1
|
Mi Z, Su J, Yu L, Zhang T. Comparative mitochondrial genomics of Thelebolaceae in Antarctica: insights into their extremophilic adaptations and evolutionary dynamics. IMA Fungus 2024; 15:33. [PMID: 39478621 PMCID: PMC11523780 DOI: 10.1186/s43008-024-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Species of Antarctomyces and Thelebolus (Thelebolaceae), primarily found in Antarctic environments, exhibit psychrophilic adaptations, yet their mitochondrial genomes have not been extensively studied. Furthermore, few studies have compared the mitochondrial genomes of psychrophilic, psychrotrophic, and mesophilic fungi. After successful sequencing and assembly, this study annotated the mitochondrial genomes of Antarctomyces psychrotrophicus CPCC 401038 and Thelebolus microsporus CPCC 401041. We also performed a comparative analysis with the previously characterized mitochondrial genomes of psychrotrophic and mesophilic fungi. The analysis revealed that nad4L was the most conserved gene across the mitochondrial genomes, characterized by its synonymous and non-synonymous substitution rates (Ks and Ka), genetic distance, and GC content and skew within the protein-coding genes (PCGs). Additionally, the mitochondrial genomes of psychrophilic and psychrotrophic fungi showed a higher proportion of protein-coding regions and a lower GC content compared to those of mesophilic fungi, underscoring the genetic basis of cold adaptation. Phylogenetic analyses based on these mitochondrial genes also confirmed the phylogenetic relationships of Thelebolaceae in the class Leotiomycetes. These findings advance our understanding of the phylogenetic relationships and evolutionary dynamics within the family Thelebolaceae, highlighting how different environmental temperatures influence fungal mitochondrial genomic structure and adaptation.
Collapse
Affiliation(s)
- Zechen Mi
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jing Su
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
2
|
Teixeira EAA, de Souza LMD, Vieira R, Lirio JM, Coria SH, Convey P, Rosa CA, Rosa LH. Enzymes and biosurfactants of industrial interest produced by culturable fungi present in sediments of Boeckella Lake, Hope Bay, north-east Antarctic Peninsula. Extremophiles 2024; 28:30. [PMID: 38907846 DOI: 10.1007/s00792-024-01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.
Collapse
Affiliation(s)
- Elisa Amorim Amâncio Teixeira
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Láuren Machado Drumond de Souza
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Rosemary Vieira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
3
|
de Menezes GCA, Lopes FAC, Santos KCR, Silva MC, Convey P, Câmara PEAS, Rosa LH. Fungal diversity present in snow sampled in summer in the north-west Antarctic Peninsula and the South Shetland Islands, Maritime Antarctica, assessed using metabarcoding. Extremophiles 2024; 28:23. [PMID: 38575688 DOI: 10.1007/s00792-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was Ascomycota, followed by Basidiomycota, Mortierellomycota, Chytridiomycota and Mucoromycota. Penicillium sp., Pseudogymnoascus pannorum, Coniochaeta sp., Aspergillus sp., Antarctomyces sp., Phenoliferia sp., Cryolevonia sp., Camptobasidiaceae sp., Rhodotorula mucilaginosa and Bannozyma yamatoana were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.
Collapse
Affiliation(s)
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Brazil
| | - Karita C R Santos
- Laboratório de Microbiologia, Universidade Federal do Tocantins, Palmas, Brazil
| | - Micheline C Silva
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação Em Fungos, Algas e Plantas, UFSC, Florianópolis, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
4
|
da Silva MK, Barreto DLC, Vieira R, Neto AA, de Oliveira FS, Convey P, Rosa CA, Duarte AWF, Rosa LH. Diversity and enzymatic, biosurfactant and phytotoxic activities of culturable Ascomycota fungi present in marine sediments obtained near the South Shetland Islands, maritime Antarctica. Extremophiles 2024; 28:20. [PMID: 38493412 DOI: 10.1007/s00792-024-01336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
We studied the culturable fungal community recovered from deep marine sediments in the maritime Antarctic, and assessed their capabilities to produce exoenzymes, emulsifiers and metabolites with phytotoxic activity. Sixty-eight Ascomycota fungal isolates were recovered and identified. The most abundant taxon recovered was the yeast Meyerozyma guilliermondii, followed by the filamentous fungi Penicillium chrysogenum, P. cf. palitans, Pseudeurotium cf. bakeri, Thelebolus balaustiformis, Antarctomyces psychrotrophicus and Cladosporium sp. Diversity indices displayed low values overall, with the highest values obtained at shallow depth, decreasing to the deepest location sampled. Only M. guilliermondii and P. cf. palitans were detected in the sediments at all depths sampled, and were the most abundant taxa at all sample sites. The most abundant enzymes detected were proteases, followed by invertases, cellulases, lipases, carrageenases, agarases, pectinases and esterases. Four isolates showed good biosurfactant activity, particularly the endemic species A. psychrotrophicus. Twenty-four isolates of P. cf. palitans displayed strong phytotoxic activities against the models Lactuca sativa and Allium schoenoprasum. The cultivable fungi recovered demonstrated good biosynthetic activity in the production of hydrolytic exoenzymes, biosurfactant molecules and metabolites with phytotoxic activity, reinforcing the importance of documenting the taxonomic, ecological and biotechnological properties of fungi present in deep oceanic sediments of the Southern Ocean.
Collapse
Affiliation(s)
- Mayanne Karla da Silva
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Débora Luiza Costa Barreto
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
5
|
Câmara PEAS, de Menezes GCA, Lopes FAC, da Silva Paiva T, Carvalho-Silva M, Convey P, Amorim ET, Rosa LH. Investigating non-fungal eukaryotic diversity in snow in the Antarctic Peninsula region using DNA metabarcoding. Extremophiles 2023; 28:3. [PMID: 37962679 DOI: 10.1007/s00792-023-01322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Snow is a unique microhabitat, despite being a harsh environment, multiple life forms have adapted to survive in it. While algae, bacteria and fungi are dominant microorganisms in Antarctic snow, little is known about other organisms that may be present in this habitat. We used metabarcoding to investigate DNA sequence diversity of non-fungal eukaryotes present in snow obtained from six different sites across the Maritime Antarctica. A total of 20 taxa were assigned to obtained sequences, representing five Kingdoms (Chromista, Protozoa, Viridiplantae and Metazoa) and four phyla (Ciliophora, Cercozoa, Chlorophyta and Cnidaria). The highest diversity indices were detected in Trinity Peninsula followed by Robert Island, Arctowski Peninsula, Deception Island, King George Island and Snow Island. The most abundant assignments were to Trebouxiophyceae, followed by Chlamydomonas nivalis and Chlamidomonadales. No taxa were detected at all sites. Three potentially new records for Antarctica were detected: two Ciliophora (Aspidisca magna and Stokesia sp.) and the green algae Trebouxia potteri. Our data suggested that similarities found between the sites may be more related with snow physicochemical properties rather than geographic proximity or latitude. This study provides new insights into the diversity and distribution of eukaryotic organisms in Antarctic snow.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, 70910-900, Brasil.
- Algas E Plantas, Pós Graduação Em Fungos, Universidade Federal de Santa Catarina, Florianoplis, Santa Catarina, Brazil.
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal Do Tocantins, Porto Nacional, Brazil
| | - Thiago da Silva Paiva
- Laboratório de Protistologia, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Eduardo T Amorim
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| |
Collapse
|
6
|
Touchette D, Gostinčar C, Whyte LG, Altshuler I. Lichen-associated microbial members are prevalent in the snow microbiome of a sub-arctic alpine tundra. FEMS Microbiol Ecol 2023; 99:fiad151. [PMID: 37977855 DOI: 10.1093/femsec/fiad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Snow is the largest component of the cryosphere, with its cover and distribution rapidly decreasing over the last decade due to climate warming. It is imperative to characterize the snow (nival) microbial communities to better understand the role of microorganisms inhabiting these rapidly changing environments. Here, we investigated the core nival microbiome, the cultivable microbial members, and the microbial functional diversity of the remote Uapishka mountain range, a massif of alpine sub-arctic tundra and boreal forest. Snow samples were taken over a two-month interval along an altitude gradient with varying degree of anthropogenic traffic and vegetation cover. The core snow alpine tundra/boreal microbiome, which was present across all samples, constituted of Acetobacterales, Rhizobiales and Acidobacteriales bacterial orders, and of Mycosphaerellales and Lecanorales fungal orders, with the dominant fungal taxa being associated with lichens. The snow samples had low active functional diversity, with Richness values ranging from 0 to 19.5. The culture-based viable microbial enumeration ranged from 0 to 8.05 × 103 CFUs/mL. We isolated and whole-genome sequenced five microorganisms which included three fungi, one alga, and one potentially novel bacterium of the Lichenihabitans genus; all of which appear to be part of lichen-associated taxonomic clades.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| | - C Gostinčar
- University of Ljubljana, Department of Biology, Biotechnical Faculty, Ljubljana 1000, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| |
Collapse
|
7
|
Leo P, Onofri S, Zucconi L, Selbmann L, Turchetti B, Buzzini P, Chander AM, Simpson A, Singh N, Vellone D, Tighe S, Venkateswaran K. Draft genome sequencing of Naganishia species isolated from the polar environments. Microbiol Resour Announc 2023; 12:e0038823. [PMID: 37754785 PMCID: PMC10586123 DOI: 10.1128/mra.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023] Open
Abstract
The draft genomes of five Naganishia strains were sequenced using MinION and annotated using Funannotate pipeline. Phylogenetic and genomic analyses were performed to provide their genetic relationships, diversity, and potential functional capabilities. This approach will aid in understanding their potential to survive under microgravity and their resilience to extreme environments.
Collapse
Affiliation(s)
- Patrick Leo
- Biotechnology and Planetary Protection Group, NASA‐Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Environmental Sciences, Informatics, and Statistics, University Ca’ Foscari of Venice, Mestre, Italy
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Institute of Polar Sciences, National Research Council of Italy (CNR‐ISP), Messina, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, Italy
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, Italy
| | - Atul M. Chander
- Biotechnology and Planetary Protection Group, NASA‐Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Anna Simpson
- Biotechnology and Planetary Protection Group, NASA‐Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, NASA‐Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Daniel Vellone
- Vermont Integrative Genomics Lab, University of Vermont Cancer Center, Health Science Research Facility, Burlington, Vermont, USA
| | - Scott Tighe
- Vermont Integrative Genomics Lab, University of Vermont Cancer Center, Health Science Research Facility, Burlington, Vermont, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA‐Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
8
|
Leo P, de Melo Texeira M, Chander AM, Singh NK, Simpson AC, Yurkov A, Karouia F, Stajich JE, Mason CE, Venkateswaran K. Genomic characterization and radiation tolerance of Naganishia kalamii sp. nov. and Cystobasidium onofrii sp. nov. from Mars 2020 mission assembly facilities. IMA Fungus 2023; 14:15. [PMID: 37568226 PMCID: PMC10422843 DOI: 10.1186/s43008-023-00119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
During the construction and assembly of the Mars 2020 mission components at two different NASA cleanrooms, several fungal strains were isolated. Based on their colony morphology, two strains that showed yeast-like appearance were further characterized for their phylogenetic position. The species-level classification of these two novel strains, using traditional colony and cell morphology methods combined with the phylogenetic reconstructions using multi-locus sequence analysis (MLSA) based on several gene loci (ITS, LSU, SSU, RPB1, RPB2, CYTB and TEF1), and whole genome sequencing (WGS) was carried out. This polyphasic taxonomic approach supported the conclusion that the two basidiomycetous yeasts belong to hitherto undescribed species. The strain FJI-L2-BK-P3T, isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility, was placed in the Naganishia albida clade (Filobasidiales, Tremellomycetes), but is genetically and physiologically different from other members of the clade. Another yeast strain FKI-L6-BK-PAB1T, isolated from the Kennedy Space Center Payload Hazardous and Servicing Facility, was placed in the genus Cystobasidium (Cystobasidiales, Cystobasidiomycetes) and is distantly related to C. benthicum. Here we propose two novel species with the type strains, Naganishia kalamii sp. nov. (FJI-L2-BK-P3T = NRRL 64466 = DSM 115730) and Cystobasidium onofrii sp. nov. (FKI-L6-BK-PAB1T = NRRL 64426 = DSM 114625). The phylogenetic analyses revealed that single gene phylogenies (ITS or LSU) were not conclusive, and MLSA and WGS-based phylogenies were more advantageous for species discrimination in the two genera. The genomic analysis predicted proteins associated with dehydration and desiccation stress-response and the presence of genes that are directly related to osmotolerance and psychrotolerance in both novel yeasts described. Cells of these two newly-described yeasts were exposed to UV-C radiation and compared with N. onofrii, an extremophilic UV-C resistant cold-adapted Alpine yeast. Both novel species were UV resistant, emphasizing the need for collecting and characterizing extremotolerant microbes, including yeasts, to improve microbial reduction techniques used in NASA planetary protection programs.
Collapse
Affiliation(s)
- Patrick Leo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Mestre, Italy
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'università snc, 01100, Viterbo, Italy
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-103, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Marcus de Melo Texeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Atul M Chander
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-103, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Nitin K Singh
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-104, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Anna C Simpson
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-103, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, PO BOX 1 MS 239/4, Moffett Field, CA, 94035, USA
- Space Research Within Reach, San Francisco, CA, 941110, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of CA-Riverside, Riverside, CA, 92521, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Kasthuri Venkateswaran
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-104, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
9
|
Rush RE, Blackwood CB, Lemons AR, Dannemiller KC, Green BJ, Croston TL. Persisting Cryptococcus yeast species Vishniacozyma victoriae and Cryptococcus neoformans elicit unique airway inflammation in mice following repeated exposure. Front Cell Infect Microbiol 2023; 13:1067475. [PMID: 36864880 PMCID: PMC9971225 DOI: 10.3389/fcimb.2023.1067475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Background Allergic airway disease (AAD) is a growing concern in industrialized nations and can be influenced by fungal exposures. Basidiomycota yeast species such as Cryptococcus neoformans are known to exacerbate allergic airway disease; however, recent indoor assessments have identified other Basidiomycota yeasts, including Vishniacozyma victoriae (syn. Cryptococcus victoriae), to be prevalent and potentially associated with asthma. Until now, the murine pulmonary immune response to repeated V. victoriae exposure was previously unexplored. Objective This study aimed to compare the immunological impact of repeated pulmonary exposure to Cryptococcus yeasts. Methods Mice were repeatedly exposed to an immunogenic dose of C. neoformans or V. victoriae via oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were collected to examine airway remodeling, inflammation, mucous production, cellular influx, and cytokine responses at 1 day and 21 days post final exposure. The responses to C. neoformans and V. victoriae were analyzed and compared. Results Following repeated exposure, both C. neoformans and V. victoriae cells were still detectable in the lungs 21 days post final exposure. Repeated C. neoformans exposure initiated myeloid and lymphoid cellular infiltration into the lung that worsened over time, as well as an IL-4 and IL-5 response compared to PBS-exposed controls. In contrast, repeated V. victoriae exposure induced a strong CD4+ T cell-driven lymphoid response that started to resolve by 21 days post final exposure. Discussion C. neoformans remained in the lungs and exacerbated the pulmonary immune responses as expected following repeated exposure. The persistence of V. victoriae in the lung and strong lymphoid response following repeated exposure were unexpected given its lack of reported involvement in AAD. Given the abundance in indoor environments and industrial utilization of V. victoriae, these results highlight the importance to investigate the impact of frequently detected fungal organisms on the pulmonary response following inhalational exposure. Moreover, it is important to continue to address the knowledge gap involving Basidiomycota yeasts and their impact on AAD.
Collapse
Affiliation(s)
- Rachael E. Rush
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Brett J. Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
10
|
Nikitin DA. Ecological Characteristics of Antarctic Fungi. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:32-54. [PMID: 37186046 DOI: 10.1134/s0012496622700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 05/17/2023]
Abstract
In view of the high responsiveness of polar ecosystems to the global climate change, the research of Antarctic microorganisms has become a topical issue. The unique ecosystems that have developed under the severe climate conditions of the continent lack flowering plants but are dominated by soil mycobiota. In addition to performing their classical ecological functions, Antarctic fungi form the basis of local communities, e.g., endoliths and microbial mats. Furthermore, Antarctic fungi are a major force that mediates transformation of rock minerals in situ and makes biologically significant elements available for other organisms. For these reasons, mycobiota plays a central role in the maintenance of ecological equilibrium in Antarctica. The dominant fungal division on the continent is Ascomycota (77.1%), and not Basidiomycota (9.1%), as it is the case on other continents. For a number of reasons, yeasts and yeast-like micromycetes (mainly basidiomycetes) are more tolerant to extreme conditions in various Antarctic biotopes than filamentous fungi. Substantial evidence suggests that filamentous fungi and yeasts are better adapted to existence in ecosystems with extremely low temperatures than other microorganisms. Due to the long-term isolation of Antarctica from other continents, local biota has been evolving largely independently, which led to emergence of multiple endemic fungal taxa. The presence of eurytopes on the continent is presumably related to the global warming and growing anthropogenic pressure. This review discusses the current state of research on the structure of fungal communities of Antarctic subaerial and subaquatic biotopes, the ecological role of yeast-mycelial dimorphism in Antarctic fungi, the problem of endemism of Antarctic mycobiota, as well as the ecological and physiological adaptations of fungi to low temperatures; it also justifies the relevance of research into secondary metabolites of psychrophilic micromycetes.
Collapse
Affiliation(s)
- D A Nikitin
- Dokuchaev Soil Science Institute, 119017, Moscow, Russia.
- Institute of Geography, Russian Academy of Sciences, 119017, Moscow, Russia.
| |
Collapse
|
11
|
da Silva MK, de Souza LMD, Vieira R, Neto AA, Lopes FAC, de Oliveira FS, Convey P, Carvalho-Silva M, Duarte AWF, Câmara PEAS, Rosa LH. Fungal and fungal-like diversity in marine sediments from the maritime Antarctic assessed using DNA metabarcoding. Sci Rep 2022; 12:21044. [PMID: 36473886 PMCID: PMC9726857 DOI: 10.1038/s41598-022-25310-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila. Thelebolus balaustiformis, Pseudogymnoascus sp., Fungi sp. 1, Ciliophora sp., Agaricomycetes sp. and Chaetoceros sp. were the dominant assigned taxa. Thirty-eight fungal ASVs could only be assigned to higher taxonomic levels, and may represent taxa not currently included in the available databases or represent new taxa and/or new records for Antarctica. The total fungal community displayed high indices of diversity, richness and moderate to low dominance. However, diversity and taxa distribution varied across the three sampling sites. In Walker Bay, unidentified fungi were dominant in the sequence assemblage. Whalers Bay sediment was dominated by Antarctic endemic and cold-adapted taxa. Sediment from English Strait was dominated by Ciliophora sp. and Chaetoceros sp. These fungal assemblages were dominated by saprotrophic, plant and animal pathogenic and symbiotic taxa. The detection of an apparently rich and diverse fungal community in these marine sediments reinforces the need for further studies to characterize their richness, functional ecology and potential biotechnological applications.
Collapse
Affiliation(s)
- Mayanne Karla da Silva
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Láuren Machado Drumond de Souza
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal Do Tocantins, Porto Nacional, Brazil
| | - Fábio S de Oliveira
- Departamento de Geografia, Universidade Federal de Minas, Gerais, Minas Gerais, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
| | | | | | | | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
12
|
Moreira LM, Meyer W, Chame M, Brandão ML, Vivoni AM, Portugal J, Wanke B, Trilles L. Molecular Detection of Histoplasma capsulatum in Antarctica. Emerg Infect Dis 2022; 28:2100-2104. [PMID: 36148943 PMCID: PMC9514353 DOI: 10.3201/eid2810.220046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We detected Histoplasma capsulatum in soil and penguin excreta in the Antarctic Peninsula by sequencing after performing species-specific PCR, confirming previous observations that this pathogen occurs more broadly than suspected. This finding highlights the need for surveillance of emerging agents of systemic mycoses and their transmission among regions, animals, and humans in Antarctica.
Collapse
|
13
|
da Silva TH, Queres Gomes EC, Gonçalves VN, da Costa MC, Valério AD, de Assis Santos D, Johann S, Convey P, Rosa CA, Rosa LH. Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? Fungal Biol 2022; 126:488-497. [DOI: 10.1016/j.funbio.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
|
14
|
Rosa LH, de Menezes GCA, Pinto OHB, Convey P, Carvalho-Silva M, Simões JC, Rosa CA, Câmara PEAS. Fungal diversity in seasonal snow of Martel Inlet, King George Island, South Shetland Islands, assessed using DNA metabarcoding. Polar Biol 2022. [DOI: 10.1007/s00300-022-03014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
MENEZES GRACIÉLECDE, PORTO BÁRBARAA, RADICCHI GERUSAA, SOARES FERNANDAC, ZARANKIN ANDRÉS, ROSA LUIZH. Fungal impact on archaeological materials collected at Byers Peninsula Livingston Island, South Shetland Islands, Antarctica. AN ACAD BRAS CIENC 2022; 94:e20210218. [DOI: 10.1590/0001-3765202220210218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
|
16
|
Fungal diversity in the coastal waters of King George Island (maritime Antarctica). World J Microbiol Biotechnol 2021; 37:142. [PMID: 34322842 DOI: 10.1007/s11274-021-03112-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Fungi have been reported as common inhabitants of the maritime waters in Antarctica by studies based on culture-dependent methods. More recently, results obtained using DNA sequencing technologies, revealed that fungal diversity worldwide has been underestimated by culture methods. The present study provides the first characterization of fungal communities in the coastal waters of King George Island (maritime Antarctica) using both culture-dependent and high-throughput sequencing (HTS) methods. HTS demostrated a higher level of fungal diversity than the obtained by culture methods. A high prevalence of basidiomycetous yeasts and ascomycetous filamentous fungi was confirmed by both methods, however, Chythriomycota, Rozellomycota, lichenized fungi and Malassezia spp. were detected only by HTS. Correspondingly, members of some genera, such as Metschnikowia, were only found by culture-dependent methods. Our results confirm that culturing and HTS, should be seen as complementary approaches that enable one to obtain a more comprehensive picture of the composition of microbial communities.
Collapse
|
17
|
Coutinho JOPA, Quintanilha MF, Campos MRA, Ferreira E, de Menezes GCA, Rosa LH, Rosa CA, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Tiago FCP, Martins FS. Antarctic Strain of Rhodotorula mucilaginosa UFMGCB 18,377 Attenuates Mucositis Induced by 5-Fluorouracil in Mice. Probiotics Antimicrob Proteins 2021; 14:486-500. [PMID: 34255281 DOI: 10.1007/s12602-021-09817-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Mucositis is one of the most strenuous side effects caused by chemotherapy drugs, such as 5-fluorouracil (5-FU), during the treatment of several types of cancers. The disease is so prevalent and aggressive that many patients cannot resist such symptoms. However, despite its frequency and clinical significance, there is no effective treatment to prevent or treat mucositis. Thus, the use of probiotics as an adjuvant for the treatment has gained prominence. In the present study, we evaluated the effectiveness of oral administration of the Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 as an alternative to minimize side effects of 5-FU-induced mucositis in mice. Body weight, food consumption, stool consistency, and presence of blood in the feces were assessed daily in mice orally treated or not with the yeast and submitted or not to experimental mucositis. Blood, bones, and intestinal tissues and fluid were used to determine intestinal permeability and immunological, microbiological, and histopathological parameters. Treatment with R. mucilaginosa UFMGCB 18,377 was able to decrease clinical signs of the disease, such as reduction of food intake and body weight loss, and also decreased the number of intestinal enterobacteria and intestinal length shortening. Additionally, treatment was able to decrease the levels of MPO and EPO activities and inflammatory infiltrates, as well as the histopathological lesions characteristic of mucositis in the jejunum and ileum. Results of the present study showed that the oral administration of R. mucilaginosa UFMGCB 18,377 protected mice against mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Joana O P A Coutinho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mônica F Quintanilha
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina R A Campos
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana C P Tiago
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 30270-901, Brazil.
| |
Collapse
|
18
|
Ogaki MB, Pinto OHB, Vieira R, Neto AA, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS, Rosa LH. Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding. MICROBIAL ECOLOGY 2021; 82:157-164. [PMID: 33404819 DOI: 10.1007/s00248-020-01658-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
We assessed fungal diversity in deep-sea sediments obtained from different depths in the Southern Ocean using the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA by metabarcoding through high-throughput sequencing (HTS). We detected 655,991 DNA reads representing 263 fungal amplicon sequence variants (ASVs), dominated by Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Chytridiomycota and Rozellomycota, confirming that deep-sea sediments can represent a hotspot of fungal diversity in Antarctica. The community diversity detected included 17 dominant fungal ASVs, 62 intermediate and 213 rare. The dominant fungi included taxa of Mortierella, Penicillium, Cladosporium, Pseudogymnoascus, Phaeosphaeria and Torula. Despite the extreme conditions of the Southern Ocean benthos, the total fungal community detected in these marine sediments displayed high indices of diversity and richness, and moderate dominance, which varied between the different depths sampled. The highest diversity indices were obtained in sediments from 550 m and 250 m depths. Only 49 ASVs (18.63%) were detected at all the depths sampled, while 16 ASVs were detected only in the deepest sediment sampled at 1463 m. Based on sequence identities, the fungal community included some globally distributed taxa, primarily recorded otherwise from terrestrial environments, suggesting transport from these to deep marine sediments. The assigned taxa included symbionts, decomposers and plant-, animal- and human-pathogenic fungi, suggesting that deep-sea sediments host a complex fungal diversity, although metabarcoding does not itself confirm that living or viable organisms are present.
Collapse
Affiliation(s)
| | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Carlos Augusto Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Horizonte, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Horizonte, Brazil.
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
19
|
Wang X, Schlatter DC, Glawe DA, Edwards CG, Weller DM, Paulitz TC, Abatzoglou JT, Okubara PA. Native yeast and non-yeast fungal communities of Cabernet Sauvignon berries from two Washington State vineyards, and persistence in spontaneous fermentation. Int J Food Microbiol 2021; 350:109225. [PMID: 34023678 DOI: 10.1016/j.ijfoodmicro.2021.109225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
To address a knowledge gap about the grape berry mycobiome from Washington State vineyards, next-generation sequencing of the internal transcribed spacer region (ITS1) was used to identify native yeast and fungal species on berries of cultivar 'Cabernet Sauvignon' from two vineyards at veraison and harvest in 2015 and 2016. Four hundred fifty-six different yeast amplicon sequence variants (ASV), representing 184 distinct taxa, and 2467 non-yeast fungal ASV (791 distinct taxa) were identified in this study. A set of 50 recurrent yeast taxa, including Phaeococcomyces, Vishniacozyma and Metschnikowia, were found at both locations and sampling years. These yeast species were monitored from the vineyard into laboratory-scale spontaneous fermentations. Taxa assignable to Metschnikowia and Saccharomyces persisted during fermentation, whereas Curvibasidium, which also has possible impact on biocontrol and wine quality, did not. Sulfite generally reduced yeast diversity and richness, but its effect on the abundance of specific yeasts during fermentation was negligible. Among the 106 recurring non-yeast fungal taxa, Alternaria, Cladosporium and Ulocladium were especially abundant in the vineyard. Vineyard location was the primary factor that accounted for the variation among both communities, followed by year and berry developmental stage. The Washington mycobiomes were compared to those from other parts of the world. Sixteen recurrent yeast species appeared to be unique to Washington State vineyards. This subset also contained a higher proportion of species associated with cold and extreme environments, relative to other localities. Certain yeast and non-yeast fungal species known to suppress diseases or modify wine sensory properties were present in Washington vineyards, and likely have consequences to vineyard health and wine quality.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Enology, Northwest A&F University, Shaanxi 712100, China; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Daniel C Schlatter
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - Dean A Glawe
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, WA 99163-6376, USA.
| | - David M Weller
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - Timothy C Paulitz
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - John T Abatzoglou
- Management of Complex Systems, University of California, Merced, Merced, CA 95343, USA.
| | - Patricia A Okubara
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| |
Collapse
|
20
|
Canini F, Geml J, Buzzini P, Turchetti B, Onofri S, D’Acqui LP, Ripa C, Zucconi L. Growth Forms and Functional Guilds Distribution of Soil Fungi in Coastal Versus Inland Sites of Victoria Land, Antarctica. BIOLOGY 2021; 10:biology10040320. [PMID: 33920495 PMCID: PMC8070035 DOI: 10.3390/biology10040320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
In Victoria Land, Antarctica, ice-free areas are restricted to coastal regions and dominate the landscape of the McMurdo Dry Valleys. These two environments are subjected to different pressures that determine the establishment of highly adapted fungal communities. Within the kingdom of fungi, filamentous, yeasts and meristematic/microcolonial growth forms on one side and different lifestyles on the other side may be considered adaptive strategies of particular interest in the frame of Antarctic constraints. In this optic, soil fungal communities from both coastal and Dry Valleys sites, already characterized thorough ITS1 metabarcoding sequencing, have been compared to determine the different distribution of phyla, growth forms, and lifestyles. Though we did not find significant differences in the richness between the two environments, the communities were highly differentiated and Dry Valleys sites had a higher evenness compared to coastal ones. Additionally, the distribution of different growth forms and lifestyles were well differentiated, and their diversity and composition were likely influenced by soil abiotic parameters, among which soil granulometry, pH, P, and C contents were the potential main determinants.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
- Correspondence: ; Tel.: +39-0761357138
| | - József Geml
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands;
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, H-3300 Eger, Hungary
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (P.B.); (B.T.)
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (P.B.); (B.T.)
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
| | - Luigi Paolo D’Acqui
- Research Institute of Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), 50019 Sesto Fiorentino, Italy;
| | - Caterina Ripa
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
| |
Collapse
|
21
|
In Vitro and In Vivo Evaluation of the Probiotic Potential of Antarctic Yeasts. Probiotics Antimicrob Proteins 2021; 13:1338-1354. [PMID: 33759043 DOI: 10.1007/s12602-021-09758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Antarctica is one of the most pristine and inhospitable regions of the planet, mostly inhabited by microorganisms that survive due to unusual metabolic pathways to adapt to its extreme conditions, which could be interesting for the selection of new probiotics. The aim of the present study was to screen in vitro and in vivo putative probiotics among 254 yeasts isolated from different habitats of Antarctica. In vitro selection evaluated functional (growth at 37 °C, resistance to simulated gastric environment, and to bile salts), safety (degradation of mucin, production of β-haemolysis and resistance to antifungal drugs), and beneficial (production of antagonistic substances and adhesion to pathogens) properties. Twelve yeasts were able to grow at 37 °C, one of which was eliminated to present β-haemolytic ability. The remained yeasts resisted to gastric simulation and bile salts, but none presented antagonism against the pathogens tested. Because of the high co-aggregation with Salmonella enterica Typhimurium and growth yield, Rhodotorula mucilaginosa UFMGCB 18377 and Saccharomyces cerevisiae UFMGCB 11120 were selected for in vivo steps using mice challenged with S. Typhimurium. Both yeasts reached high faecal population levels when daily administered, but only R. mucilaginosa UFMGCB 18377 protected mice against Salmonella infection presenting a higher survival and reduced weight loss, bacterial translocation to the liver, sIgA intestinal levels, and intestinal and hepatic MPO and EPO activities. Our in vitro and in vivo results suggest that R. mucilaginosa UFMGCB 18377 presents probiotic potential and deserve further studies as candidate of probiotic by-products. In addition, this is the first screening study of yeasts isolated from Antarctic environments and of Rhodotorula genus for probiotic use.
Collapse
|
22
|
Logan JR, Jacobson KM, Jacobson PJ, Evans SE. Fungal Communities on Standing Litter Are Structured by Moisture Type and Constrain Decomposition in a Hyper-Arid Grassland. Front Microbiol 2021; 12:596517. [PMID: 33716999 PMCID: PMC7943874 DOI: 10.3389/fmicb.2021.596517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Non-rainfall moisture (fog, dew, and water vapor; NRM) is an important driver of plant litter decomposition in grasslands, where it can contribute significantly to terrestrial carbon cycling. However, we still do not know whether microbial decomposers respond differently to NRM and rain, nor whether this response affects litter decomposition rates. To determine how local moisture regimes influence decomposer communities and their function, we examined fungal communities on standing grass litter at an NRM-dominated site and a rain-dominated site 75 km apart in the hyper-arid Namib Desert using a reciprocal transplant design. Dominant taxa at both sites consisted of both extremophilic and cosmopolitan species. Fungal communities differed between the two moisture regimes with environment having a considerably stronger effect on community composition than did stage of decomposition. Community composition was influenced by the availability of air-derived spores at each site and by specialization of fungi to their home environment; specifically, fungi from the cooler, moister NRM Site performed worse (measured as fungal biomass and litter mass loss) when moved to the warmer, drier rain-dominated site while Rain Site fungi performed equally well in both environments. Our results contribute to growing literature demonstrating that as climate change alters the frequency, magnitude and type of moisture events in arid ecosystems, litter decomposition rates may be altered and constrained by the composition of existing decomposer communities.
Collapse
Affiliation(s)
- J Robert Logan
- W.K. Kellogg Biological Station, Hickory Corners, MI, United States.,Department of Integrative Biology, Michigan State University, East Lansing, MI, United States.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | | | - Peter J Jacobson
- Department of Biology, Grinnell College, Grinnell, IA, United States
| | - Sarah E Evans
- W.K. Kellogg Biological Station, Hickory Corners, MI, United States.,Department of Integrative Biology, Michigan State University, East Lansing, MI, United States.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
23
|
Martínez-Ávila L, Peidro-Guzmán H, Pérez-Llano Y, Moreno-Perlín T, Sánchez-Reyes A, Aranda E, Ángeles de Paz G, Fernández-Silva A, Folch-Mallol JL, Cabana H, Gunde-Cimerman N, Batista-García RA. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116358. [PMID: 33385892 DOI: 10.1016/j.envpol.2020.116358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
Collapse
Affiliation(s)
- Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Arline Fernández-Silva
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
24
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Rosa LH, da Silva TH, Ogaki MB, Pinto OHB, Stech M, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS. DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep 2020; 10:21986. [PMID: 33319803 PMCID: PMC7738542 DOI: 10.1038/s41598-020-78934-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023] Open
Abstract
We assessed soil fungal diversity at two sites on Deception Island, South Shetland Islands, Antarctica using DNA metabarcoding analysis. The first site was a relatively undisturbed area, and the second was much more heavily impacted by research and tourism. We detected 346 fungal amplicon sequence variants dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Chytridiomycota. We also detected taxa belonging to the rare phyla Mucoromycota and Rozellomycota, which have been difficult to detect in Antarctica by traditional isolation methods. Cladosporium sp., Pseudogymnoascus roseus, Leotiomycetes sp. 2, Penicillium sp., Mortierella sp. 1, Mortierella sp. 2, Pseudogymnoascus appendiculatus and Pseudogymnoascus sp. were the most dominant fungi. In addition, 440,153 of the total of 1,214,875 reads detected could be classified only at the level of Fungi. In both sampling areas the DNA of opportunistic, phytopathogenic and symbiotic fungi were detected, which might have been introduced by human activities, transported by birds or wind, and/or represent resident fungi not previously reported from Antarctica. Further long-term studies are required to elucidate how biological colonization in the island may be affected by climatic changes and/or other anthropogenic influences.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Laboratório de Microbiologia Polar & Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| | - Thamar Holanda da Silva
- Laboratório de Microbiologia Polar & Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Mayara Baptistucci Ogaki
- Laboratório de Microbiologia Polar & Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | - Michael Stech
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar & Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | |
Collapse
|
26
|
Rosa LH, Pinto OHB, Šantl-Temkiv T, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS. DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep 2020; 10:21793. [PMID: 33311553 PMCID: PMC7733504 DOI: 10.1038/s41598-020-78630-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
We assessed fungal diversity present in air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). A total of 740 m3 of air were pumped through a 0.22 µm membrane. Snow obtained shortly after deposition was kept at room temperature and yielded 3.760 L of water, which was filtered using Sterivex membranes of 0.22 µm mesh size. The total DNA present was extracted and sequenced. We detected 171 fungal amplicon sequence variants (ASVs), 70 from the air and 142 from the snow. They were dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Pseudogymnoascus, Cladosporium, Mortierella and Penicillium sp. were the most dominant ASVs detected in the air in rank order. In snow, Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, Lecidea, Malassezia, Hanseniaspora, Austroplaca, Mortierella, Rhodotorula, Penicillium, Thelebolus, Aspergillus, Poaceicola, Glarea and Lecanora were the dominant ASVs present. In general, the two fungal assemblages displayed high diversity, richness, and dominance indices, with the assemblage found in snow having the highest diversity indices. Of the total fungal ASVs detected, 29 were only present in the air sample and 101 in the snow sample, with only 41 present in both samples; however, when only the dominant taxa from both samples were compared none occurred only in the air and, among the rare portion, 26 taxa occurred in both air and snow. Application of HTS revealed the presence of a more diverse fungal community in the air and snow of Livingston Island in comparison with studies using traditional isolation methods. The assemblages were dominated by cold-adapted and cosmopolitan fungal taxa, including members of the genera Pseudogymnoascus, Malassezia and Rhodotorula, which include some taxa reported as opportunistic. Our results support the hypothesis that the presence of microbiota in the airspora indicates the possibility of dispersal around Antarctica in the air column. However, further aeromycology studies are required to understand the dynamics of fungal dispersal within and beyond Antarctica.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| | | | - Tina Šantl-Temkiv
- Department of Bioscience, Aarhus University, Building 1540 Office 124, 116 Ny Munkegade, 8000, Aarhus C, Denmark
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | |
Collapse
|
27
|
Gorshkov V, Osipova E, Ponomareva M, Ponomarev S, Gogoleva N, Petrova O, Gogoleva O, Meshcherov A, Balkin A, Vetchinkina E, Potapov K, Gogolev Y, Korzun V. Rye Snow Mold-Associated Microdochium nivale Strains Inhabiting a Common Area: Variability in Genetics, Morphotype, Extracellular Enzymatic Activities, and Virulence. J Fungi (Basel) 2020; 6:E335. [PMID: 33287447 PMCID: PMC7761817 DOI: 10.3390/jof6040335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Snow mold is a severe plant disease caused by psychrophilic or psychrotolerant fungi, of which Microdochium species are the most harmful. A clear understanding of Microdochium biology has many gaps; the pathocomplex and its dynamic are poorly characterized, virulence factors are unknown, genome sequences are not available, and the criteria of plant snow mold resistance are not elucidated. Our study aimed to identify comprehensive characteristics of a local community of snow mold-causing Microdochium species colonizing a particular crop culture. By using the next-generation sequencing (NGS) technique, we characterized fungal and bacterial communities of pink snow mold-affected winter rye (Secale cereale) plants within a given geographical location shortly after snowmelt. Twenty-one strains of M. nivale were isolated, classified on the basis of internal transcribed spacer 2 (ITS2) region, and characterized by morphology, synthesis of extracellular enzymes, and virulence. Several types of extracellular enzymatic activities, the level of which had no correlations with the degree of virulence, were revealed for Microdochium species for the first time. Our study shows that genetically and phenotypically diverse M. nivale strains simultaneously colonize winter rye plants within a common area, and each strain is likely to utilize its own, unique strategy to cause the disease using "a personal" pattern of extracellular enzymes.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Elena Osipova
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Mira Ponomareva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Sergey Ponomarev
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Natalia Gogoleva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Olga Petrova
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Olga Gogoleva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Azat Meshcherov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Alexander Balkin
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Elena Vetchinkina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Kim Potapov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Yuri Gogolev
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
| | - Viktor Korzun
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.O.); (M.P.); (S.P.); (N.G.); (O.P.); (O.G.); (A.M.); (A.B.); (K.P.); (Y.G.); (V.K.)
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
28
|
Batista TM, Hilario HO, de Brito GAM, Moreira RG, Furtado C, de Menezes GCA, Rosa CA, Rosa LH, Franco GR. Whole-genome sequencing of the endemic Antarctic fungus Antarctomyces pellizariae reveals an ice-binding protein, a scarce set of secondary metabolites gene clusters and provides insights on Thelebolales phylogeny. Genomics 2020; 112:2915-2921. [DOI: 10.1016/j.ygeno.2020.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
|
29
|
Cultivable fungi associated with bryosphere of bipolar mosses Polytrichastrum alpinum and Polytrichum juniperinum in King George Island, South Shetland Islands, Maritime Antarctica. Polar Biol 2020. [DOI: 10.1007/s00300-020-02658-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Coleine C, Pombubpa N, Zucconi L, Onofri S, Stajich JE, Selbmann L. Endolithic Fungal Species Markers for Harshest Conditions in the McMurdo Dry Valleys, Antarctica. Life (Basel) 2020; 10:E13. [PMID: 32041249 PMCID: PMC7175349 DOI: 10.3390/life10020013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
The microbial communities that inhabit lithic niches inside sandstone in the Antarctic McMurdo Dry Valleys of life's limits on Earth. The cryptoendolithic communities survive in these ice-free areas that have the lowest temperatures on Earth coupled with strong thermal fluctuations, extreme aridity, oligotrophy and high levels of solar and UV radiation. In this study, based on DNA metabarcoding, targeting the fungal Internal Transcribed Spacer region 1 (ITS1) and multivariate statistical analyses, we supply the first comprehensive overview onto the fungal diversity and composition of these communities sampled over a broad geographic area of the Antarctic hyper-arid cold desert. Six locations with surfaces that experience variable sun exposure were sampled to compare communities from a common area across a gradient of environmental pressure. The Operational Taxonomic Units (OTUs) identified were primarily members of the Ascomycota phylum, comprised mostly of the Lecanoromycetes and Dothideomycetes classes. The fungal species Friedmanniomyces endolithicus, endemic to Antarctica, was found to be a marker species to the harshest conditions occurring in the shady, south exposed rock surfaces. Analysis of community composition showed that sun exposure was an environmental property that explained community diversity and structured endolithic colonization.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA;
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy
| |
Collapse
|