 μL/L influenced the sensory characteristics of cherry tomatoes; however, for thyme and oregano, this effect was not negative due to their culinary association with tomato flavor. The selected EOs could be used to control and prevent postharvest fruit losses, but further research is needed to optimize their application.
Collapse
Affiliation(s)
- Monika Mrvová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (J.M.); (Z.B.); (Z.M.)
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (J.M.); (Z.B.); (Z.M.)
| | - Jana Lakatošová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Zuzana Barboráková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (J.M.); (Z.B.); (Z.M.)
| | - Marcel Golian
- Institute of Horticulture, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Zuzana Mašková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (J.M.); (Z.B.); (Z.M.)
| | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (J.M.); (Z.B.); (Z.M.)
| |
Collapse
|
3
|
Kačániová M, Vukovic NL, Čmiková N, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Said-Al Ahl HAH, Hikal WM, Vukic MD. Biological Activity and Phytochemical Characteristics of Star Anise ( Illicium verum) Essential Oil and Its Anti- Salmonella Activity on Sous Vide Pumpkin Model. Foods 2024; 13:1505. [PMID: 38790803 PMCID: PMC11121629 DOI: 10.3390/foods13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Illicium verum, commonly known as star anise, represents one of the notable botanical species and is recognized for its rich reservoir of diverse bioactive compounds. Beyond its culinary application as a spice, this plant has been extensively utilized in traditional medicine. Given the contemporary emphasis on incorporating natural resources into food production, particularly essential oils, to enhance sensory attributes and extend shelf life, our study seeks to elucidate the chemical composition and evaluate the antibacterial (in vitro, in situ) and insecticidal properties of Illicium verum essential oil (IVEO). Also, microbiological analyses of pumpkin sous vide treated with IVEO after inoculation of Salmonella enterica were evaluated after 1 and 7 days of study. GC/MS analysis revealed a significantly high amount of (E)-anethole (88.4%) in the investigated EO. The disc diffusion method shows that the antibacterial activity of the IVEO ranged from 5.33 (Streptococcus constellatus) to 10.33 mm (Citrobacter freundii). The lowest minimal inhibition concentration was found against E. coli and the minimum biofilm inhibition concertation was found against S. enterica. In the vapor phase, the best antimicrobial activity was found against E. coli in the pears model and against S. sonei in the beetroot model. The application of the sous vide method in combination with IVEO application decreased the number of microbial counts and eliminated the growth of S. enterica. The most isolated microbiota identified from the sous vide pumpkin were Bacillus amyloliquefaciens, B. cereus, B. licheniformis, and Ralstonia picketii. Modifications to the protein composition of biofilm-forming bacteria S. enterica were suggested by the MALDI TOF MS instigations. The IVEO showed insecticidal potential against Harmonia axyridis. Thanks to the properties of IVEO, our results suggest it can be used in the food industry as a natural supplement to extend the shelf life of foods and as a natural insecticide.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Joel Horacio Elizondo-Luévano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St. Dokki, Giza 12622, Egypt;
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
4
|
Rindhe S, Khan A, Priyadarshi R, Chatli M, Wagh R, Kumbhar V, Wankar A, Rhim JW. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024; 23:e13333. [PMID: 38571439 DOI: 10.1111/1541-4337.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.
Collapse
Affiliation(s)
- Sandeep Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Manish Chatli
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Goats (CIRG), Makhdoom, India
| | - Rajesh Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana, India
| | - Vishal Kumbhar
- Department of Animal Husbandry, State Government, Maharashtra, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Al-Dolaimy F, Saraswat SK, Hussein BA, Hussein UAR, Saeed SM, Kareem AT, Abdulwahid AS, Mizal TL, Muzammil K, Alawadi AH, Alsalamy A, Hussin F, Kzarb MH. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024; 179:103595. [PMID: 38341939 DOI: 10.1016/j.micron.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.
Collapse
Affiliation(s)
| | | | - Baydaa Abed Hussein
- Department of Medical Engineering, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq.
| | | | | | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | | | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA.
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Najaf, Iraq.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq.
| | - Mazin Hadi Kzarb
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, 51001 Hillah, Babil, Iraq.
| |
Collapse
|
6
|
Santos MI, Grácio M, Silva MC, Pedroso L, Lima A. One Health Perspectives on Food Safety in Minimally Processed Vegetables and Fruits: From Farm to Fork. Microorganisms 2023; 11:2990. [PMID: 38138132 PMCID: PMC10745503 DOI: 10.3390/microorganisms11122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
While food markets and food production chains are experiencing exponential growth, global attention to food safety is steadily increasing. This is particularly crucial for ready-to-eat products such as fresh-cut salads and fruits, as these items are consumed raw without prior heat treatment, making the presence of pathogenic microorganisms quite frequent. Moreover, many studies on foodborne illnesses associated with these foods often overlook the transmission links from the initial contamination source. The prevention and control of the dissemination of foodborne pathogens should be approached holistically, involving agricultural production, processing, transport, food production, and extending to final consumption, all while adopting a One Health perspective. In this context, our objective is to compile available information on the challenges related to microbiological contamination in minimally handled fruits and vegetables. This includes major reported outbreaks, specific bacterial strains, and associated statistics throughout the production chain. We address the sources of contamination at each stage, along with issues related to food manipulation and disinfection. Additionally, we provide potential solutions to promote a healthier approach to fresh-cut fruits and vegetables. This information will be valuable for both researchers and food producers, particularly those focused on ensuring food safety and quality.
Collapse
Affiliation(s)
- Maria Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
- CECAV—Centre of Animal and Veterinary Science, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Madalena Grácio
- Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal;
| | - Mariana Camoesas Silva
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
- CECAV—Centre of Animal and Veterinary Science, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
- CECAV—Centre of Animal and Veterinary Science, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
7
|
Di Liberto D, Iacuzzi N, Pratelli G, Porrello A, Maggio A, La Bella S, De Blasio A, Notaro A, D’Anneo A, Emanuele S, Affranchi F, Giuliano M, Lauricella M, Carlisi D. Cytotoxic Effect Induced by Sicilian Oregano Essential Oil in Human Breast Cancer Cells. Cells 2023; 12:2733. [PMID: 38067161 PMCID: PMC10706043 DOI: 10.3390/cells12232733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Origanum vulgare L. is an aromatic plant that exerts antibacterial, antioxidant, anti-inflammatory, and antitumor activities, mainly due to its essential oil (EO) content. In this study, we investigated the possible mechanism underlying the in vitro antitumor activity of EO extracted by hydrodistillation of dried flowers and leaves of Origanum vulgare L. grown in Sicily (Italy) in MDA-MB-231 and MCF-7 breast cancer cell lines. Gas chromatography-mass spectrometry analysis of Oregano essential oil (OEO) composition highlighted the presence of twenty-six major phytocompounds, such as p-cymene, γ-terpinene, and thymoquinone p-acetanisole. OEO possesses strong antioxidant capacity, as demonstrated by the DPPH test. Our studies provided evidence that OEO reduces the viability of both MCF-7 and MDA-MB-231 cells. The cytotoxic effect of OEO on breast cancer cells was partially counteracted by the addition of z-VAD-fmk, a general caspase inhibitor. Caspases and mitochondrial dysfunction appeared to be involved in the OEO-induced death mechanism. Western blotting analysis showed that OEO-induced activation of pro-caspases-9 and -3 and fragmentation of PARP decreased the levels of Bcl-2 and Bcl-xL while increasing those of Bax and VDAC. In addition, fluorescence microscopy and cytofluorimetric analysis showed that OEO induces a loss of mitochondrial membrane potential in both cell lines. Furthermore, we tested the effects of p-cymene, γ-terpinene, thymoquinone, and p-acetanisole, which are the main components of OEO. Our findings highlighted that the effect of OEO on MDA-MB-231 and MCF-7 cells appears to be mainly due to the combination of different constituents of OEO, providing evidence of the potential use of OEO for breast cancer treatment.
Collapse
Affiliation(s)
- Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Nicolò Iacuzzi
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (N.I.); (S.L.B.)
| | - Giovanni Pratelli
- Department of Physics and Chemistry (DiFC)-Emilio Segrè, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy;
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (A.M.)
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (A.M.)
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (N.I.); (S.L.B.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.B.); (A.N.); (A.D.); (F.A.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (S.E.)
| |
Collapse
|
8
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Li W, Li W, Wan Y, Zhou T, Wang L. Thymol-loaded Zein-pectin composite nanoparticles as stabilizer to fabricate Pickering emulsion of star anise essential oil for improved stability and antimicrobial activity. J Food Sci 2023; 88:3807-3819. [PMID: 37530639 DOI: 10.1111/1750-3841.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023]
Abstract
The aim of the present study was to prepare a new antimicrobial Pickering emulsion of which the star anise essential oil was added to the oil phase, and to investigate the effect of stabilization by bio-based active nanoparticles consisting of zein and pectin loaded with thymol. First, the thymol-loaded zein/pectin composite nanoparticles (ZTNPs) were fabricated as uniformly distributed spherical nanoparticles with an average diameter of 200 nm through antisolvent precipitation. Second, the effects of nanoparticles' concentration, oil phase ratio, and storage time on the stability of emulsions were explored according to particle size potential, interfacial tension, rheology, and micromorphology. Finally, the antibacterial results showed that Pickering emulsion inhibited Escherichia coli and Staphylococcus aureus compared to the control group by nearly 7 log colony-forming unit/g at 36 h, which was twice as much as the inhibition by thymol or star anise essential oils and ZTNPs. Therefore, the proposed Pickering emulsion with star anise essential oil could be used as a green and safe plant-derived antimicrobial agent in the food industry.
Collapse
Affiliation(s)
- Wei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Wenqing Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Yulian Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
10
|
Park J, Nabawy A, Doungchawee J, Mahida N, Foster K, Jantarat T, Jiang M, Chattopadhyay AN, Hassan MA, Agrohia DK, Makabenta JM, Vachet RW, Rotello VM. Synergistic Treatment of Multidrug-Resistant Bacterial Biofilms Using Silver Nanoclusters Incorporated into Biodegradable Nanoemulsions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37205-37213. [PMID: 37523688 DOI: 10.1021/acsami.3c06242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Multidrug resistance (MDR) in bacteria is a critical global health challenge that is exacerbated by the ability of bacteria to form biofilms. We report a combination therapy for biofilm infections that integrates silver nanoclusters (AgNCs) into polymeric biodegradable nanoemulsions (BNEs) incorporating eugenol. These Ag-BNEs demonstrated synergistic antimicrobial activity between the AgNCs and the BNEs. Microscopy studies demonstrated that Ag-BNEs penetrated the dense biofilm matrix and effectively disrupted the bacterial membrane. The Ag-BNE vehicle also resulted in more effective silver delivery into the biofilm than AgNCs alone. This combinacional system featured disruptionof biofilms by BNEs and enhanced delivery of AgNCs for synergy to provide highly efficient killing of MDR biofilms.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Neel Mahida
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Kiernan Foster
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Dheeraj K Agrohia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Teneva D, Denev P. Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives. Microorganisms 2023; 11:1896. [PMID: 37630457 PMCID: PMC10458850 DOI: 10.3390/microorganisms11081896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Ensuring the microbiological safety of food products is a pressing global concern. With the increasing resistance of microorganisms to chemical agents and the declining effectiveness of synthetic preservatives, there is a growing need for alternative sources of natural, bioactive compounds with antimicrobial activity. The incorporation of probiotics and plant extracts into food formulations not only enriches foodstuffs with microorganisms and phytochemicals with biologically active compounds, but also provides a means for product preservation. The current review considers the importance of the process of biological preservation for providing safe foods with high biological value, natural origin and composition, and prolonged shelf life, thereby improving consumers' quality of life. To accomplish this goal, this review presents a series of examples showcasing natural preservatives, including beneficial bacteria, yeasts, and their metabolites, as well as phenolic compounds, terpenoids, and alkaloids from plant extracts. By summarizing numerous studies, identifying research challenges and regulatory barriers for their wider use, and outlining future directions for investigation, this article makes an original contribution to the field of biopreservation.
Collapse
Affiliation(s)
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
12
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
13
|
García-Anaya MC, Sepúlveda DR, Zamudio-Flores PB, Acosta-Muñiz CH. Bacteriophages as additives in edible films and coatings. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Christaki S, Bouloumpasi E, Lalidou E, Chatzopoulou P, Irakli M. Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules 2022; 27:9058. [PMID: 36558189 PMCID: PMC9783801 DOI: 10.3390/molecules27249058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
By-products of essential oils (EOs) in the industry represent an exploitable material for natural and safe antioxidant production. One representative group of such by-products is distilled solid residues, whose composition is properly modulated by the distillation method applied for the recovery of EOs. Recently, in terms of Green Chemistry principles, conventional extraction and distillation processes are considered outdated and tend to be replaced by more environmentally friendly ones. In the present study, microwave-assisted hydro-distillation (MAHD) was employed as a novel and green method for the recovery of EOs from three aromatic plants (rosemary, Greek sage and spearmint). The method was compared to conventional ones, hydro-distillation (HD) and steam-distillation (SD), in terms of phytochemical composition of distilled solid residues, which was estimated by spectrophotometric and chromatographic methods. Total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (ABTS, DPPH and FRAP) results highlighted the distilled solid residues as good sources of antioxidants. Moreover, higher antioxidant activity was achieved for MAHD extracts of solid residues in comparison to HD and SD extracts. A metabolomics approach was carried out on the methanolic extracts of solid residues obtained by different distillation methods using LC-MS analysis followed by multivariate data analysis. A total of 29 specialized metabolites were detected, and 26 of them were identified and quantified, presenting a similar phenolic profile among different treatments, whereas differences were observed among different species. Rosmarinic acid was the most abundant phenolic compound in all extracts, being higher in MAHD extracts. In rosemary and Greek sage extracts, carnosol and carnosic acid were quantified in significant amounts, while trimers and tetramers of caffeic acid (salvianolic acids isomers) were identified and quantified in spearmint extracts, being higher in MAHD extracts. The obtained results pointed out that MAHD extracts of distilled solid by-products could be a good source of bioactives with potential application in the food, pharmaceutical and cosmetic industries, contributing to the circular economy.
Collapse
Affiliation(s)
- Stamatia Christaki
- Hellenic Agricultural Organization—Dimitra, Plant Breeding and Genetic Resources Institute, 57001 Thessaloniki, Greece
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Elisavet Bouloumpasi
- Hellenic Agricultural Organization—Dimitra, Plant Breeding and Genetic Resources Institute, 57001 Thessaloniki, Greece
| | - Eleni Lalidou
- Hellenic Agricultural Organization—Dimitra, Plant Breeding and Genetic Resources Institute, 57001 Thessaloniki, Greece
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization—Dimitra, Plant Breeding and Genetic Resources Institute, 57001 Thessaloniki, Greece
| | - Maria Irakli
- Hellenic Agricultural Organization—Dimitra, Plant Breeding and Genetic Resources Institute, 57001 Thessaloniki, Greece
| |
Collapse
|
15
|
Cao Z, Zhou D, Ge X, Luo Y, Su J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J Food Biochem 2022; 46:e14513. [PMID: 36385402 DOI: 10.1111/jfbc.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Fruits are highly susceptible to postharvest losses induced majorly by postharvest diseases. Peach are favored by consumers because of their high nutritional value and delicious taste. However, it was easy to be affected by fungal infection. The current effective method to control postharvest diseases of fruits is to use chemical fungicides, but these chemicals may cause adverse effects on human health and the residual was potentially harmful to nature and the environment. So, it is especially important to develop safe, non-toxic, and highly effective strategies for the preservation of the fruits. Essential oil, as a class of the natural bacterial inhibitor, has been proven to exhibit strong antibacterial activity, low toxicity, environmental friendliness, and induce fruit resistance to microorganism, which could be recognized as one of the alternatives to chemical fungicides. This paper reviews the research progress of essential oils (Eos) in the storage and preservation of fruits, especially the application in peach, as well as the application in active packaging such as edible coatings, microcapsules, and electrospinning loading. Electrospinning can prepare a variety of nanofibers from different viscoelastic polymer solutions, and has broad application prospects. The paper especially summarizes the application of the new Eos technology on peach. The essential oil with thymol, eugenol, and carvacrol as the main components has a better inhibitory effect on the postharvest disease of peaches, and can be further applied. PRACTICAL APPLICATIONS: As an environmentally friendly natural antibacterial agent, essential oil can be used as a substitute for chemical preservatives to keep fruits fresh. This paper summarizes the different preservation methods of essential oils for fruits, and especially summarizes the different preservation methods of essential oils for peaches after harvesting, as well as their inhibitory effects on pathogenic fungi. It could provide ideas for preservation of fruits and vegetables by essential oils.
Collapse
Affiliation(s)
- Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yali Luo
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Pickering Emulsions as Vehicles for Bioactive Compounds from Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227872. [PMID: 36431978 PMCID: PMC9693335 DOI: 10.3390/molecules27227872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Pickering emulsions are emulsion systems stabilized by solid particles at the interface of oil and water. Pickering emulsions are considered to be natural, biodegradable, and safe, so their applications in various fields-such as food, cosmetics, biomedicine, etc.-are very promising, including as a vehicle for essential oils (EOs). These oils contain volatile and aromatic compounds and have excellent properties, such as antifungal, antibacterial, antiviral, and antioxidant activities. Despite their superior properties, EOs are prone to evaporation, decompose when exposed to light and oxygen, and have low solubility, limiting their industrial applications. Several studies have shown that EOs in Pickering emulsions displays less sensitivity to evaporation and oxidation, stronger antibacterial activity, and increased solubility. In brief, the application of Pickering emulsions for EOs is interesting to explore. This review discusses recent progress in the application of Pickering emulsions, particularly as EO carriers, drug carriers, antioxidant and antimicrobial carriers, and in active packaging.
Collapse
|
17
|
Hakalová E, Čechová J, Tekielska DA, Eichmeier A, Pothier JF. Combined effect of thyme and clove phenolic compounds on Xanthomonas campestris pv. campestris and biocontrol of black rot disease on cabbage seeds. Front Microbiol 2022; 13:1007988. [PMID: 36386705 PMCID: PMC9650141 DOI: 10.3389/fmicb.2022.1007988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
The seed-borne bacterium Xanthomonas campestris pv. campestris (Xcc) as a causal organism of black rot disease remains the most serious bacterial problem of agricultural production of cruciferous plants worldwide. The eradication of a primary inoculum originating in seeds is available, but no treatment is totally effective. With the threat of developing chemical resistance and increasing pressure for sustainable disease management, biocontrol methods represent one of the main strategies currently applied in agriculture. Natural antimicrobials, including essential oils, are promising tools in disease management with low risks of environmental pollution and impact on human health. Thyme and clove essential oils were demonstrated to be highly effective in Xanthomonas studies in vitro; therefore, their application in black rot control was evaluated in this study. From five phenolic substances originating from thyme and clove essential oils (carvacrol, eugenol, linalool, p-cymene and thymol), the most promising in vitro results were observed with carvacrol, for which 0.0195% led to the death of all Xcc cells in 30 min. Moreover, a synergistic antibacterial effect of carvacrol and thymol solutions decreased the minimal inhibition concentration to 0.0049% and 0.0195% for carvacrol and thymol, respectively. Using the quadruple bactericidal values, the complete elimination of Xcc from the surface of infested cabbage seeds was obtained for both carvacrol and thymol solutions and their combined mixture at 2 MIC value. The elimination of bacterial infection from germinated cabbage plants was observed for both plate counting and quantitative real-time PCR methods. We also evaluated the effect of the application of phenolic treatment on the seed germination and germinated plants. Our results suggest a high potential of the application of carvacrol and thymol in vegetable seed production, specifically for cabbage, thus representing a suitable alternative to cupric derivatives.
Collapse
Affiliation(s)
- Eliška Hakalová
- Mendeleum – Institute of Genetics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Eliška Hakalová,
| | - Jana Čechová
- Mendeleum – Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | | | - Ales Eichmeier
- Mendeleum – Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
18
|
Salanță LC, Cropotova J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. PLANTS 2022; 11:plants11192488. [PMID: 36235353 PMCID: PMC9570595 DOI: 10.3390/plants11192488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Consumer awareness and demands for quality eco-friendly food products have made scientists determined to concentrate their attention on sustainable advancements in the utilization of bioactive compounds for increasing safety and food quality. Essential oils (EOs) are extracted from plants and exhibit antimicrobial (antibacterial and antifungal) activity; thus, they are used in food products to prolong the shelf-life of foods by limiting the growth or survival of microorganisms. In vitro studies have shown that EOs are effective against foodborne bacteria, such as Escherichia coli, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. The growing interest in essential oils and their constituents as alternatives to synthetic preservatives has been extensively exploited in recent years, along with techniques to facilitate the implementation of their application in the food industry. This paper’s aim is to evaluate the current knowledge on the applicability of EOs in food preservation, and how this method generally affects technological properties and consumers’ perceptions. Moreover, essential aspects concerning the limitation of the available alternatives are highlighted, followed by a presentation of the most promising trends to streamline the EOs’ usability. Incorporating EOs in packaging materials is the next step for green and sustainable foodstuff production and a biodegradable method for food preservation.
Collapse
Affiliation(s)
- Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
- Correspondence:
| |
Collapse
|