1
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
2
|
Young D, McKenzie CA, Gupta S, Sparkes D, Beecham R, Browning D, Dushianthan A, Saeed K. Exploring Antibacterial Usage and Pathogen Surveillance over Five Years in a Tertiary Referral Teaching Hospital Adult General Intensive Care Unit (ICU). Pathogens 2024; 13:961. [PMID: 39599514 PMCID: PMC11597157 DOI: 10.3390/pathogens13110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance is a globally recognised health emergency. Intensive care is an area with significant antimicrobial consumption, particularly increased utilisation of broad-spectrum antibacterials, making stewardship programmes essential. We aimed to explore antibacterial consumption, partnered with pathogen surveillance, over a five-year period (2018 to 2023) in a tertiary referral adult general intensive care unit (ICU). The mean number of admissions was 1645 per annum. A comparison between the ICU populations admitted before and after the COVID-19 pandemic peak (2020/21) identified several notable differences with increased average daily unit bed occupancy (21.6 vs. 25.2, respectively) and a higher proportion of admissions with sepsis (28.4% vs. 32.5%, respectively) in the post-pandemic period. Over the entire five years, the overall proportion of antibacterial use by the WHO AWaRe classification was 42.6% access, 54.7% watch and 2.6% reserve. One hundred and forty-seven positive blood culture isolates were reported, with the most concerning antibacterial resistance identified in 7.5% (9 Escherichia coli and 2 Klebsiella pneumoniae isolates). The COVID-19 pandemic peak year was associated with increased ICU bed occupancy, as well as a greater number of positive blood cultures but lower antibacterial consumption. Despite an increasingly complex workload, a large proportion of overall antibacterial consumption remained within the access category. However, the mortality rate and the incidence of most concerning antimicrobial resistance with respect to pathogens remained satisfyingly consistent, suggesting the positive consequences of real-world antibiotic stewardship in an intensive care setting.
Collapse
Affiliation(s)
- David Young
- Pharmacy Department, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Cathrine A. McKenzie
- National Institute of Health and Social Care Research (Biomedical Research Centre Southampton Perioperative and Critical Care Theme), Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK (A.D.); (K.S.)
| | - Sanjay Gupta
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (S.G.)
| | - David Sparkes
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (S.G.)
| | - Ryan Beecham
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (S.G.)
| | - David Browning
- Microbiology Department, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Ahilanandan Dushianthan
- National Institute of Health and Social Care Research (Biomedical Research Centre Southampton Perioperative and Critical Care Theme), Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK (A.D.); (K.S.)
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (S.G.)
| | - Kordo Saeed
- National Institute of Health and Social Care Research (Biomedical Research Centre Southampton Perioperative and Critical Care Theme), Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK (A.D.); (K.S.)
- Microbiology Department, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Mesfin YM, Mitiku BA, Tamrat Admasu H. Veterinary Drug Residues in Food Products of Animal Origin and Their Public Health Consequences: A Review. Vet Med Sci 2024; 10:e70049. [PMID: 39334531 PMCID: PMC11436377 DOI: 10.1002/vms3.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Veterinary medications used for disease treatment and prevention may remain in animal-origin foods, such as milk, eggs, honey and meat, which could pose a risk to the public's health. These drugs come from different groups of drugs, mostly with antibiotic, anti-parasitic or anti-inflammatory actions, in a range of food matrices including milk, meat or egg. This review is intended to provide the reader with a general insight about the current status of veterinary drug residues in food products of animal origin, detection methods and their public health consequences. The discovery of antimicrobials has led to the development of antibiotics for treating and preventing cattle illnesses and encouraging growth. However, the rise of drug resistance has led to increased antibiotic consumption and resistance among microbes in the animal habitat. This resistance can be passed to humans directly or indirectly through food consumption and direct or indirect interaction. Improper and illegal use, inadequate withdrawal periods and environmental contamination from veterinary drugs are reported to be the major causes for the formation of residue in food products of animal origin. The use of veterinary products above or below the advised level may also result in short- or long-term public health issues, such as the creation of resistant strains of micro-organisms, toxicity, allergy, mutagenesis, teratogenicity and carcinogenetic effects. To ensure consumer safety, veterinary drug residues in food must be under control.
Collapse
Affiliation(s)
| | - Birhan Agmas Mitiku
- Department of Veterinary Science, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Habtamu Tamrat Admasu
- Department of Veterinary Science, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
4
|
Pei L, Sheng L, Ye Y, Sun J, Wang JS, Sun X. Microplastics from face masks: Unraveling combined toxicity with environmental hazards and their impacts on food safety. Compr Rev Food Sci Food Saf 2024; 23:e70042. [PMID: 39523687 DOI: 10.1111/1541-4337.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) refer to tiny plastic particles, typically smaller than 5 mm in size. Due to increased mask usage during COVID-19, improper disposal has led to masks entering the environment and releasing MPs into the surroundings. MPs can absorb environmental hazards and transfer them to humans and animals via the food chain, yet their impacts on food safety and human health are largely neglected. This review summarizes the release process of MPs from face masks, influencing factors, and impacts on food safety. Highlights are given to the prevalence of MPs and their combined toxicities with other environmental hazards. Control strategies are also explored. The release of MPs from face masks is affected by environmental factors like pH, UV light, temperature, ionic strength, and weathering. Due to the chemical active surface and large surface area, MPs can act as vectors for heavy metals, toxins, pesticides, antibiotics and antibiotic resistance genes, and foodborne pathogens through different mechanisms, such as electrostatic interaction, precipitation, and bioaccumulation. After being adsorbed by MPs, the toxicity of these environmental hazards, such as oxidative stress, cell apoptosis, and disruption of metabolic energy levels, can be magnified. However, there is a lack of comprehensive research on both the combined toxicities of MPs and environmental hazards, as well as their corresponding control strategies. Future research should prioritize understanding the interaction of MPs with other hazards in the food chain, their combined toxicity, and integrating MPs detection and degradation methods with other hazards.
Collapse
Affiliation(s)
- Luyu Pei
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| |
Collapse
|
5
|
Deepak SJ, Kannan P, Savariraj WR, Ayyasamy E, Tuticorin Maragatham Alagesan SK, Ravindran NB, Sundaram S, Mohanadasse NQ, Kang Q, Cull CA, Amachawadi RG. Characterization of Staphylococcus aureus isolated from milk samples for their virulence, biofilm, and antimicrobial resistance. Sci Rep 2024; 14:25635. [PMID: 39465266 PMCID: PMC11514165 DOI: 10.1038/s41598-024-75076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) one of the important food borne pathogen from milk, which was investigated in this study. The isolates were screened for antimicrobial resistance, enterotoxin genes, biofilm formation, spa typing, coagulase gene polymorphism and accessory gene regulator types. The prevalence of S. aureus in milk samples was 34.4% (89/259). Methicillin resistant S. aureus (MRSA) was found at 27% (24/89) of the isolates, were classified as community acquired based on SCCmec typing. The 24.71% (22/89) isolates demonstrated multiple antimicrobial resistance (MAR) pattern. However, none of the isolates carried vancomycin and mupirocin resistance genes. The isolates were positive for sea and sed enterotoxin genes and exhibited high frequency of biofilm formation. The High-Resolution Melting and conventional spa typing revealed that the isolates had both animal and community-associated S. aureus clustered origins. Coagulase gene polymorphism and agr typing demonstrated variable genotypic patterns. The finding of this study establishes the prevalence of community associated, enterotoxigenic, biofilm forming and antimicrobial resistance among S. aureus from milk in Chennai city. This emphasizing a potential threat to public health which needs a continuous monitoring system and strategies to mitigate their spread across the food chain and achieve food safety.
Collapse
Affiliation(s)
| | - Porteen Kannan
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India.
| | - Wilfred Ruban Savariraj
- Department of Livestock Products and Technology, Veterinary College, KVAFSU, Bengaluru, 560 024, India
| | - Elango Ayyasamy
- Veterinary College and Research Institute, TANUVAS, Salem, 636 112, India
| | | | - Narendra Babu Ravindran
- Department of Livestock Products and Technology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | - Sureshkannan Sundaram
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | | | - Qing Kang
- Department of Statistics, Kansas State University, Manhattan, KS, 66506 0802, USA
| | - Charley A Cull
- Veterinary & Biomedical Research Center, Inc., Manhattan, KS, 66502 9007, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506 5606, USA.
| |
Collapse
|
6
|
Chen Z, Li Z, He H, Liu J, Deng J, Jiang L, Liu X. Ratiometric fluorescence sensor based on deep learning for rapid and user-friendly detection of tetracycline antibiotics. Food Chem 2024; 450:138961. [PMID: 38640544 DOI: 10.1016/j.foodchem.2024.138961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The detection of tetracycline antibiotics (TCs) in food holds great significance in minimizing their absorption within the human body. Hence, this study aims to develop a rapid, convenient, real-time, and accurate detection method for detecting antibiotics in an authentic market setting. A colorimetric fluorescence sensor was devised for tetracycline detection utilizing PVA aerogels as the substrate. Its operating principle is based on the IFE effect and antenna effect. A detection device is designed to capture fluorescence images while deep learning was employed to aid in the detection process. The sensor exhibits high responsiveness with a mere 60-s requirement for detection and demonstrates substantial color changes(blue to red), achieving 99% accuracy within the range of 10-100 μM with the assistance of deep learning (Resnet18). Real sample simulation tests yielded recovery rates between 95% and 130%. Overall, the proposed strategy proved to be a simple, portable, reliable, and responsive solution for rapid real-time TCs detection in food samples.
Collapse
Affiliation(s)
- Zhengjie Chen
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Zhi Li
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Haibin He
- Institute of Artificial Intelligence and School of Computer Science, Wuhan University, Wuhan 430072, PR China
| | - Juhua Liu
- Institute of Artificial Intelligence and School of Computer Science, Wuhan University, Wuhan 430072, PR China
| | - Junjie Deng
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Lin Jiang
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699-5720, USA
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
7
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
8
|
Krupka M, Piotrowicz-Cieślak AI. Optimization of the Method for Isolating Bacterial DNA from the Aboveground Part of Lettuce. Int J Mol Sci 2024; 25:8513. [PMID: 39126080 PMCID: PMC11313394 DOI: 10.3390/ijms25158513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Developing an effective method for isolating bacterial genetic material from plants is a relatively challenging task and often does not yield adequately prepared material for further analyses. Previous studies often overlook connections, primarily focusing on laboratory investigations. With advancements in high-throughput sequencing techniques, we can now revisit and delve deeper into these interactions. Our study focuses on the initial phase of these investigations: genetic material isolation. Extracting bacterial DNA from aboveground plant parts, known as the phyllosphere, poses a significant challenge due to plant-derived contaminants. Existing isolation protocols frequently yield inconsistent results, necessitating continuous refinement and optimization. In our study, we developed an effective isolation protocol employing mechanical-chemical lysis, sonication, and membrane filtration. This approach yielded high-quality DNA at a concentration of 38.08 ng/µL, suitable for advanced sequencing applications. Our results underscore the effectiveness and necessity of these methods for conducting comprehensive microbiological analyses. Furthermore, our research not only lays the groundwork for further studies on lettuce microbiota, but also highlights the potential for utilizing our developed protocol in investigating other plants and their microbiomes.
Collapse
Affiliation(s)
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland;
| |
Collapse
|
9
|
González-Machado C, Capita R, Alonso-Calleja C. Methicillin-Resistant Staphylococcus aureus (MRSA) in Dairy Products and Bulk-Tank Milk (BTM). Antibiotics (Basel) 2024; 13:588. [PMID: 39061270 PMCID: PMC11273636 DOI: 10.3390/antibiotics13070588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
In order to contribute to an assessment of the role of food in the risks of transmission of methicillin-resistant Staphylococcus aureus (MRSA), a review was undertaken of research on this microorganism in milk and dairy products published from January 2001 to February 2024. A total of 186 publications were selected, 125 for dairy products and 61 for bulk-tank milk (BTM). MRSA was detected in 68.8% of the research into dairy products and 73.8% of investigations relating to BTM, although in most studies the prevalence was less than 5%. Of the set of S. aureus strains isolated, approximately 30% corresponded to MRSA. The foods most extensively contaminated with this microorganism were raw milk and some types of soft cheese. Determination of the mecA gene on its own is known not to suffice for the detection of all MRSA strains. The great diversity of techniques used to study MRSA in milk and dairy products made it difficult to draw comparisons between studies. It would thus be advisable to develop a standardized protocol for the study of this microorganism in foods.
Collapse
Affiliation(s)
- Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
10
|
Ejaz H, Qamar M, Farhana A, Younas S, Batool A, Lone D, Atif M, Alruways M, Alruwaili M, Hamad I, Selim S, Mazhari B, Farooq A, Junaid K. The Rising Tide of Antibiotic Resistance: A Study on Extended-Spectrum Beta-Lactamase and Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae. J Clin Lab Anal 2024; 38:e25081. [PMID: 38884333 PMCID: PMC11211664 DOI: 10.1002/jcla.25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
- Division of Infectious Diseases, Department of MedicineGeneva University Hospitals and Medical SchoolGenevaSwitzerland
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Sonia Younas
- HKU‐Pasteur Research Pole, School of Public Health, LKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Alia Batool
- Department of PathologyFatima Memorial Hospital College of Medicine and DentistryLahorePakistan
| | - Durreshahwar Lone
- Department of PathologyFatima Memorial Hospital College of Medicine and DentistryLahorePakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Ismail Hamad
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversityQurayyatSaudi Arabia
| | - Ali Farooq
- Department of Internal MedicineT.H.Q. Hospital PirmahalPunjabPakistan
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of LondonLondonUK
| |
Collapse
|
11
|
Umair M, Walsh TR, Mohsin M. A systematic review and meta-analysis of carbapenem resistance and its possible treatment options with focus on clinical Enterobacteriaceae: Thirty years of development in Pakistan. Heliyon 2024; 10:e28052. [PMID: 38596009 PMCID: PMC11001782 DOI: 10.1016/j.heliyon.2024.e28052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background Carbapenem resistance is epidemic worldwide, these last resort antimicrobials are listed in the WHO 'watch group' with higher resistance potential. During the years 2017-18 Pakistan Antimicrobial Resistance Surveillance System reported an increase in carbapenem resistance. However, a comprehensive information on prevalence and molecular epidemiology of carbapenem resistance in Pakistan is not available. This systematic review and meta-analysis is aimed to report the current carbapenem resistance situation in Pakistan and its treatment options. Methods In this systematic review and meta-analysis, we investigated the pooled prevalence (PPr) of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae by organizing available data, from Web of Science and PubMed by April 2, 2020, in various groups and subgroups including species, years, provinces, extended spectrum β-lactamase production, clinical presentation, carbapenemase and metallo-β-lactamase production, and New Delhi metallo-β-lactamase (NDM) prevalence. Literature review was updated for the studies publisehd by December 07, 2023. Moreover, we descriptively reviewed the molecular epidemiology of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae in Pakistan. Lastly, we statistically explored different treatment options available for carbapenem resistant infections. We used R package 'metafor' for performing meta-analysis and influence diagnostics and determining treatment options. Results From two academic databases Web of Science and PubMed we identified 343 studies. Eighty-eight studies were selected for the systematic review and meta-analysis. Seventy-four studies were selected for phenotypic analysis, 36 for genotypic analysis, and 31 for available treatment options. PPr-ID of 12% [0.12 (0.07, 0.16)] was observed for phenotypic carbapenem resistance in Enterobacteriaceae with more prevalence recorded in Klebsiella pneumoniae 24% [0.24 (0.05, 0.44)] followed by 9% [0.09 (-0.03, 0.20)] in Escherichia coli. During the last two decades we observed a striking increase in carbapenem resistance PPr i.e., from 0% [0.00 (-0.02, 0.03)] to 36% [0.36 (0.17, 0.56)]. blaNDM with PPr 15% [0.15 (0.06, 0.23)] in naive isolates was found to be the fundamental genetic determinant for carbapenem resistance in Enterobacteriaceae in Pakistan. Polymyxin B, colistin, tigecycline, and fosfomycin were identified as the suggested treatment options available for multidrug resistant infections not responding to carbapenems. Various studies reported carbapenem resistance from human, animal, and environment sources. Conclusion In conclusion, we found that NDM-1 producing carbapenem resistant Enterobacteriaceae are increasing in Pakistan. Meta-analysis showed that metallo-β-lactamases producing E. coli ST405 and K. pneumoniae sequence type11 are the major resistant clones. Number of reported studies in various subgroups and inconsistency in following CLSI guidelines are the potential limitations of this meta-analysis. A National antimicrobial resistance (AMR) surveillance strategy based on One Health is urgently needed to check any future AMR crisis in Pakistan.
Collapse
Affiliation(s)
- Muhammad Umair
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Timothy R. Walsh
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| |
Collapse
|
12
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
13
|
Huang J, Lv C, Li M, Rahman T, Chang YF, Guo X, Song Z, Zhao Y, Li Q, Ni P, Zhu Y. Carbapenem-resistant Escherichia coli exhibit diverse spatiotemporal epidemiological characteristics across the globe. Commun Biol 2024; 7:51. [PMID: 38184739 PMCID: PMC10771496 DOI: 10.1038/s42003-023-05745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
Carbapenem-resistant Escherichia coli (CREC) poses a severe global public health risk. This study reveals the worldwide geographic spreading patterns and spatiotemporal distribution characteristics of resistance genes in 7918 CREC isolates belonging to 497 sequence types (ST) and originating from 75 countries. In the last decade, there has been a transition in the prevailing STs from highly virulent ST131 and ST38 to higher antibiotic-resistant ST410 and ST167. The rise of multi-drug resistant strains of CREC carrying plasmids with extended-spectrum beta-lactamase (ESBL) resistance genes could be attributed to three important instances of host-switching events. The spread of CREC was associated with the changing trends in blaNDM-5, blaKPC-2, and blaOXA-48, as well as the plasmids IncFI, IncFII, and IncI. There were intercontinental geographic transfers of major CREC strains. Various crucial transmission hubs and patterns have been identified for ST131 in the United Kingdom, Italy, the United States, and China, ST167 in India, France, Egypt, and the United States, and ST410 in Thailand, Israel, the United Kingdom, France, and the United States. This work is valuable in managing CREC infections and preventing CREC occurrence and transmission inside healthcare settings and among diverse hosts.
Collapse
Affiliation(s)
- Jiewen Huang
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lv
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Xiaokui Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Song
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peihua Ni
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongzhang Zhu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Domínguez-Odio A, Rodríguez Martínez E, Cala Delgado DL. Commercial vaccines used in poultry, cattle, and aquaculture: a multidirectional comparison. Front Vet Sci 2024; 10:1307585. [PMID: 38234985 PMCID: PMC10791835 DOI: 10.3389/fvets.2023.1307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
|
15
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
16
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|