1
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
2
|
Liu X, Wang J, Deng H, Zhong X, Li C, Luo Y, Chen L, Zhang B, Wang D, Huang Y, Zhang J, Guo L. In situ analysis of variations of arsenicals, microbiome and transcriptome profiles along murine intestinal tract. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127899. [PMID: 34876320 DOI: 10.1016/j.jhazmat.2021.127899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In situ-based studies on microbiome-host interactions after arsenic exposure are few. In this study, the variations in arsenics, microbiota, and host genes along murine intestinal tracts were determined after arsenic exposure for two months. There was a gradual increase in the concentration of total As (CtAs) in feces from ileum to colon, whereas CtAs in the corresponding tissues were relatively stable. Differences in arsenic levels between feces and tissues were significantly different. The proportion of arsenite (iAsⅢ) in feces gradually decreased, however, it gradually increased in tissues. After arsenic exposure, the diversity and abundance of microbial community and networks in each segment were significantly dysregulated. Notably, 328, 579 and 90 differently expressed genes were detected in ileum, cecum, and colon, respectively. In addition, microbiome and transcriptome analyses showed a significant correlation between the abundance of Faecalibaculum and expressions of Plb1, Hspa1b, Areg and Duoxa2 genes. This implies that they may be involved in arsenic biotransformation. In vitro experiments using Biofidobactrium and Lactobacillus showed that probiotics have arsenic transformation abilities. Therefore, gut microbiome may modulate arsenic accumulation, excretion and detoxification along the digestive tract. Moreover, the abundance and diversity of gut microbiome may be related to the changes in host health.
Collapse
Affiliation(s)
- Xin Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Hongyu Deng
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China.
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yixiang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jingjing Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
3
|
Lactobacillus paracasei CNCM I 1572: A Promising Candidate for Management of Colonic Diverticular Disease. J Clin Med 2022; 11:jcm11071916. [PMID: 35407527 PMCID: PMC8999804 DOI: 10.3390/jcm11071916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Diverticular disease (DD) is a common gastrointestinal condition. Patients with DD experience a huge variety of chronic nonspecific symptoms, including abdominal pain, bloating, and altered bowel habits. They are also at risk of complications such as acute diverticulitis, abscess formation, hemorrhage, and perforation. Intestinal dysbiosis and chronic inflammation have recently been recognized as potential key factors contributing to disease progression. Probiotics, due to their ability to modify colonic microbiota balance and to their immunomodulatory effects, could present a promising treatment option for patients with DD. Lactobacillus paracasei CNCM I 1572 (LCDG) is a probiotic strain with the capacity to rebalance gut microbiota and to decrease intestinal inflammation. This review summarizes the available clinical data on the use of LCDG in subjects with colonic DD.
Collapse
|
4
|
Mirzaei H, Sedighi S, Kouchaki E, Barati E, Dadgostar E, Aschner M, Tamtaji OR. Probiotics and the Treatment of Parkinson's Disease: An Update. Cell Mol Neurobiol 2021; 42:2449-2457. [PMID: 34283340 DOI: 10.1007/s10571-021-01128-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized by motor and non-motor features. Although some progress has been made in conventional PD treatments, these breakthroughs have yet to show high efficacy in treating this neurodegenerative disease. Probiotics are live microorganisms that confer health benefits on the host when administered in adequate amounts. Probiotics have putative anticancer, antioxidative, anti-inflammatory, and neuroprotective effects. Multiple lines of evidence show that probiotics control and improve several motor and non-motor symptoms in patients and experimental animal models of PD. Probiotic supplementation mediates these pharmacological effects by targeting a variety of cellular and molecular processes, i.e., oxidative stress, inflammatory and anti-inflammatory pathways, as well as apoptosis. Herein, we summarize the effects of probiotics on motor and non-motor symptoms as well as various cellular and molecular pathways in PD.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Ebrahim Kouchaki
- Department of Neurology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Ehsan Dadgostar
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran. .,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shini S, Bryden WL. Probiotics and gut health: linking gut homeostasis and poultry productivity. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of probiotics in poultry production has increased rapidly, and this movement has been promoted by global events, such as the prohibition or decline in the use of antibiotic growth promotants in poultry feeds. There has been a persistent search for alternative feed additives, and probiotics have shown that they can restore the composition of the gut microbiota, and produce health benefits to the host, including improvements in performance. Probiotics have shown potential to increase productivity in poultry, especially in flocks challenged by stressors. However, the outcomes of probiotic use have not always been consistent. There is an increasing demand for well defined products that can be applied strategically, and currently, probiotic research is focusing on delineating their mechanisms of action in the gut that contribute to an improved efficacy. In particular, mechanisms involved in the maintenance and protection of intestinal barrier integrity and the role of the gut microbiota are being extensively investigated. It has been shown that probiotics modulate intestinal immune pathways both directly and through interactions with the gut microbiota. These interactions are key to maintaining gut homeostasis and function, and improving feed efficiency. Research has demonstrated that probiotics execute their effects through multiple mechanisms. The present review describes recent advances in probiotic use in poultry. It focuses on the current understanding of gut homeostasis and gut health in chickens, and how it can be assessed and improved through supplementation of poultry diets with probiotics in poultry diets. In particular, cellular and molecular mechanisms involved in the maintenance and protection of gut barrier structure and function are described. It also highlights important factors that influence probiotic efficacy and bird performance.
Collapse
|
6
|
Effects of Colonic Fermentation Products of Polydextrose, Lactitol and Xylitol on Intestinal Barrier Repair In Vitro. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many functional food ingredients improve intestinal barrier function through their colonic fermentation products short chain fatty acids (SCFAs). Effects of individual SCFAs have been well studied, but the effects of SCFA mixtures–colonic fermentation products have been rarely investigated. Therefore, this study used an EnteroMix semi-continuous model to simulate the colonic fermentation of three widely used food ingredients, polydextrose, lactitol and xylitol in vitro, and investigated the effects of their fermentation products on impaired colonic epithelial barrier function through a mucus-secreting human HT29-MTX-E12 cell model. Fermentation of polydextrose and lactitol produced mainly acetate, while fermentation of xylitol produced mainly butyrate and resulted in a much higher butyrate proportion. All fermentation products significantly improved intestinal barrier repairing as measured by increased transepithelial electrical resistance and decreased paracellular permeability. Among these, xylitol fermentation products exhibited better repairing effects than that of polydextrose and lactitol. Correlation analysis showed that the repairing effects were attribute to butyrate but not acetate or propionate, implying that in the fermentation products butyrate may play a major role in improving intestinal barrier function. Our results suggest that functional food ingredients that mainly produce butyrate during fermentation may be of more value for improving gut health related to chronic diseases.
Collapse
|
7
|
Liang Y, Cui L, Gao J, Zhu M, Zhang Y, Zhang HL. Gut Microbial Metabolites in Parkinson's Disease: Implications of Mitochondrial Dysfunction in the Pathogenesis and Treatment. Mol Neurobiol 2021; 58:3745-3758. [PMID: 33825149 PMCID: PMC8280023 DOI: 10.1007/s12035-021-02375-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
The search for therapeutic targets for Parkinson's disease (PD) is hindered by the incomplete understanding of the pathophysiology of the disease. Mitochondrial dysfunction is an area with high potential. The neurobiological signaling connections between the gut microbiome and the central nervous system are incompletely understood. Multiple lines of evidence suggest that the gut microbiota participates in the pathogenesis of PD. Gut microbial dysbiosis may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The intervention of gut microbial metabolites via the microbiota-gut-brain axis may serve as a promising therapeutic strategy for PD. In this narrative review, we summarize the potential roles of gut microbial dysbiosis in PD, with emphasis on microbial metabolites and mitochondrial function. We then review the possible ways in which microbial metabolites affect the central nervous system, as well as the impact of microbial metabolites on mitochondrial dysfunction. We finally discuss the possibility of gut microbiota as a therapeutic target for PD.
Collapse
Affiliation(s)
- Yixuan Liang
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
8
|
Forssten SD, Laitila A, Maukonen J, Ouwehand AC. Probiotic triangle of success; strain production, clinical studies and product development. FEMS Microbiol Lett 2020; 367:fnaa167. [PMID: 33049046 PMCID: PMC7578568 DOI: 10.1093/femsle/fnaa167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022] Open
Abstract
The successful development of probiotic foods and dietary supplements rests on three pillars; each with their specific challenges and opportunities. First, strain production; this depends on selecting the right strain with promising technological properties and safety profile. Further the manufacturing of the strain in a stable format at sufficiently high yield, following regulatory and customer requirements on culture media ingredients and other processing aids. The second pillar are the preclinical and clinical studies to document that the strain is a probiotic and exerts a health benefit on the host, the consumer. Especially when aiming for a regulator approved health claim, clinical studies need to be thoroughly performed; following appropriate ethical, scientific and regulatory guidelines. Finally, the probiotic will need to be incorporated in a product that can be brought to the consumer; a dietary supplement or a functional food. Because of the live nature of probiotics, specific challenges may need to be dealt with. Although experience from other strains is helpful in the process, the development is strain specific. Commercialisation and marketing of probiotics are strictly but differently regulated in most jurisdictions; defining what can and cannot be claimed.
Collapse
Affiliation(s)
- Sofia D Forssten
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Arja Laitila
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Johanna Maukonen
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Arthur C Ouwehand
- DuPont Nutrition & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
9
|
López-Moreno A, Suárez A, Avanzi C, Monteoliva-Sánchez M, Aguilera M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-analysis. Nutrients 2020; 12:E1921. [PMID: 32610476 PMCID: PMC7400323 DOI: 10.3390/nu12071921] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing health threat worldwide. Administration of probiotics in obesity has also parallelly increased but without any protocolization. We conducted a systematic review exploring the administration pattern of probiotic strains and effective doses for obesity-related disorders according to their capacity of positively modulating key biomarkers and microbiota dysbiosis. Manuscripts targeting probiotic strains and doses administered for obesity-related disorders in clinical studies were sought. MEDLINE, Scopus, Web of Science, and Cochrane Library databases were searched using keywords during the last fifteen years up to April 2020. Two independent reviewers screened titles, abstracts, and then full-text papers against inclusion criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. From 549 interventional reports identified, we filtered 171 eligible studies, from which 24 full-text assays were used for calculating intervention total doses (ITD) of specific species and strains administered. Nine of these reports were excluded in the second-step because no specific data on gut microbiota modulation was found. Six clinical trials (CT) and 9 animal clinical studies were retained for analysis of complete outcome prioritized (body mass index (BMI), adiposity parameters, glucose, and plasma lipid biomarkers, and gut hormones). Lactobacillus spp. administered were double compared to Bifidobacterium spp.; Lactobacillus as single or multispecies formulations whereas most Bifidobacteria only through multispecies supplementations. Differential factors were estimated from obese populations' vs. obesity-induced animals: ITD ratio of 2 × 106 CFU and patterns of administrations of 11.3 weeks to 5.5 weeks, respectively. Estimation of overall probiotics impact from selected CT was performed through a random-effects model to pool effect sizes. Comparisons showed a positive association between the probiotics group vs. placebo on the reduction of BMI, total cholesterol, leptin, and adiponectin. Moreover, negative estimation appeared for glucose (FPG) and CRP. While clinical trials including data for positive modulatory microbiota capacities suggested that high doses of common single and multispecies of Lactobacillus and Bifidobacterium ameliorated key obesity-related parameters, the major limitation was the high variability between studies and lack of standardized protocols. Efforts in solving this problem and searching for next-generation probiotics for obesity-related diseases would highly improve the rational use of probiotics.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Antonio Suárez
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Camila Avanzi
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
- IBS: Instituto de Investigación Biosanitaria ibs., 18012 Granada, Spain
| |
Collapse
|