1
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Efficient perchlorate reduction in microaerobic environment facilitated by partner methane oxidizers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133683. [PMID: 38310847 DOI: 10.1016/j.jhazmat.2024.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
2
|
Kumar KS, Kavitha S, Parameswari K, Sakunthala A, Sathishkumar P. Environmental occurrence, toxicity and remediation of perchlorate - A review. CHEMOSPHERE 2023; 311:137017. [PMID: 36377118 DOI: 10.1016/j.chemosphere.2022.137017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate (ClO4-) comes under the class of contaminants called the emerging contaminants that will impact environment in the near future. A strong oxidizer by nature, perchlorate has received significant observation due to its occurrence, reactive nature, and persistence in varied environments such as surface water, groundwater, soil, and food. Perchlorate finds its use in number of industrial products ranging from missile fuel, fertilizers, and fireworks. Perchlorate exposure occurs when naturally occurring or manmade perchlorate in water or food is ingested. Perchlorate ingestion affects iodide absorption into the thyroid, thereby causing a decrease in the synthesis of thyroid hormone, a very crucial component needed for metabolism, neural development, and a number of other physiological functions in the body. Perchlorate remediation from ground water and drinking water is carried out through a series of physical-chemical techniques like ion (particle) transfer and reverse osmosis. However, the generation of waste through these processes are difficult to manage, so the need for alternative treatment methods occur. This review talks about the hybrid technologies that are currently researched and gaining momentum in the treatment of emerging contaminants, namely perchlorate.
Collapse
Affiliation(s)
- Krishnan Suresh Kumar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Subbiah Kavitha
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India.
| | - Kalivel Parameswari
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Ayyasamy Sakunthala
- Solid State Ionics Lab, Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| |
Collapse
|
3
|
Loiseau L, Vergnes A, Ezraty B. Methionine oxidation under anaerobic conditions in Escherichia coli. Mol Microbiol 2022; 118:387-402. [PMID: 36271735 DOI: 10.1111/mmi.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
Abstract
Repairing oxidative-targeted macromolecules is a central mechanism necessary for living organisms to adapt to oxidative stress. Reactive oxygen and chlorine species preferentially oxidize sulfur-containing amino acids in proteins. Among these amino acids, methionine can be converted into methionine sulfoxide. This post-translational oxidation can be reversed by methionine sulfoxide reductases, Msr enzymes. In Gram-negative bacteria, the antioxidant MsrPQ system is involved in the repair of periplasmic oxidized proteins. Surprisingly, in this study, we observed in Escherichia coli that msrPQ was highly expressed in the absence of oxygen. We have demonstrated that the anaerobic induction of msrPQ was due to chlorate (ClO3 - ) contamination of the Casamino Acids. Molecular investigation led us to determine that the reduction of chlorate to the toxic oxidizing agent chlorite (ClO2 - ) by the three nitrate reductases (NarA, NarZ, and Nap) led to methionine oxidation of periplasmic proteins. In response to this stress, the E. coli HprSR two-component system was activated, leading to the over-production of MsrPQ. This study, therefore, supports the idea that methionine oxidation in proteins is part of chlorate toxicity, and that MsrPQ can be considered as an anti-chlorate/chlorite defense system in bacteria. Finally, this study challenges the traditional view of the absence of Met-oxidation during anaerobiosis.
Collapse
Affiliation(s)
- Laurent Loiseau
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| | - Alexandra Vergnes
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| | - Benjamin Ezraty
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| |
Collapse
|
4
|
Biogeotechnology, Biocorrosion, and Remediation—Three Areas of Modern Applied Environmental Microbiology. Microorganisms 2022; 10:microorganisms10081611. [PMID: 36014028 PMCID: PMC9412821 DOI: 10.3390/microorganisms10081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
|
5
|
Torres-Rojas F, Muñoz D, Pía Canales C, Vargas IT. Bioprospecting for electrochemically active perchlorate-reducing microorganisms. Bioelectrochemistry 2022; 147:108171. [DOI: 10.1016/j.bioelechem.2022.108171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
6
|
Effects of Perchlorate and Other Groundwater Inorganic Co-Contaminants on Aerobic RDX Degradation. Microorganisms 2022; 10:microorganisms10030663. [PMID: 35336238 PMCID: PMC8949498 DOI: 10.3390/microorganisms10030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) pollution is accompanied by other co-contaminants, such as perchlorate and chlorates, which can retard biodegradation. The effects of perchlorate and chlorate on aerobic RDX degradation remain unclear. We hypothesized that they have a negative or no impact on aerobic RDX-degrading bacteria. We used three aerobic RDX-degrading strains—Rhodococcus strains YH1 and T7 and Gordonia YY1—to examine this hypothesis. The strains were exposed to perchlorate, chlorate, and nitrate as single components or in a mixture. Their growth, degradation activity, and gene expression were monitored. Strain-specific responses to the co-contaminants were observed: enhanced growth of strain YH1 and inhibition of strain T7. Vmax and Km of cytochrome P450 (XplA) in the presence of the co-contaminants were not significantly different from the control, suggesting no direct influence on cytochrome P450. Surprisingly, xplA expression increased fourfold in cultures pre-grown on RDX and, after washing, transferred to a medium containing only perchlorate. This culture did not grow, but xplA was translated and active, albeit at lower levels than in the control. We explained this observation as being due to nitrogen limitation in the culture and not due to perchlorate induction. Our results suggest that the aerobic strain YH1 is effective for aerobic remediation of RDX in groundwater.
Collapse
|
7
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
8
|
Díaz-Rullo J, Rodríguez-Valdecantos G, Torres-Rojas F, Cid L, Vargas IT, González B, González-Pastor JE. Mining for Perchlorate Resistance Genes in Microorganisms From Sediments of a Hypersaline Pond in Atacama Desert, Chile. Front Microbiol 2021; 12:723874. [PMID: 34367123 PMCID: PMC8343002 DOI: 10.3389/fmicb.2021.723874] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022] Open
Abstract
Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith. Therefore, perchlorate has been proposed as a compound worth studying to better understanding the habitability of the Martian surface. In the present work, to study the molecular mechanisms of perchlorate resistance, a functional metagenomic approach was used, and for that, a small-insert library was constructed with DNA isolated from microorganisms exposed to perchlorate in sediments of a hypersaline pond in the Atacama Desert, Chile (Salar de Maricunga), one of the regions with the highest levels of perchlorate on Earth. The metagenomic library was hosted in Escherichia coli DH10B strain and exposed to sodium perchlorate. This technique allowed the identification of nine perchlorate-resistant clones and their environmental DNA fragments were sequenced. A total of seventeen ORFs were predicted, individually cloned, and nine of them increased perchlorate resistance when expressed in E. coli DH10B cells. These genes encoded hypothetical conserved proteins of unknown functions and proteins similar to other not previously reported to be involved in perchlorate resistance that were related to different cellular processes such as RNA processing, tRNA modification, DNA protection and repair, metabolism, and protein degradation. Furthermore, these genes also conferred resistance to UV-radiation, 4-nitroquinoline-N-oxide (4-NQO) and/or hydrogen peroxide (H2O2), other stress conditions that induce oxidative stress, and damage in proteins and nucleic acids. Therefore, the novel genes identified will help us to better understand the molecular strategies of microorganisms to survive in the presence of perchlorate and may be used in Mars exploration for creating perchlorate-resistance strains interesting for developing Bioregenerative Life Support Systems (BLSS) based on in situ resource utilization (ISRU).
Collapse
Affiliation(s)
- Jorge Díaz-Rullo
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Polytechnic School, University of Alcalá, Alcalá de Henares, Spain
| | - Gustavo Rodríguez-Valdecantos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Felipe Torres-Rojas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Cid
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Ignacio T. Vargas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | | |
Collapse
|
9
|
Li Y, Wu S, Wang S, Zhao S, Zhuang X. Anaerobic degradation of xenobiotic organic contaminants (XOCs): The role of electron flow and potential enhancing strategies. J Environ Sci (China) 2021; 101:397-412. [PMID: 33334534 DOI: 10.1016/j.jes.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In groundwater, deep soil layer, sediment, the widespread of xenobiotic organic contaminants (XOCs) have been leading to the concern of human health and eco-environment safety, which calls for a better understanding on the fate and remediation of XOCs in anoxic matrices. In the absence of oxygen, bacteria utilize various oxidized substances, e.g. nitrate, sulphate, metallic (hydr)oxides, humic substance, as terminal electron acceptors (TEAs) to fuel anaerobic XOCs degradation. Although there have been increasing anaerobic biodegradation studies focusing on species identification, degrading pathways, community dynamics, systematic reviews on the underlying mechanism of anaerobic contaminants removal from the perspective of electron flow are limited. In this review, we provide the insight on anaerobic biodegradation from electrons aspect - electron production, transport, and consumption. The mechanism of the coupling between TEAs reduction and pollutants degradation is deconstructed in the level of community, pure culture, and cellular biochemistry. Hereby, relevant strategies to promote anaerobic biodegradation are proposed for guiding to an efficient XOCs bioremediation.
Collapse
Affiliation(s)
- Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Zhao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Zerva I, Remmas N, Kagalou I, Melidis P, Ariantsi M, Sylaios G, Ntougias S. Effect of Chlorination on Microbiological Quality of Effluent of a Full-Scale Wastewater Treatment Plant. Life (Basel) 2021; 11:68. [PMID: 33477775 PMCID: PMC7832327 DOI: 10.3390/life11010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
The evaluation of effluent wastewater quality mainly relies on the assessment of conventional bacterial indicators, such as fecal coliforms and enterococci; however, little is known about opportunistic pathogens, which can resist chlorination and may be transmitted in aquatic environments. In contrast to conventional microbiological methods, high-throughput molecular techniques can provide an accurate evaluation of effluent quality, although a limited number of studies have been performed in this direction. In this work, high-throughput amplicon sequencing was employed to assess the effectiveness of chlorination as a disinfection method for secondary effluents. Common inhabitants of the intestinal tract, such as Bacteroides, Arcobacter and Clostridium, and activated sludge denitrifiers capable of forming biofilms, such as Acidovorax, Pseudomonas and Thauera, were identified in the chlorinated effluent. Chloroflexi with dechlorination capability and the bacteria involved in enhanced biological phosphorus removal, i.e., Candidatus Accumulibacter and Candidatus Competibacter, were also found to resist chlorination. No detection of Escherichia indicates the lack of fecal coliform contamination. Mycobacterium spp. were absent in the chlorinated effluent, whereas toxin-producing cyanobacteria of the genera Anabaena and Microcystis were identified in low abundances. Chlorination significantly affected the filamentous bacteria Nocardioides and Gordonia, whereas Zoogloea proliferated in the disinfected effluent. Moreover, perchlorate/chlorate- and organochlorine-reducing bacteria resisted chlorination.
Collapse
Affiliation(s)
- Ioanna Zerva
- Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece; (I.Z.); (N.R.); (P.M.); (M.A.)
- Department of Civil Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Nikolaos Remmas
- Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece; (I.Z.); (N.R.); (P.M.); (M.A.)
| | - Ifigeneia Kagalou
- Department of Civil Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Paraschos Melidis
- Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece; (I.Z.); (N.R.); (P.M.); (M.A.)
| | - Marina Ariantsi
- Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece; (I.Z.); (N.R.); (P.M.); (M.A.)
| | - Georgios Sylaios
- Department of Environmental Engineering, Laboratory of Ecological Engineering and Technology, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Spyridon Ntougias
- Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece; (I.Z.); (N.R.); (P.M.); (M.A.)
| |
Collapse
|
11
|
Gallardo-Carreño I, Moreno-Paz M, Aguirre J, Blanco Y, Alonso-Pintado E, Raymond-Bouchard I, Maggiori C, Rivas LA, Engelbrektson A, Whyte L, Parro V. A Multiplex Immunosensor for Detecting Perchlorate-Reducing Bacteria for Environmental Monitoring and Planetary Exploration. Front Microbiol 2021; 11:590736. [PMID: 33391207 PMCID: PMC7772991 DOI: 10.3389/fmicb.2020.590736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.
Collapse
Affiliation(s)
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Centro Nacional de Biotecnología, CSIC, Madrid, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis A Rivas
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Inmunología y Genética Aplicada, S.A. (INGENASA), Madrid, Spain
| | - Anna Engelbrektson
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
12
|
Torres-Rojas F, Muñoz D, Tapia N, Canales C, Vargas IT. Bioelectrochemical chlorate reduction by Dechloromonas agitata CKB. BIORESOURCE TECHNOLOGY 2020; 315:123818. [PMID: 32688253 DOI: 10.1016/j.biortech.2020.123818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Chlorate has been described as an emerging pollutant that compromises water sources. In this study, bioelectrochemical reactors (BERs) using Dechloromonas agitata CKB, were evaluated as a sustainable alternative for chlorate removal. BERs were operated under flow-recirculation and batch modes with an applied cell-voltage of 0.44 V over a resistance of 1 kΩ. Results show chlorate removal up to 607.288 mg/L. After 115 days, scanning electron microscopy showed biofilm development over the electrodes, and electrochemical impedance spectroscopy confirmed the biocatalytic effect of CKB. The theoretical chlorate bioreduction potential (ε° = 0.792 V) was proven, and a kinetic study indicated that 6 electrons were involved in the reduction mechanism. Finally, a hypothetical bioelectrochemical mechanism for chlorate reduction in a BER was proposed. This research expands upon current knowledge of novel electrochemically active microorganisms and widens the scope of BER applications for chlorate removal.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Natalia Tapia
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Camila Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, VR-III, Hjardarhaga 2, 107 Reykjavík, Iceland
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile.
| |
Collapse
|
13
|
Mahor D, Püschmann J, Adema DR, Strampraad MJF, Hagedoorn PL. Unexpected photosensitivity of the well-characterized heme enzyme chlorite dismutase. J Biol Inorg Chem 2020; 25:1129-1138. [PMID: 33113038 PMCID: PMC7665973 DOI: 10.1007/s00775-020-01826-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Chlorite dismutase is a heme enzyme that catalyzes the conversion of the toxic compound ClO2- (chlorite) to innocuous Cl- and O2. The reaction is a very rare case of enzymatic O-O bond formation, which has sparked the interest to elucidate the reaction mechanism using pre-steady-state kinetics. During stopped-flow experiments, spectroscopic and structural changes of the enzyme were observed in the absence of a substrate in the time range from milliseconds to minutes. These effects are a consequence of illumination with UV-visible light during the stopped-flow experiment. The changes in the UV-visible spectrum in the initial 200 s of the reaction indicate a possible involvement of a ferric superoxide/ferrous oxo or ferric hydroxide intermediate during the photochemical inactivation. Observed EPR spectral changes after 30 min reaction time indicate the loss of the heme and release of iron during the process. During prolonged illumination, the oligomeric state of the enzyme changes from homo-pentameric to monomeric with subsequent protein precipitation. Understanding the effects of UV-visible light illumination induced changes of chlorite dismutase will help us to understand the nature and mechanism of photosensitivity of heme enzymes in general. Furthermore, previously reported stopped-flow data of chlorite dismutase and potentially other heme enzymes will need to be re-evaluated in the context of the photosensitivity. Illumination of recombinantly expressed Azospira oryzae Chlorite dismutase (AoCld) with a high-intensity light source, common in stopped-flow equipment, results in disruption of the bond between FeIII and the axial histidine. This leads to the enzyme losing its heme cofactor and changing its oligomeric state as shown by spectroscopic changes and loss of activity.
Collapse
Affiliation(s)
- Durga Mahor
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Julia Püschmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Diederik R Adema
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Marc J F Strampraad
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|
14
|
Rova M, Hellberg Lindqvist M, Goetelen T, Blomqvist S, Nilsson T. Heterologous expression of the gene for chlorite dismutase from Ideonella dechloratans is induced by an FNR-type transcription factor. Microbiologyopen 2020; 9:e1049. [PMID: 32319739 PMCID: PMC7349173 DOI: 10.1002/mbo3.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Regulation of the expression of the gene for chlorite dismutase (cld), located on the chlorate reduction composite transposon of the chlorate reducer Ideonella dechloratans, was studied. A 200 bp upstream sequence of the cld gene, and mutated and truncated versions thereof, was used in a reporter system in Escherichia coli. It was found that a sequence within this upstream region, which is nearly identical to the canonical FNR-binding sequence of E. coli, is necessary for anaerobic induction of the reporter gene. Anaerobic induction was regained in an FNR-deficient strain of E. coli when supplemented either with the fnr gene from E. coli or with a candidate fnr gene cloned from I. dechloratans. In vivo transcription of the suggested fnr gene of I. dechloratans was demonstrated by qRT-PCR. Based on these results, the cld promoter of I. dechloratans is suggested to be a class II-activated promoter regulated by an FNR-type protein of I. dechloratans. No fnr-type genes have been found on the chlorate reduction composite transposon of I. dechloratans, making anaerobic upregulation of the cld gene after a gene transfer event dependent on the presence of an fnr-type gene in the recipient.
Collapse
Affiliation(s)
- Maria Rova
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | | | - Thijs Goetelen
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Shady Blomqvist
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Thomas Nilsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
15
|
Chen HW, Xu M, Ma XW, Tong ZH, Liu DF. Isolation and characterization of a chlorate-reducing bacterium Ochrobactrum anthropi XM-1. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120873. [PMID: 31325697 DOI: 10.1016/j.jhazmat.2019.120873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
A Gram-negative chlorate-reducing bacterial strain XM-1 was isolated. The 16S rRNA gene sequence identified the isolate as Ochrobactrum anthropi XM-1, which was the first strain of genus Ochrobactrum reported having the ability to reduce chlorate. The optimum growth temperature and pH for strain XM-1 to reduce chlorate was found to be 30 °C and 5.0-7.5, respectively, under anaerobic condition. Strain XM-1 could tolerate high chlorate concentration (200 mM), and utilize a variety of carbohydrates (glucose, L-arabinose, D-fructose, sucrose), glycerin and sodium citrate as electron donors. In addition, oxygen and nitrate could be used as electron acceptors, but perchlorate could not be reduced. Enzyme activities related to chlorate reducing were characterized in cell extracts. Activities of chlorate reductase and chlorite dismutase could be detected in XM-1 cells grown under both aerobic and anaerobic conditions, implying the two enzymes were constitutively expressed. This work suggests a high potential of applying Ochrobactrum anthropi XM-1 for remediation of chlorate contamination.
Collapse
Affiliation(s)
- Han-Wen Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Meng Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Xi-Wen Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Zhong-Hua Tong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science & Technology of China, Hefei, 230026, China.
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
16
|
Miralles-Robledillo JM, Torregrosa-Crespo J, Martínez-Espinosa RM, Pire C. DMSO Reductase Family: Phylogenetics and Applications of Extremophiles. Int J Mol Sci 2019; 20:E3349. [PMID: 31288391 PMCID: PMC6650914 DOI: 10.3390/ijms20133349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide reductases (DMSO) are molybdoenzymes widespread in all domains of life. They catalyse not only redox reactions, but also hydroxylation/hydration and oxygen transfer processes. Although literature on DMSO is abundant, the biological significance of these enzymes in anaerobic respiration and the molecular mechanisms beyond the expression of genes coding for them are still scarce. In this review, a deep revision of the literature reported on DMSO as well as the use of bioinformatics tools and free software has been developed in order to highlight the relevance of DMSO reductases on anaerobic processes connected to different biogeochemical cycles. Special emphasis has been addressed to DMSO from extremophilic organisms and their role in nitrogen cycle. Besides, an updated overview of phylogeny of DMSOs as well as potential applications of some DMSO reductases on bioremediation approaches are also described.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
| | - Javier Torregrosa-Crespo
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
| | - Carmen Pire
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain.
| |
Collapse
|
17
|
Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. Int J Microbiol 2019; 2019:6981865. [PMID: 30906324 PMCID: PMC6398020 DOI: 10.1155/2019/6981865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022] Open
Abstract
Perchlorate (ClO4 -) has several industrial applications and is frequently detected in environmental matrices at relevant concentrations to human health. Currently, perchlorate-degrading bacteria are promising strategies for bioremediation in polluted sites. The aim of this study was to isolate and characterize halophilic bacteria with the potential for perchlorate reduction. Ten bacterial strains were isolated from soils of Galerazamba-Bolivar, Manaure-Guajira, and Salamanca Island-Magdalena, Colombia. Isolates grew at concentrations up to 30% sodium chloride. The isolates tolerated pH variations ranging from 6.5 to 12.0 and perchlorate concentrations up to 10000 mg/L. Perchlorate was degraded by these bacteria on percentages between 25 and 10. 16S rRNA gene sequence analysis indicated that the strains were phylogenetically related to Vibrio, Bacillus, Salinovibrio, Staphylococcus, and Nesiotobacter genera. In conclusion, halophilic-isolated bacteria from hypersaline soils of the Colombian Caribbean are promising resources for the bioremediation of perchlorate contamination.
Collapse
|
18
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Kaksonen AH. Editorial for Special Issue "Microorganisms for Environmental and Industrial Applications". Microorganisms 2018; 6:microorganisms6030062. [PMID: 30004430 PMCID: PMC6165251 DOI: 10.3390/microorganisms6030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat 6014, Australia.
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| |
Collapse
|
20
|
Wang O, Melnyk RA, Mehta-Kolte MG, Youngblut MD, Carlson HK, Coates JD. Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference. Front Microbiol 2018; 9:376. [PMID: 29559962 PMCID: PMC5845722 DOI: 10.3389/fmicb.2018.00376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 02/01/2023] Open
Abstract
Most dissimilatory perchlorate reducing bacteria (DPRB) are also capable of respiratory nitrate reduction, and preferentially utilize nitrate over perchlorate as a terminal electron acceptor. The similar domain architectures and phylogenetic relatedness of the nitrate and perchlorate respiratory complexes suggests a common evolutionary history and a potential for functionally redundant electron carriers. In this study, we identify key genetic redundancies in the electron transfer pathways from the quinone pool(s) to the terminal nitrate and perchlorate reductases in Azospira suillum PS (hereafter referred to as PS). We show that the putative quinol dehydrogenases, (PcrQ and NapC) and the soluble cytochrome electron carriers (PcrO and NapO) are functionally redundant under anaerobic growth conditions. We demonstrate that, when grown diauxically with both nitrate and perchlorate, the endogenous expression of NapC and NapO during the nitrate reduction phase was sufficient to completely erase any growth defect in the perchlorate reduction phase caused by deletion of pcrQ and/or pcrO. We leveraged our understanding of these genetic redundancies to make PS mutants with altered electron acceptor preferences. Deletion of the periplasmic nitrate reductase catalytic subunit, napA, led to preferential utilization of perchlorate even in the presence of equimolar nitrate, and deletion of the electron carrier proteins napQ and napO, resulted in concurrent reduction of nitrate and perchlorate. Our results demonstrate that nitrate and perchlorate respiratory pathways in PS share key functionally redundant electron transfer proteins and that mutagenesis of these proteins can be utilized as a strategy to alter the preferential usage of nitrate over perchlorate.
Collapse
Affiliation(s)
- Ouwei Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Ryan A Melnyk
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Misha G Mehta-Kolte
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew D Youngblut
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|