1
|
Lourembam J, Haobam B, Singh KB, Verma S, Rajan JP. The molecular insights of cyanobacterial bioremediations of heavy metals: the current and the future challenges. Front Microbiol 2024; 15:1450992. [PMID: 39464393 PMCID: PMC11502398 DOI: 10.3389/fmicb.2024.1450992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, overexplorations of ore and the growth of industries are the prime factors in the release of heavy metals in environments. As a result, the food crops and water bodies are contaminated with metals which may have several adverse effects on the health of humans and other living species. These metals and metalloids, such as Zn, Cu, Mn, Ni, Cr, Pb, Cd, and As, upset the biochemical pathways of metabolite synthesis in living organisms and contribute to the etiology of different diseases. Microorganisms include bacteria, archaea, viruses, and many unicellular eukaryotes, which can span three domains of life-Archaea, Bacteria, and Eukarya-and some microorganisms, such as cyanobacteria, have shown high efficiency in the biosorption rate of heavy metals. Cyanobacteria are suitable for bioremediation as they can grow in adverse environments, have a less negative impact on the surrounding environment, and are relatively cheaper to manage. The structure of cyanobacteria has shown no extensive internal-bound membranes, so it can directly employ the physiological mechanisms to uptake heavy metals from contamination sites. Such biochemical makeups are suitable for managing and bioremediating heavy metal concentrations in polluted environments. This review aims to explore the potential of cyanobacteria in the bioremediation of heavy metals and metalloids in water bodies. Additionally, we have identified the prospects for enhancing bioremediation effectiveness.
Collapse
Affiliation(s)
- Jinita Lourembam
- Department of Zoology, School of Life Sciences, Manipur University, Canchipur, India
| | - Banaraj Haobam
- Department of Biotechnology, Kamakhya Pemton College, Hiyangthang, -Imphal, India
| | | | - Savita Verma
- Chemistry Department, School of Engineering, Presidency University, Bengaluru, India
| | - Jay Prakash Rajan
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, India
| |
Collapse
|
2
|
Rangra GS, Singh Y, Thapa K, Khattar JIS, Singh DP. Spatiotemporal distribution of cyanobacteria in relation to water chemistry of Sutlej River, Punjab (India). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:937. [PMID: 39285104 DOI: 10.1007/s10661-024-13011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/15/2024] [Indexed: 10/20/2024]
Abstract
In this investigation, the spatiotemporal distribution of cyanobacteria and their relationships with variations in water chemistry (physico-chemical parameters and heavy metal) of Sutlej River, Punjab (India) has been analyzed by employing multivariate statistical methods. Sutlej River exhibits a rich array of cyanobacterial diversity, comprising 28 species across 15 genera, distributed among 11 families and spanning 5 orders within the class Cyanophyceae. In terms of relative abundance, Microcystis aeruginosa (17.47%) was documented as the most abundant taxa followed by Microcystis robusta (16.55%), Merismopedia punctata (11.03%), Arthrospira fusiformis (6.67%) and Pseudanabaena galeata (3.68%). Significant variations were observed among sampling sites in most of the physico-chemical parameters. Principal Component Analysis delineated sampling sites into two discernible groups according to variations in water chemistry. River Pollution Index (RPI) showed that river water is under the unpolluted (RPI 1.5) to negligibly polluted category in the upstream sites, while moderately polluted (RPI 5.5) in the downstream sites. Heavy metal Pollution Index (HPI) revealed consistent heavy metal contamination at sites RWS7 and RWS8 across all seasons. Conversely, site RWS1 consistently exhibited lower HPI values throughout the three studied seasons. Further, Canonical Correspondence Analysis identified that pH, TDS, TA, NO3, Na, and NH4 are the key physicochemical parameters which affect the spatiotemporal distribution of cyanobacteria in the studied river system. Overall, this study will offer significant information for hydrologists, ecologists, and taxonomists to develop future holistic strategies for further monitoring of the Sutlej River and other similar habitats.
Collapse
Affiliation(s)
- Gurdarshan Singh Rangra
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India.
- Department of Botany, Central University of Punjab, Bathinda-151401, Punjab, India.
| | - Komal Thapa
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | | | | |
Collapse
|
3
|
Ivshina I, Tyumina E. Special Issue "Microbial Biodegradation and Biotransformation". Microorganisms 2023; 11:microorganisms11041047. [PMID: 37110470 PMCID: PMC10143174 DOI: 10.3390/microorganisms11041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
The current state of the environment is a major concern [...].
Collapse
Affiliation(s)
- Irina Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13a Lenin Street, Perm 614990, Russia
- Microbiology and Immunology Department, Perm State National Research University, 15 Bukirev Street, Perm 614990, Russia
| | - Elena Tyumina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13a Lenin Street, Perm 614990, Russia
- Microbiology and Immunology Department, Perm State National Research University, 15 Bukirev Street, Perm 614990, Russia
| |
Collapse
|
4
|
Bruno A, Fumagalli S, Ghisleni G, Labra M. The Microbiome of the Built Environment: The Nexus for Urban Regeneration for the Cities of Tomorrow. Microorganisms 2022; 10:2311. [PMID: 36557564 PMCID: PMC9783557 DOI: 10.3390/microorganisms10122311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Built environments are, for most of us, our natural habitat. In the last 50 years, the built-up area has more than doubled, with a massive biodiversity loss. The undeniable benefits of a city providing all the basic needs to a growing population showed longer-term and less obvious costs to human health: autoimmune and non-communicable diseases, as well as antimicrobial resistance, have reached unprecedented and alarming levels. Humans coevolved with microbes, and this long-lasting alliance is affected by the loss of connection with natural environments, misuse of antibiotics, and highly sanitized environments. Our aim is to direct the focus onto the microbial communities harbored by the built environments we live in. They represent the nexus for urban regeneration, which starts from a healthy environment. Planning a city means considering, in a two-fold way, the ecosystem health and the multidimensional aspects of wellbeing, including social, cultural, and aesthetic values. The significance of this perspective is inspiring guidelines and strategies for the urban regeneration of the cities of tomorrow, exploiting the invaluable role of microbial biodiversity and the ecosystem services that it could provide to create the robust scientific knowledge that is necessary for a bioinformed design of buildings and cities for healthy and sustainable living.
Collapse
Affiliation(s)
| | | | | | - Massimo Labra
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
5
|
Yushin N, Zinicovscaia I, Cepoi L, Chiriac T, Rudi L, Grozdov D. Application of Cyanobacteria Arthospira platensis for Bioremediation of Erbium-Contaminated Wastewater. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6101. [PMID: 36079481 PMCID: PMC9458052 DOI: 10.3390/ma15176101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Erbium belongs to rare earth elements critical for industry, especially nuclear technology. Cyanobacteria Arthospira platensis was used for Er(III) removal from wastewater by applying biosorption and bioaccumulation processes. The influence of pH, Er(III) concentration, contact time and temperature on the biosorption capacity of Arthospira platensis was determined. The optimal conditions for Er(III) removal were defined as pH 3.0, time 15 min and temperature 20 °C, when 30 mg/g of Er(III) were removed. The kinetics of the process was better described by the pseudo-first-order model, while equilibrium fitted to the Freundlich model. In bioaccumulation experiments, the uptake capacity of biomass and Er(III) effect on biomass biochemical composition were assessed. It was shown that Er(III) in concentrations 10-30 mg/L did not affect the content of biomass, proteins, carbohydrate and photosynthetic pigments. Its toxicity was expressed by the reduction of the lipids content and growth of the level of malonic dialdehyde. Biomass accumulated 45-78% of Eu(III) present in the cultivation medium. Therefore, Arthospira platensis can be considered as a safe and efficient bioremediator of erbium contaminated environment.
Collapse
Affiliation(s)
- Nikita Yushin
- Department of Nuclear Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Doctoral School Biological, Geonomic, Chemical and Technological Science, State University of Moldova, MD-2028 Chisinau, Moldova
| | - Inga Zinicovscaia
- Department of Nuclear Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Department of Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Bucharest, Romania
- Laboratory of Physical and Quantum Chemistry, Institute of Chemistry, MD-2028 Chisinau, Moldova
| | - Liliana Cepoi
- Laboratory of Phycobiotechnology, Institute of Microbiology and Biotechnology, MD-2028 Chisinau, Moldova
| | - Tatiana Chiriac
- Laboratory of Phycobiotechnology, Institute of Microbiology and Biotechnology, MD-2028 Chisinau, Moldova
| | - Ludmila Rudi
- Laboratory of Phycobiotechnology, Institute of Microbiology and Biotechnology, MD-2028 Chisinau, Moldova
| | - Dmitrii Grozdov
- Department of Nuclear Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| |
Collapse
|
6
|
Biosorption and Bioaccumulation Capacity of Arthospiraplatensis toward Europium Ions. WATER 2022. [DOI: 10.3390/w14132128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Europium recovery from wastewater is determined by its high significance for industry and toxicity for living organisms. The capacity of cyanobacteria Arthospira platensis (Spirulina) to remove Eu(III) through biosorption and bioaccumulation was evaluated. In biosorption experiments, the effects of four variables pH, metal concentration, time, and temperature on metal removal were studied. In bioaccumulation experiments, the effect of Eu(III) concentrations on biomass bioaccumulation capacity and biochemical composition was assessed. The efficiency of Eu(III) uptake in both experiments was determined using ICP-AES techniques. Maximum biosorption of Eu(III) was achieved at pH 3.0. Equilibrium data fitted well with the Langmuir and Freundlich models, with maximum adsorption capacity of 89.5 mg/g. The pseudo-first-, pseudo-second-order, and Elovich models were found to correlate well with the experimental data. According to thermodynamic studies the sorption was feasible, spontaneous, and endothermic in nature. At addition of Eu(III) ions in the cultivation medium in concentrations of 10–30 mg/L, its accumulation in biomass was 9.8–29.8 mg/g (removal efficiency constituting 98–99%). Eu(III) did not affect productivity and content of carbohydrates and pigments in biomass but led to the decrease of the content of protein and an increase in the amount of MDA. The high Eu(III) biosorption and bioaccumulation efficiency of Arthrospira platensis may constitute an effective and eco-friendly strategy to recover it from contaminated environment.
Collapse
|