1
|
Zheng J, Liu X, Xiong Y, Meng Q, Li P, Zhang F, Liu X, Lin Z, Deng Q, Wen Z, Yu Z. AMXT-1501 targets membrane phospholipids against Gram-positive and -negative multidrug-resistant bacteria. Emerg Microbes Infect 2024; 13:2321981. [PMID: 38422452 PMCID: PMC10906134 DOI: 10.1080/22221751.2024.2321981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)50/MIC90 values for AMXT-1501 in the range of 3.13-12.5 μM (2.24-8.93 μg /mL), including for methicillin-resistant Staphylococcus aureus (MRSA), CR Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. AMXT-1501 was more effective against MRSA and CR E. coli than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of S. aureus and Enterococcus faecalis. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.
Collapse
Affiliation(s)
- Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Qingyin Meng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Fan Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
- Department of Tuberculosis, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, People’s Republic of China
| | - Xiaoming Liu
- Department of Gastroenterology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, People’s Republic of China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Seyedolmohadesin M, Kouhzad M, Götz F, Ashkani M, Aminzadeh S, Bostanghadiri N. Emergence of lineage ST150 and linezolid resistance in Enterococcus faecalis: a molecular epidemiology study of UTIs in Tehran, Iran. Front Microbiol 2024; 15:1464691. [PMID: 39469459 PMCID: PMC11514486 DOI: 10.3389/fmicb.2024.1464691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Background Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections, with Enterococcus species now recognized as the second leading cause of these infections. This study focused on symptomatic UTI cases to investigate the risk factors associated with Enterococcus faecalis clinical isolates in patients from Tehran, Iran. Methods Urine samples were collected from patients presenting with symptomatic UTIs. The identification of E. faecalis isolates was performed using standard microbiological techniques, with confirmation via polymerase chain reaction (PCR). Antibiotic susceptibility testing was conducted using the Kirby-Bauer disc diffusion method. The presence of virulence genes was determined through PCR, and biofilm formation was assessed using the microtiter plate method. Additionally, multi-locus sequence typing (MLST) was utilized to genotype linezolid-resistant isolates. Results Out of 300 UTI cases, E. faecalis was identified as the causative agent in 160 instances. Notably, a high proportion of these isolates exhibited resistance to tetracycline (83.8%) and minocycline (82.5%). Linezolid resistance was observed in 1.3% (n = 2) of the isolates. Conversely, the highest susceptibility rates were observed for vancomycin, penicillin G, ampicillin, and nitrofurantoin, each demonstrating a 98.8% susceptibility rate. Biofilm formation was detected in 25% of the E. faecalis isolates. A significant majority (93.8%) of the isolates harbored the efbA and ace genes, with varying frequencies of esp (72.5%), asa1 (61.2%), cylA (52.5%), and gelE (88.8%) genes. MLST analysis demonstrated that both linezolid-resistant isolates, characterized by strong biofilm formation and the presence of virulence genes, were assigned to the ST150 lineage, which has not been previously documented in clinical settings. Conclusion The emergence of the ST150 clonal lineage, underscores its clinical significance, particularly in relation to linezolid resistance in E. faecalis. This study adds to the growing body of evidence linking specific clonal lineages with antibiotic resistance, highlighting the critical need for ongoing surveillance and molecular characterization of resistant pathogens.
Collapse
Affiliation(s)
- Maryam Seyedolmohadesin
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Azad University, Tehran, Iran
| | - Mobina Kouhzad
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Maedeh Ashkani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Aminzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Zhang GXZ, Liu TT, Ren AX, Liang WX, Yin H, Cai Y. Advances in contezolid: novel oxazolidinone antibacterial in Gram-positive treatment. Infection 2024; 52:787-800. [PMID: 38717734 DOI: 10.1007/s15010-024-02287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE The principal objective of this project was to review and thoroughly examine the chemical characteristics, pharmacological activity, and quantification methods associated with contezolid. METHODS The article was based on published and ongoing preclinical and clinical studies on the application of contezolid. These studies included experiments on the physicochemical properties of contezolid, in vitro antimicrobial research, in vivo antimicrobial research, and clinical trials in various phases. There were no date restrictions on these studies. RESULTS In June 2021, contezolid was approved for treating complicated skin and soft tissue infections. The structural modification of contezolid has resulted in better efficacy compared to linezolid. It inhibits bacterial growth by preventing the production of the functional 70S initiation complex required to translate bacterial proteins. The current evidence has indicated a substantial decline in myelosuppression and monoamine oxidase inhibition without impairing its antibacterial properties. Contezolid was found to have a more significant safety profile and to be metabolised by flavin monooxygenase 5, reducing the risk of harmful effects due to drug-drug interactions. Adjusting doses is unnecessary for patients with mild to moderate renal or hepatic insufficiency. CONCLUSION As an oral oxazolidinone antimicrobial agent, contezolid is effective against multi-drug resistant Gram-positive bacteria. The introduction of contezolid provided a new clinical option.
Collapse
Affiliation(s)
- Guan-Xuan-Zi Zhang
- Medical School of Chinese PLA, Graduate School of Chinese, PLA General Hospital, Beijing, 100853, China
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China
- Department of Health Services, General Hospital of Central Theater Command, Wuhan, 430060, China
| | - Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ai-Xia Ren
- Medical School of Chinese PLA, Graduate School of Chinese, PLA General Hospital, Beijing, 100853, China
- Department of Neurology, Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Wen-Xin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China
| | - Hong Yin
- Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China.
| |
Collapse
|
5
|
Bajpai V, Tiwari S, Mishra A, Sure R, Sarode R, Bharti S, Pandey H, Kapoor A. In Vitro Assessment of Antimicrobial Activity of Novel Fluoroquinolone, Levonadifloxacin (WCK 771) Against Multi-Drug-Resistant Clinical Isolates from Cancer Patients in India. Microb Drug Resist 2024. [PMID: 38350157 DOI: 10.1089/mdr.2022.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Introduction: Rapid increase in antimicrobial-resistance is leading to urgent need for newer broad-spectrum antimicrobials. Therefore, we have evaluated the antimicrobial résistance spectrum of India-discovered novel antibiotics (levonadifloxacin) against clinical isolates recovered from cancer patients. Materials and Methods: The study was conducted in the microbiology department, over a period of 1 year between May 2021 and June 2022 and 374 consecutive and nonduplicate Gram-positive (GPC) and MDR Gram Negative Bacteria (GNB) isolate were analyzed from 3,880 cancer patients in study. The identification and antimicrobial sensitivities of bacterial isolates were performed according to standard laboratory protocols by using automated identification system (VITEK-2-8.01; BioMérieux, Germany). The activity of levonadifloxacin and comparator antibiotics was evaluated using disk diffusion methods as per Clinical and Laboratory Standards Institute 2022 guidelines. Results: The mean age of the patients were 51.6 ± 14.59 years with male: female ratio of 1.2:1. The prevalence of GPC was 167 (44.65%) and MDR-GNB was 207 (55.34%). The most common GPC was Staphylococcus aureus; 97 (58.08%) followed by Enterococcus species 66 (39.52%). In GNB, Escherichia coli; 93 (44.92%) was the most common followed by Klebsiella pneumoniae; 45 (21.73%). Levonadifloxacin susceptibility was present in 98.7% methicillin-resistant S. aureus and 96% methicillin-susceptible S. aureus and 77.1% Enterococcus-species. Additionally, all the fluoroquinolones-resistant S. aureus isolates were susceptible to levonadifloxacin (WCK-771) except one isolate. Also, levonadifloxacin-(WCK-771) exhibits 100% susceptibility fluoroquinolone susceptible GNB, such as E. coli, K. pneumoniae, Pseudomonas species, and Acinetobacter species. Interestingly, all fluoroquinolones-resistant Salmonella species and Stenotrophomonas maltophilla exhibited 100% susceptibility to levonadifloxacin (WCK-771). Conclusion: Levonadifloxacin (WCK-771) possesses potent activity against all the MDR Gram-positive pathogens including the coverage of susceptible Enterobacterales and MDR S. maltophilla and Burkholderia cepacia suggesting its potential utility in the management of polymicrobial infections.
Collapse
Affiliation(s)
- Vijeta Bajpai
- Department of Microbiology, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Shashank Tiwari
- Department of Anaesthesia and Critical Care, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Anwita Mishra
- Department of Microbiology, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Rashmi Sure
- Department of Microbiology, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Rahul Sarode
- Department of Microbiology, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Sujit Bharti
- Department of Microbiology, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Himanshu Pandey
- Department of DMG Urooncology, Department of Surgical Oncology, and Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| | - Akhil Kapoor
- Department of Medical Oncology, Homi Bhabha Cancer Centre/Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi, India
| |
Collapse
|
6
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
7
|
Liu P, Jiang Y, Jiao L, Luo Y, Wang X, Yang T. Strategies for the Discovery of Oxazolidinone Antibacterial Agents: Development and Future Perspectives. J Med Chem 2023; 66:13860-13873. [PMID: 37807849 DOI: 10.1021/acs.jmedchem.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Oxazolidinones represent a significant class of synthetic bacterial protein synthesis inhibitors that are primarily effective against Gram-positive bacteria. The commercial success of linezolid, the first FDA-approved oxazolidinone antibiotic, has motivated researchers to develop more potent oxazolidinones by employing various drug development strategies to fight against antimicrobial resistance, some of which have shown promising results. Thus, this Perspective aims to discuss the strategies employed in constructing oxazolidinone-based antibacterial agents and summarize recent advances in discovering oxazolidinone antibiotics to provide valuable insights for potentially developing next-generation oxazolidinone antibacterial agents or other pharmaceuticals.
Collapse
Affiliation(s)
- Pingxian Liu
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhan Jiang
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Jiao
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Wang
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Center of Infectious Diseases and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
9
|
Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023; 15:pharmaceutics15030804. [PMID: 36986665 PMCID: PMC10056716 DOI: 10.3390/pharmaceutics15030804] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antibacterial fluoroquinolones (FQs) are frequently used in treating infections. However, the value of FQs is debatable due to their association with severe adverse effects (AEs). The Food and Drug Administration (FDA) issued safety warnings concerning their side-effects in 2008, followed by the European Medicine Agency (EMA) and regulatory authorities from other countries. Severe AEs associated with some FQs have been reported, leading to their withdrawal from the market. New systemic FQs have been recently approved. The FDA and EMA approved delafloxacin. Additionally, lascufloxacin, levonadifloxacin, nemonoxacin, sitafloxacin, and zabofloxacin were approved in their origin countries. The relevant AEs of FQs and their mechanisms of occurrence have been approached. New systemic FQs present potent antibacterial activity against many resistant bacteria (including resistance to FQs). Generally, in clinical studies, the new FQs were well-tolerated with mild or moderate AEs. All the new FQs approved in the origin countries require more clinical studies to meet FDA or EMA requirements. Post-marketing surveillance will confirm or infirm the known safety profile of these new antibacterial drugs. The main AEs of the FQs class were addressed, highlighting the existing data for the recently approved ones. In addition, the general management of AEs when they occur and the rational use and caution of modern FQs were outlined.
Collapse
|
10
|
de Souza Nascimento AM, de Oliveira Segundo VH, Felipe Camelo Aguiar AJ, Piuvezam G, Souza Passos T, Florentino da Silva Chaves Damasceno KSFDS, de Araújo Morais AH. Antibacterial action mechanisms and mode of trypsin inhibitors: a systematic review. J Enzyme Inhib Med Chem 2022; 37:749-759. [PMID: 35168466 PMCID: PMC8856033 DOI: 10.1080/14756366.2022.2039918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/09/2022] Open
Abstract
This systematic review (SR) aimed to gather studies describing the antibacterial action mechanisms and mode of trypsin inhibitors. The review protocol was registered (PROSPERO: CRD42020189069). Original articles resulting from studies in animal models, in bacterial culture, and using cells that describe antibacterial action of trypsin inhibitor-type peptides or proteins were selected in PubMed, Science Direct, Scopus, Web of Science, BVS, and EMBASE. The methodological quality assessment was performed using the PRISMA and OHAT tool. 2382 articles were retrieved, 17 of which were eligible. Four studies demonstrated the action mechanism directly on the bacterial membrane, and the fifth study on endogenous proteases extracted from the bacteria themselves. The antibacterial action mode was presented in the other studies, which can generate bacteriostatic or bactericidal effects without describing the mechanisms. This study generated information to enable new preclinical or clinical studies with molecules contributing to public health.
Collapse
Affiliation(s)
| | | | - Ana Júlia Felipe Camelo Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Grasiela Piuvezam
- Postgraduate Program in Public Health, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Public Health, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
11
|
Shang P, Dong S, Han Y, Bo S, Ye Y, Duan M, Chamba Y. Environmental exposure to swine farms reshapes human gut microbiota. CHEMOSPHERE 2022; 307:135558. [PMID: 35780983 DOI: 10.1016/j.chemosphere.2022.135558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The gut microbiota can change to varying degrees because of changes in the environment. In the present study, we performed microbial amplicon sequencing on the feces of people who had long-term exposure to swine farms (F) and that of people living in normal environments (S) to investigate the impact of the environment on the human gut microbiota. A total of 1,283,503 high-quality ordered sequences were obtained, which provided different levels of microbial classification and statistics. We found that different environments did not alter the richness and diversity of the microbial communities in participants, but caused significant changes in the proportion of some bacteria. The main bacterial phyla found in group F participants were Firmicutes (69.44-89.03%), Actinobacteria (1.7-18.95%), and Bacteroidetes (1.17-22.35%); those found in group S participants were Firmicutes (49.93-95.04%), Bacteroidetes (0.62-39.59%), and Proteobacteria (0.98-11.95%). Additionally, because of changes in phylum proportions, the Bugbase phenotypic classification predicted an increase in the proportion of Gram-positive bacteria in group F and an increase in the proportion of Gram-negative bacteria in group S. In conclusion, our findings suggest that human exposure to swine farms can reshape the gut microbiota, resulting in changes in the microbial abundances. This change can potentially reduce the odds of developing bowel disease and contribute to the prevention of intestinal diseases, providing a theoretical basis for improving human health.
Collapse
Affiliation(s)
- Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Shixiong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Yuqing Han
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Suxue Bo
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, People's Republic of China.
| |
Collapse
|
12
|
Meeting the Unmet Need in the Management of MDR Gram-Positive Infections with Oral Bactericidal Agent Levonadifloxacin. Crit Care Res Pract 2022; 2022:2668199. [PMID: 36785544 PMCID: PMC9922174 DOI: 10.1155/2022/2668199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Levonadifloxacin (intravenous) and its oral prodrug alalevonadifloxacin are broad-spectrum antibacterial agents developed for the treatment of difficult-to-treat infections caused by multidrug-resistant Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus, atypical bacteria, anaerobic bacteria, and biodefence pathogens as well as Gram-negative bacteria. Levonadifloxacin has a well-defined mechanism of action involving a strong affinity for DNA gyrase as well as topoisomerase IV. Alalevonadifloxacin with widely differing solubility and oral bioavailability has pharmacokinetic profile identical to levonadifloxacin. Unlike existing MRSA drugs such as vancomycin and linezolid, which cause unfavorable side effects like nephrotoxicity, bone-marrow toxicity, and muscle toxicity, levonadifloxacin/alalevonadifloxacin has demonstrated superior safety and tolerability features with no serious adverse events. Levonadifloxacin/alalevonadifloxacin could be a useful weapon in the battle against infections caused by resistant microorganisms and could be a preferred antibiotic of choice for empirical therapy in the future.
Collapse
|
13
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
14
|
Alam MU, Ferdous S, Ercumen A, Lin A, Kamal A, Luies SK, Sharior F, Khan R, Rahman MZ, Parvez SM, Amin N, Tadesse BT, Moushomi NA, Hasan R, Taneja N, Islam MA, Rahman M. Effective Treatment Strategies for the Removal of Antibiotic-Resistant Bacteria, Antibiotic-Resistance Genes, and Antibiotic Residues in the Effluent From Wastewater Treatment Plants Receiving Municipal, Hospital, and Domestic Wastewater: Protocol for a Systematic Review. JMIR Res Protoc 2021; 10:e33365. [PMID: 34842550 PMCID: PMC8665387 DOI: 10.2196/33365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022] Open
Abstract
Background The widespread and unrestricted use of antibiotics has led to the emergence and spread of antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and antibiotic residues in the environment. Conventional wastewater treatment plants (WWTPs) are not designed for effective and adequate removal of ARB, ARGs, and antibiotic residues, and therefore, they play an important role in the dissemination of antimicrobial resistance (AMR) in the natural environment. Objective We will conduct a systematic review to determine the most effective treatment strategies for the removal of ARB, ARGs, and antibiotic residues from the treated effluent disposed into the environment from WWTPs that receive municipal, hospital, and domestic discharge. Methods We will search the MEDLINE, EMBASE, Web of Science, World Health Organization Global Index Medicus, and ProQuest Environmental Science Collection databases for full-text peer-reviewed journal articles published between January 2001 and December 2020. We will select only articles published in the English language. We will include studies that measured (1) the presence, concentration, and removal rate of ARB/ARGs going from WWTP influent to effluent, (2) the presence, concentration, and types of antibiotics in the effluent, and (3) the possible selection of ARB in the effluent after undergoing treatment processes in WWTPs. At least two independent reviewers will extract data and perform risk of bias assessment. An acceptable or narrative synthesis method will be followed to synthesize the data and present descriptive characteristics of the included studies in a tabular form. The study has been approved by the Ethics Review Board at the International Centre for Diarrhoeal Disease Research, Bangladesh (protocol number: PR-20113). Results This protocol outlines our proposed methodology for conducting a systematic review. Our results will provide an update to the existing literature by searching additional databases. Conclusions Findings from our systematic review will inform the planning of proper treatment methods that can effectively reduce the levels of ARB, ARGs, and residual antibiotics in effluent, thus lowering the risk of the environmental spread of AMR and its further transmission to humans and animals. International Registered Report Identifier (IRRID) PRR1-10.2196/33365
Collapse
Affiliation(s)
- Mahbub-Ul Alam
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sharika Ferdous
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ayse Ercumen
- North Carolina State University, North Carolina, NC, United States
| | - Audrie Lin
- University of California Berkeley, Berkeley, CA, United States
| | - Abul Kamal
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sharmin Khan Luies
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fazle Sharior
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rizwana Khan
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Md Ziaur Rahman
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sarker Masud Parvez
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | | | - Niharu Akter Moushomi
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rezaul Hasan
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Neelam Taneja
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
15
|
Wang L, Zhang Y, Liu S, Huang N, Zeng W, Xu W, Zhou T, Shen M. Comparison of Anti-Microbic and Anti-Biofilm Activity Among Tedizolid and Radezolid Against Linezolid-Resistant Enterococcus faecalis Isolates. Infect Drug Resist 2021; 14:4619-4627. [PMID: 34764658 PMCID: PMC8577528 DOI: 10.2147/idr.s331345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background The emergence and spread of linezolid-resistant Enterococcus faecalis (E. faecalis) have emerged as a serious threat to human health globally. Therefore, this study aims to compare the anti-microbic as well as the anti-biofilm activity of linezolid, tedizolid, and radezolid against linezolid-resistant E. faecalis. Methods A total of 2128 E. faecalis isolates were assessed from the First Affiliated Hospital of Wenzhou Medical University from 2011 to 2019. Antibiotic sensitivity was evaluated using the micro broth dilution method. Oxazolidinone-resistant chromosomal and plasmid-borne genes such as cfr, cfr(A), cfr(B), cfr(C), cfr(D), optrA, and poxtA were detected by PCR and then sequenced to detect the presence of mutations in the domain V of the 23S rRNA and the ribosomal proteins L3, L4, and L22. Conjugation experiments were conducted using the broth method. The inhibition and eradication of biofilm were evaluated through crystal violet staining, whereas the efflux pump activities were detected by agar dilution. Results Out of 2128 isolated E. faecalis, 71 (3.34%) were linezolid-resistant isolates in which the MICs of tedizolid and radezolid ranged from 1 to 4 μg/mL and 0.5–1 μg/mL, respectively. The MIC50/MIC90 of tedizolid and radezolid were 4 and 8-fold lower than the linezolid, respectively. Out of 71 resistant isolates, 57 (80.28%) carried optrA, 1 (1.41%) carried cfr, 4 (5.63%) carried optrA and cfr, and 6 (8.45%) carried optrA and cfr(D), with no mutations of 23S rRNA gene and ribosomal proteins L3, L4, and L22. Besides, the transfer rate of the optrA, cfr, and cfr(D) was 17.91%, 0% and 0%, respectively. Radezolid showed more effectiveness in eradicating biofilm (8 × MIC). However, tedizolid was more effective than radezolid and linezolid in inhibiting the biofilm formation (1/4 MIC, 1/8MIC, and 1/16MIC). Additionally, in combination with CCCP, the MICs of radezolid in all linezolid-resistant isolates decreased ≥4-fold. Conclusion Radezolid showed greater antimicrobial activity than tedizolid and linezolid against linezolid-resistant E. faecalis. However, both tedizolid and radezolid showed differential activity on biofilm inhibition, eradication, and efflux pump compared to linezolid. Thus, our study might bring important clinical value in the application of these drugs for resistant pathogenic strains.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
16
|
Abstract
Contezolid 康替唑胺 (Youxitai 优喜泰®), an orally administered oxazolidinone antibacterial agent, is being developed by Shanghai MicuRx Pharmaceutical Co., Ltd. for the treatment of multidrug-resistant (MDR) Gram-positive bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. In June 2021, it was approved by the National Medical Products Administration of China for the treatment of complicated skin and soft tissue infections (cSSTI), including, but not limited to, methicillin-susceptible S. aureus, MRSA, Streptococcus pyogenes and Streptococcus agalactiae. The recommended dosage of contezolid is 800 mg (i.e. two 400 mg tablets) every 12 h for 7–14 days. Contezolid is also undergoing clinical development for acute bacterial skin and skin structure infections (ABSSSI) in the USA, and for diabetic foot infections. This article summarizes the milestones in the development of contezolid leading to this first approval for the treatment of cSSTI.
Collapse
|
17
|
de Souza Silva T, Silva JMB, Braun GH, Mejia JAA, Ccapatinta GVC, Santos MFC, Tanimoto MH, Bastos JK, Parreira RLT, Orenha RP, Borges A, Berretta AA, Veneziani RCS, Martins CHG, Ambrósio SR. Green and Red Brazilian Propolis: Antimicrobial Potential and Anti-Virulence against ATCC and Clinically Isolated Multidrug-Resistant Bacteria. Chem Biodivers 2021; 18:e2100307. [PMID: 34086414 DOI: 10.1002/cbdv.202100307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/05/2022]
Abstract
Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug-resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50 ), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 μg mL-1 . Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 μg mL-1 ) against all tested Gram-positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 μg mL-1 . The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.
Collapse
Affiliation(s)
| | - Júlia M B Silva
- University of Franca, Av. Dr. Armando de Salles Oliveira 201, Franca, Brazil
| | - Gláucia H Braun
- University of Franca, Av. Dr. Armando de Salles Oliveira 201, Franca, Brazil
| | - Jennyfer A A Mejia
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, Brazil
| | - Gari V C Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, Brazil
| | | | - Matheus H Tanimoto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, Brazil
| | - Renato L T Parreira
- University of Franca, Av. Dr. Armando de Salles Oliveira 201, Franca, Brazil
| | - Renato P Orenha
- University of Franca, Av. Dr. Armando de Salles Oliveira 201, Franca, Brazil
| | - Alexandre Borges
- Faculty of Medicine, University Center of Santa Fé do Sul, Av. Mangara 477, Campus II, Santa Fé do Sul, Brazil
| | - Andresa A Berretta
- Laboratório de Pesquisa, Desenvolvimento & Inovação, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, Brazil
| | | | - Carlos H G Martins
- Department of Microbiology, Federal University of Uberlândia, Av. Pará 1720, Bloco 2B sala 221, Uberlândia, Brazil
| | - Sérgio R Ambrósio
- University of Franca, Av. Dr. Armando de Salles Oliveira 201, Franca, Brazil
| |
Collapse
|
18
|
Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin Pharmacokinet 2021; 60:1271-1289. [PMID: 34125420 PMCID: PMC8505328 DOI: 10.1007/s40262-021-01040-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury represents a common complication in critically ill patients affected by septic shock and in many cases continuous renal replacement therapy (CRRT) may be required. In this scenario, antimicrobial dose optimization is highly challenging as the extracorporeal circuit may cause several pharmacokinetic alterations, which add up to volume of distribution and clearance variations resulting from sepsis. Variations in CRRT settings (i.e. modality of solute removal, type of filter material, blood flow rate and effluent flow rate), coupled with the presence of residual and/or recovering renal function, may cause dynamic variations in the clearance of hydrophilic antimicrobials. This means that dose reduction may not always be needed. Nowadays, the lack of pharmacokinetic data for novel antimicrobials during CRRT limits evidence-based dose recommendations for critically ill patients in this setting, thus making available evidence hardly applicable in real-world scenarios. This review aims to summarize the major determinants involved in antimicrobial clearance, and the available pharmacokinetic studies performed during CRRT involving novel antibiotics used for the management of multidrug-resistant Gram-positive and Gram-negative infections (namely ceftolozane–tazobactam, ceftazidime–avibactam, cefiderocol, imipenem–relebactam, meropenem–vaborbactam, ceftaroline, ceftobiprole, dalbavancin, and fosfomycin), providing a practical approach in guiding dose optimization in this special population.
Collapse
|
19
|
Giurazza R, Mazza MC, Andini R, Sansone P, Pace MC, Durante-Mangoni E. Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life (Basel) 2021; 11:life11060519. [PMID: 34204961 PMCID: PMC8229628 DOI: 10.3390/life11060519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) remains one of the top public health issues of global concern. Among the most important strategies for AMR control there is the correct and appropriate use of antibiotics, including those available for the treatment of AMR pathogens. In this article, after briefly reviewing the most important and clinically relevant multi-drug-resistant bacteria and their main resistance mechanisms, we describe the emerging antimicrobial options for both MDR Gram-positive cocci and Gram-negative bacilli, including recently marketed agents, molecules just approved or under evaluation and rediscovered older antibiotics that have regained importance due to their antimicrobial spectrum. Specifically, emerging options for Gram-positive cocci we reviewed include ceftaroline, ceftobiprole, tedizolid, dalbavancin, and fosfomycin. Emerging treatment options for Gram-negative bacilli we considered comprise ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, aztreonam-avibactam, minocycline, fosfomycin, eravacycline, plazomicin, and cefiderocol. An exciting scenario is opening today with the long awaited growing availability of novel molecules for the treatment of AMR bacteria. Knowledge of mechanisms of action and resistance patterns allows physicians to increasingly drive antimicrobial treatment towards a precision medicine approach. Strict adherence to antimicrobial stewardship practices will allow us to preserve the emerging antimicrobials for our future.
Collapse
Affiliation(s)
- Roberto Giurazza
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Internal Medicine Section, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy; (R.G.); (M.C.M.)
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Maria Civita Mazza
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Internal Medicine Section, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy; (R.G.); (M.C.M.)
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Roberto Andini
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy;
| | - Pasquale Sansone
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Maria Caterina Pace
- Department of Woman, Child and General & Specialized Surgery, University of Campania ‘L. Vanvitelli’, Piazza Miraglia, 80138 Naples, Italy; (P.S.); (M.C.P.)
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Internal Medicine Section, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy; (R.G.); (M.C.M.)
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Piazzale Ettore Ruggieri snc, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7062475; Fax: +39-081-7702645
| |
Collapse
|
20
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
21
|
Lautre C, Sharma S, Sahu JK. Chemistry, Biological Properties and Analytical Methods of Levonadifloxacin: A Review. Crit Rev Anal Chem 2020; 52:1069-1077. [PMID: 33307757 DOI: 10.1080/10408347.2020.1855412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Increased use of antibiotics globally has led to the threat of antibiotic resistance; this drove the urge of researchers toward discovering more potent and broad-spectrum antibiotics. Levonadifloxacin (LND) is the very first antibiotic developed by an Indian company Wockhardt. It is S (-) isomer of another broad-spectrum antibiotic Nadifloxacin which is used topically for skin, soft tissue bacterial infection. LND belongs to the benzo quinolizine category which is a subclass of fluoroquinolone, indicated for ABSSIS, CABP, and other infections including diabetic foot infection; formulated as l-arginine salt of levonadifloxacin (WCK177) for IV and l-alanine ester mesylate salt as alalevonadifloxacin (WCK2349) for oral administration. It generally shows dominant antibacterial activity against Gram-negative, and positive bacterial infections, particularly toward methicillin-resistant Staphylococcus aureus (MRSA) by dual inhibition of DNA gyrase and topoisomerase IV. Producing quality product that complies to regulatory requirements is a big concern for pharma industries. To this context, validated analytical methods for routine quality control are essential for quantification of LND as an API alone and together with pharmaceutical formulations. This review suggests therapeutic, pharmacological, and analytical aspects regarding the novel drug LND and particularly focuses on discussing various reported analytical methods present for analytical or bioanalytical estimation of the drug and suggest to develop a simple and validated method which also complies to green chemistry.
Collapse
Affiliation(s)
- Charul Lautre
- SVKM'S NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Sanjay Sharma
- SVKM'S NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Jagdish K Sahu
- SVKM'S NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
22
|
Efficacy and safety of dalbavancin in the treatment of Gram-positive bacterial infections. J Glob Antimicrob Resist 2020; 24:72-80. [PMID: 33279683 DOI: 10.1016/j.jgar.2020.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES In this meta-analysis, we assessed the clinical efficacy and safety of dalbavancin compared with commonly used anti-Gram-positive agents. METHODS PubMed, Embase and Cochrane Library databases were searched from inception up to 25 February 2020. Randomised controlled trials (RCTs) comparing the efficacy and safety of dalbavancin with other antibiotics against Gram-positive infections were included. Reviews, conference abstracts, editorials, case reports, studies on healthy people, or those lacking a comparator group or focusing on different dosages were excluded. RESULTS Seven RCTs comprising 2665 patients were included. Five RCTs included 2109 patients with skin and skin-structure infections (SSSIs) and the other two included patients with catheter-related bloodstream infections (CRBSIs) and osteomyelitis, respectively. Clinical and microbiological responses to dalbavancin were similar to other antibiotics in treating infections caused by Gram-positive bacteria, including the SSSI subgroup. Clinical response to dalbavancin showed superiority in the CRBSI and osteomyelitis subgroups. No significant difference was observed between dalbavancin and other treatments in terms of adverse events (AEs), adverse drug reactions (ADRs) and serious AEs. However, the single-dose regimen had significantly more AEs compared with the comparator group, while the dual-dose regimen resulted in fewer AEs and ADRs and a lower incidence of diarrhoea compared with the comparator group. Moreover, the dalbavancin group showed a decreased mortality risk compared with other treatments. CONCLUSION Dalbavancin was comparable with other antibiotics in treating chronic Gram-positive infections in terms of efficacy and safety. The dual-dose regimen showed a better safety profile compared with the single-dose regimen in the treatment of SSSIs.
Collapse
|
23
|
Koulenti D, Fragkou PC, Tsiodras S. Editorial for Special Issue "Multidrug-Resistant Pathogens". Microorganisms 2020; 8:E1383. [PMID: 32927625 PMCID: PMC7563160 DOI: 10.3390/microorganisms8091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The era of injudicious use of antibiotics in both humans and animals has led to the selection of multidrug-resistant (MDR) pathogens, which in turn has left the medical community with limited therapeutic options [...].
Collapse
Affiliation(s)
- Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- 2nd Critical Care Department, Attikon University Hospital, 12462 Athens, Greece
| | - Paraskevi C. Fragkou
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece; (P.C.F.); (S.T.)
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece; (P.C.F.); (S.T.)
| |
Collapse
|
24
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|
25
|
Isayenko OY, Knysh OV, Kotsar OV, Ryzhkova TN, Dyukareva GI. Simultaneous and sequential influence of metabolite complexes of Lactobacillus rhamnosus and Saccharomyces boulardii and antibiotics against poly-resistant Gram-negative bacteria. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
For the first time the poly-resistant strains of Gram-negative microorganisms were studied for the sensitivity to combined simultaneous and sequential influence of metabolic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii, obtained by the author’s method without using the growth media, with antibiotics. The synergic activity of antibacterial preparations and metabolic complexes of L. rhamnosus GG and S. boulardii were studied using modified disk-diffusive method of Kirby-Bauer. During the sequential method of testing (at first the microorganisms were incubated with structural components and metabolites, then their sensitivity to the antibacterial preparations was determined), we observed increase in the diameters of the zones of growth inhibition of Pseudomonas aeruginosa PR to the typical antibiotics (gentamicin, amіcyl, ciprofloxacin, сefotaxime) and non-typical (lincomycin, levomycetin) depending on the tested combinations. Acinetobacter baumannii PR exhibited lower susceptibility: growth inhibition was seen for the combination with ciprofloxacin, сefotaxime, levomycetin. Susceptibility of Lelliottia amnigena (Enterobacter amnigenus) PR increased to levofloxacin, lincomycin. The zones of growth inhibition of Klebsiella pneumoniae PR increased to gentamicin, amіcyl, tetracycline, сeftriaxone. Maximum efficiency was determined during sequential combination of antibiotics with separate metabolic complexes of L. rhamnosus and S. boulardii, and also their combination (to 15.2, 20.2 and 15.4 mm respectively) compared with their simultaneous use (to 12.2, 15.2 and 13.0 mm respectively) for all the tested poly-resistant pathogens, regardless of the mechanism of action of antibacterial preparation. Metabolic complexes of L. rhamnosus GG and S. boulardii, due to increase in the susceptibility of microorganisms, can decrease the therapeutic concentration of antibiotic, slow the probability of the development of resistance of microorganisms, and are therefore promising candidates for developing “accompanying medications” to antibiotics and antimicrobial preparations of new generation.
Collapse
|