1
|
Duan X, Liu W, Xiao Y, Rao M, Ji L, Wan X, Han S, Lin Z, Liu H, Chen P, Qiao K, Zheng M, Shen J, Zhou Y, Asakawa T, Xiao M, Lu H. Exploration of the feasibility of clinical application of phage treatment for multidrug-resistant Serratia marcescens-induced pulmonary infection. Emerg Microbes Infect 2025; 14:2451048. [PMID: 39764739 DOI: 10.1080/22221751.2025.2451048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/22/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Serratia marcescens (S. marcescens) commonly induces refractory infection due to its multidrug-resistant nature. To date, there have been no reports on the application of phage treatment for S. marcescens infection. This study was conducted to explore the feasibility of phage application in treating refractory S. marcescens infection by collaborating with a 59-year-old male patient with a pulmonary infection of multidrug-resistant S. marcescens. Our experiments included three domains: i) selection of the appropriate phage, ii) verification of the efficacy and safety of the selected phage, iii) confirmation of phage-bacteria interactions. Our results showed that phage Spe5P4 is appropriate for S. marcescens infection. Treatment with phage Spe5P4 showed good efficacy, manifested as amelioration of symptoms, hydrothorax examinations, and chest computed tomography findings. Phage treatment did not worsen hepatic and renal function, immunity-related indices, or indices of routine blood examination. It did not induce or deteriorate drug resistance of the involved antibiotics. Importantly, no adverse events were reported during the treatment or follow-up periods. Thus, phage treatment showed satisfactory safety. Finally, we found that phage treatment did not increase the bacterial load, cytotoxicity, virulence, or phage resistance of S. marcescens, indicating satisfactory phage-bacteria interactions between Spe5P4 and S. marcescens, which are useful for the future application of phage Spe5P4 against S. marcescens. This work provides evidence and a working basis for further application of phage Spe5P4 in treating refractory S. marcescens infections. We also provided a methodological basis for investigating clinical application of phage treatment against multidrug-resistant bacterial infections in the future.
Collapse
Affiliation(s)
- Xiangke Duan
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Wenfeng Liu
- BGI Research, Shenzhen, People's Republic of China
| | - Yanyu Xiao
- Department of Clinical Laboratory, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Man Rao
- Department of Infection and Immunology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Liyin Ji
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Xiaofu Wan
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Shuhong Han
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
- Department of Infection and Immunology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Zixun Lin
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
- School of Medicine, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Haichen Liu
- BGI Research, Shenzhen, People's Republic of China
| | - Peifen Chen
- Department of Respiratory Medicine, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Kun Qiao
- Department of Thoracic Surgery, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Mingbin Zheng
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Jiayin Shen
- Department of Science and Education, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Yang Zhou
- Department of Infection and Immunology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Minfeng Xiao
- BGI Research, Shenzhen, People's Republic of China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Liu H, Gu W, Lu Y, Ding L, Guo Y, Zou G, Wu W, Zheng D, Liu C, Wang C, Cao Y, Li J. Exploration of Phage-Agrochemical Interaction Based on a Novel Potent Phage LPRS20-Targeting Ralstonia solanacearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28005-28018. [PMID: 39360931 DOI: 10.1021/acs.jafc.4c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phage therapy has the potential to alleviate plant bacterial wilt. However, the knowledge gap concerning the phage-agrochemical interaction impedes the broader application of phages in agriculture. This study characterized a phage isolate and investigated its interactions with agrochemicals. A novel species within the Ampunavirus genus was proposed, serving phage LPRS20 as a type phage with a broad lytic range and significant antibacterial activity against Ralstonia solanacearum strains infecting tobacco, chili, or tomato. Sensory evaluation of the morphology of tobacco leaves suggested that phage application resulted in negligible harm to plants. Investigations into phage-agrochemical interactions revealed synergisms when LPRS20 was delivered 4 h before thiodiazole-copper as well as LPRS20 in combination with low-concentration berberine. Overall, our findings reveal that phage LPRS20 represents a novel, effective, and eco-friendly biocontrol agent against tobacco bacterial wilt in vivo and in vitro and contributes to the potential integration of phages and agrochemicals for controlling soil-borne pathogens.
Collapse
Affiliation(s)
- Huai Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Gu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yusheng Lu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lili Ding
- Agricultural Science and Technology Research Center of Chaozhou, Chaozhou 521000, China
| | - Yating Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Geng Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiqing Wu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Diyuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chenyang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
3
|
Torkashvand N, Kamyab H, Aarabi P, Shahverdi AR, Torshizi MAK, Khoshayand MR, Sepehrizadeh Z. Evaluating the effectiveness and safety of a novel phage cocktail as a biocontrol of Salmonella in biofilm, food products, and broiler chicken. Front Microbiol 2024; 15:1505805. [PMID: 39669779 PMCID: PMC11634810 DOI: 10.3389/fmicb.2024.1505805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Salmonella is a foodborne pathogen of animal and public health significance. Considering the disadvantages of antibiotics or chemical preservatives traditionally used to eliminate this pathogen, attention has shifted, in recent years, toward biocontrol agents such as bacteriophages, used either separately or in combination to prevent food contamination. However, extensive use of phage-based biocontrol agents in the food industry requires further studies to ensure their safety and efficacy. In the present study, we investigated the effectiveness and safety of phage cocktail, a phage cocktail comprising three pre-characterized Salmonella phages (vB_SenS_TUMS_E4, vB_SenS_TUMS_E15 and vB_SenS_TUMS_E19). First, we performed an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay on a human foreskin fibroblast cell line, in which the resulting high cell viability revealed the safety of the phage cocktail. Next, we performed a time-kill assay in which a 4 Log decline in bacterial levels was detected. Additionally, we utilized a colorimetric method to evaluate the anti-biofilm activity of phage cocktail, in which it proved more efficacious compared to the MIC and MBEC levels of the antibiotic control. Then, we assessed the ability of phage cocktail to eradicate Salmonella in different food samples, where it considerably reduced the bacterial count regardless of the temperature (4°C and 25°C). Lastly, we used broiler chickens as an animal model to measure the growth-promoting activity of phage cocktail. Salmonella-infected chickens orally treated with modified phage cocktail demonstrated no mortality and a significant increase in weight gain compared to the untreated group (p ≤ 0.0002). The study presents a novel research evaluating the effectiveness and safety of a phage cocktail as a biocontrol agent against Salmonella in various contexts, including biofilms, food products, and broiler chickens. This multifaceted approach underscores the promising role of phage therapy as a sustainable biocontrol strategy in food safety and public health contexts.
Collapse
Affiliation(s)
- Narges Torkashvand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Aarabi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Khoshayand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jin X, Sun X, Lu Q, Wang Z, Zhang Z, Ling X, Xu Y, Liang R, Yang J, Li L, Zhang T, Luo Q, Cheng G. Salmonella Phage vB_SpuM_X5: A Novel Approach to Reducing Salmonella Biofilms with Implications for Food Safety. Microorganisms 2024; 12:2400. [PMID: 39770603 PMCID: PMC11678034 DOI: 10.3390/microorganisms12122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonella, a prevalent foodborne pathogen, poses a significant social and economic strain on both food safety and public health. The application of phages in the control of foodborne pathogens represents an emerging research area. In this study, Salmonella pullorum phage vB_SpuM_X5 (phage X5) was isolated from chicken farm sewage samples. The results revealed that phage X5 is a novel Myoviridae phage. Phage X5 has adequate temperature tolerance (28 °C-60 °C), pH stability (4-12), and a broad host range of Salmonella bacteria (87.50% of tested strains). The addition of phage X5 (MOI of 100 and 1000) to milk inoculated with Salmonella reduced the number of Salmonella by 0.72 to 0.93 log10 CFU/mL and 0.66 to 1.06 log10 CFU/mL at 4 °C and 25 °C, respectively. The addition of phage X5 (MOI of 100 and 1000) to chicken breast inoculated with Salmonella reduced bacterial numbers by 1.13 to 2.42 log10 CFU/mL and 0.81 to 1.25 log10 CFU/mL at 4 °C and 25 °C, respectively. Phage X5 has bactericidal activity against Salmonella and can be used as a potential biological bacteriostatic agent to remove mature biofilms of Salmonella or for the prevention and control of Salmonella.
Collapse
Affiliation(s)
- Xinxin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiuxiu Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zui Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenggang Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaochun Ling
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yunpeng Xu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ruiqin Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junjie Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Li Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Liping Z, Sheng Y, Yinhang W, Yifei S, Jiaqun H, Xiaojian Y, Shuwen H, Jing Z. Comprehensive retrospect and future perspective on bacteriophage and cancer. Virol J 2024; 21:278. [PMID: 39501333 PMCID: PMC11539450 DOI: 10.1186/s12985-024-02553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Researchers gradually focus on the relationship between phage and cancer. OBJECTIVE To summarize the research hotspots and trends in the field of bacteriophage and cancer. METHODS The downloaded articles were searched from the Web of Science Core Collection database from January 2008 to June 2023. Bibliometric analysis was carried out through CiteSpace, including the analysis of cooperative networks (country/region, institution, and author), co-citations of references, and key words.Visual analysis of three topics, including gut phage, phage and bacteria, and phage and tumor, was conducted. RESULTS Overall, the United States and China have the most phage-related research. In terms of gut phage, the future research directions are "gut microbiome", "database" and "microbiota". The bursting citations explored the phage-dominated viral genome to discover its diversity and individual specificity and investigated associations among bacteriome, metabolome, and virome. In terms of phage and bacteria, "lipopolysaccharide" and "microbiota" are future research directions. Future research hotspots should mainly concentrate on the further exploration and application of phage properties. As for phages and tumors, the future research directions should be "colorectal cancer", "protein" and "phage therapy". Future directions are likely to focus on the research on phages in cancer mechanisms, cancer diagnosis, and cancer treatment combined with genetic engineering techniques. CONCLUSION Phage therapy would become a hot spot and research direction of tumor and phage research, and the relationship between phage and tumor, especially colorectal cancer (CRC), is expected to be further explored.
Collapse
Affiliation(s)
- Zhong Liping
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Sheng
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Huang Jiaqun
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Xiaojian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
- ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500, Rueil-Malmaison, France.
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
6
|
Islam MS, Fan J, Suzauddula M, Nime I, Pan F. Isolation and Characterization of Novel Escherichia coli O157:H7 Phage SPEC13 as a Therapeutic Agent for E. coli Infections In Vitro and In Vivo. Biomedicines 2024; 12:2036. [PMID: 39335549 PMCID: PMC11428821 DOI: 10.3390/biomedicines12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a new natural preservative or antimicrobial agent against E. coli O157:H7. The phage SPEC13 displayed broad host range and was classified within the Ackermannviridae family based on its observed characteristics by a TEM and genome analysis. In 10 min, this phage achieves a remarkable 93% adsorption rate with the host. Its latency period then lasts about 20 min, after which it bursts, releasing an average of 139 ± 3 PFU/cell. It exhibited robustness within a pH range of 4 to 12, indicating resilience under diverse environmental circumstances. Furthermore, SPEC13 demonstrated stability at an ambient temperature up to 60 °C. A whole genome and phylogenetics analysis revealed that SPEC13 is a novel identified phage, lacking a lysogenic life cycle, antibiotic resistance genes, or genes associated with virulence, thereby presenting a promising biological agent for therapeutic application. Animal studies showed that SPEC13 effectively controlled the growth of harmful bacteria, resulting in a significant improvement in colon health, marked by reduced swelling (edema) and tissue damage (mucosal injury). The introduction of SPEC13 resulted in a substantial decrease in quantities of E. coli O157:H7, reducing the bacterial load to approximately 5 log CFU/g of feces. In conclusion, SPEC13 emerges as a promising inclusion in the array of phage therapy, offering a targeted and efficient approach for addressing bacterial infections.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Fan
- Department of Pathology, School of Basic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang 471023, China
| | - Md Suzauddula
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Wang X, Xu Z, Xia Y, Chen Z, Zong R, Meng Q, Wang W, Zhuang W, Meng X, Chen G. Characterization of an Escherichia coli phage Tequatrovirus YZ2 and its application in bacterial wound infection. Virology 2024; 597:110155. [PMID: 38943783 DOI: 10.1016/j.virol.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The increasing prevalence of drug-resistant Escherichia coli (E. coli) resulting from the excessive utilization of antibiotics necessitates the immediate exploration of alternative approaches to counteract pathogenic E. coli. Phages, with their unique antibacterial mechanisms, are considered promising candidates for treating bacterial infections. Herein, we isolated a lytic Escherichia phage Tequatrovirus YZ2 (phage YZ2), which belongs to the genus Tequatrovirus. The genome of phage YZ2 consists of 168,356 base pairs with a G + C content of 35.34% and 269 putative open reading frames (ORFs). Of these, 146 ORFs have been annotated as functional proteins associated with nucleotide metabolism, structure, transcription, DNA replication, translation, and lysis. In the mouse model of a skin wound infected by E. coli, phage YZ2 therapy significantly promoted the wound healing. Furthermore, histopathological analysis revealed reductions in IL-1β and TNF-α and increased VEGF levels, indicating the potential of phages as effective antimicrobial agents against E. coli infection.
Collapse
Affiliation(s)
- Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Qingye Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Weijie Wang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China
| | - Wenzhen Zhuang
- Office of International Cooperation and Exchange, Weifang People's Hospital, Weifang, 261000, PR China.
| | - Xiangjun Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China.
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, PR China.
| |
Collapse
|
8
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
9
|
Khan MAS, Islam Z, Barua C, Sarkar MMH, Ahmed MF, Rahman SR. Phenotypic characterization and genomic analysis of a Salmonella phage L223 for biocontrol of Salmonella spp. in poultry. Sci Rep 2024; 14:15347. [PMID: 38961138 PMCID: PMC11222505 DOI: 10.1038/s41598-024-64999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.
Collapse
Affiliation(s)
| | - Zahidul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Chayan Barua
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Murshed Hasan Sarkar
- Genomics Research Laboratory, Bangladesh Council of Scientific and Industrial Research, BCSIR, Dhaka, 1205, Bangladesh
| | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | |
Collapse
|
10
|
Deng H, Feng L, Shi K, Du R. Binding activity and specificity of tail fiber protein 35Q for Salmonella pullorum. Front Microbiol 2024; 15:1429504. [PMID: 38983624 PMCID: PMC11231377 DOI: 10.3389/fmicb.2024.1429504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Salmonella, a prevalent pathogen with significant implications for the poultry industry and food safety, presents a global public health concern. The rise in antibiotic resistance has exacerbated the challenge of prevention. Accurate and sensitive detection methods are essential in combating Salmonella infections. Bacteriophages, viruses capable of targeting and destroying bacteria, leverage their host specificity for accurate microbial detection. Notably, the tail fiber protein of bacteriophages plays a crucial role in recognizing specific hosts, making it a valuable tool for targeted microbial detection. This study focused on the tail fiber protein 35Q of Salmonella pullorum (SP) bacteriophage YSP2, identified through protein sequencing and genome analysis. Bioinformatics analysis revealed similarities between 35Q and other Salmonella bacteriophage tail fiber proteins. The protein was successfully expressed and purified using an Escherichia coli expression system, and its binding activity and specificity were confirmed. ELISA assays and adsorption experiments demonstrated that 35Q interacts with the outer membrane protein (OMP) receptor on bacterial surfaces. This investigation provides valuable insights for targeted Salmonella detection, informs the development of specific therapeutics, and enhances our understanding of the interaction between Salmonella bacteriophages and their hosts.
Collapse
Affiliation(s)
- Hewen Deng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Linwan Feng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Harris EB, Ewool KKK, Bowden LC, Fierro J, Johnson D, Meinzer M, Tayler S, Grose JH. Genomic and Proteomic Analysis of Six Vi01-like Phages Reveals Wide Host Range and Multiple Tail Spike Proteins. Viruses 2024; 16:289. [PMID: 38400064 PMCID: PMC10892097 DOI: 10.3390/v16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Enterobacteriaceae is a large family of Gram-negative bacteria composed of many pathogens, including Salmonella and Shigella. Here, we characterize six bacteriophages that infect Enterobacteriaceae, which were isolated from wastewater plants in the Wasatch front (Utah, United States). These phages are highly similar to the Kuttervirus vB_SenM_Vi01 (Vi01), which was isolated using wastewater from Kiel, Germany. The phages vary little in genome size and are between 157 kb and 164 kb, which is consistent with the sizes of other phages in the Vi01-like phage family. These six phages were characterized through genomic and proteomic comparison, mass spectrometry, and both laboratory and clinical host range studies. While their proteomes are largely unstudied, mass spectrometry analysis confirmed the production of five hypothetical proteins, several of which unveiled a potential operon that suggests a ferritin-mediated entry system on the Vi01-like phage family tail. However, no dependence on this pathway was observed for the single host tested herein. While unable to infect every genus of Enterobacteriaceae tested, these phages are extraordinarily broad ranged, with several demonstrating the ability to infect Salmonella enterica and Citrobacter freundii strains with generally high efficiency, as well as several clinical Salmonella enterica isolates, most likely due to their multiple tail fibers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA; (E.B.H.); (K.K.K.E.)
| |
Collapse
|
12
|
Wen H, Zhou W, Wu Y, Li Y, Zhu G, Zhang Z, Gu X, Wang C, Yang Z. Effective treatment of a broad-host-range lytic phage SapYZU15 in eliminating Staphylococcus aureus from subcutaneous infection. Microbiol Res 2023; 276:127484. [PMID: 37659336 DOI: 10.1016/j.micres.2023.127484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Multidrug resistance (MDR) Staphylococcus aureus is frequently isolated from food products, and can cause severe clinical infection. Bacteriophage (phage) therapy is a promising biocontrol agent against MDR S. aureus in food contamination and clinical infections. In this study, the antimicrobial susceptibility of 47 S. aureus isolates from three swine farms, two slaughterhouses, and four markets (Yangzhou, China) were evaluated. The biological characteristics of four lytic S. aureus phages were compared and the lytic activity of phage SapYZU15 against MDR S. aureus was assessed using milk, fresh pork and a mouse model of subcutaneous abscess. The results showed that 28 S. aureus isolates (59.6%, 28/47) exhibited multiple antibiotic resistance to at least three different classes of antibiotics. Compared to SapYZU01, SapYZU02, and SapYZU03, SapYZU15 had a shorter latent period (10 min), larger burst size (322.00 PFU/cell), broader host range, wider temperature stability (-80 to 50 °C), and pH stability. Furthermore, SapYZU15 significantly reduces the counts of S. aureus in milk and pork (5.69 and 1.16 log colony-forming unit/mL, respectively) at 25 °C and controls the growth of S. aureus at 4 °C. Compared to the mice infected with S. aureus MRSA JCSC 4744 and cocktail (S. aureus YZUsa1, YZUsa4, YZUsa12, YZUsa14, and MRSA JCSC 4744), treatment with SapYZU15 led to faster tissue healing, less weight loss, and lower viable S. aureus counts in the murine abscess model. Moreover, prevention with SapYZU15 effectively inhibited abscess formation through a synergistic effect with pro-inflammatory cytokines. Consequently, our results suggest that SapYZU15 is an effective strategy for controlling S. aureus contamination in food products, and possesses an immense potential to treat and prevent clinic infection caused by MDR S. aureus strains. The interactions and mechanisms between SapYZU15 and its bacterial host differed depending on the model, temperature, and multiplicity of infection (MOI).
Collapse
Affiliation(s)
- Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Ying Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, ShenZhen, Guangdong 518055, China
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenwen Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cuimei Wang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
13
|
Yousefi MH, Wagemans J, Shekarforoush SS, Vallino M, Pozhydaieva N, Höfer K, Lavigne R, Hosseinzadeh S. Isolation and molecular characterization of the Salmonella Typhimurium orphan phage Arash. BMC Microbiol 2023; 23:297. [PMID: 37858092 PMCID: PMC10585845 DOI: 10.1186/s12866-023-03056-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The current threat of multidrug resistant strains necessitates development of alternatives to antibiotics such as bacteriophages. This study describes the isolation and characterization of a novel Salmonella Typhimurium phage 'Arash' from hospital wastewater in Leuven, Belgium. Arash has a myovirus morphology with a 95 nm capsid and a 140 nm tail. The host range of Arash is restricted to its isolation host. Approximately 86% of the phage particles are adsorbed to a host cell within 10 min. Arash has latent period of 65 min and burst size of 425 PFU/cell. Arash has a dsDNA genome of 180,819 bp with GC content of 53.02% with no similarities to any characterized phages, suggesting Arash as a novel species in the novel 'Arashvirus' genus. Arash carries no apparent lysogeny-, antibiotic resistance- nor virulence-related genes. Proteome analysis revealed 116 proteins as part of the mature phage particles of which 27 could be assigned a function. Therefore, the present findings shed light on the morphological, microbiological and genomic characteristics of Arash and suggest its potential application as therapeutic and/or biocontrol agent.
Collapse
Affiliation(s)
- Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946- 84471, Iran
| | | | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946- 84471, Iran
| | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, Turin, 10135, Italy
| | - Nadiia Pozhydaieva
- Max Planck Institute for Terrestrial Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946- 84471, Iran.
| |
Collapse
|
14
|
Zou G, Ndayishimiye L, Xin L, Cai M, Zhang L, Li J, Song Z, Wu R, Zhou Y, Shi Y, Ye Y, Zhou R, Li J. Application of a novel phage LPCS28 for biological control of Cronobacter sakazakii in milk and reconstituted powdered infant formula. Food Res Int 2023; 172:113214. [PMID: 37689848 DOI: 10.1016/j.foodres.2023.113214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Contamination of infant formula with Cronobacter sakazakii (C. sakazakii) can cause fatal infections in neonates. Phages have emerged as promising antibacterial agents for food safety, but their effectiveness may be limited by thermal processing. In this study, we isolated 27 C. sakazakii phages from environmental water samples and selected LPCS28 due to its broad lysis spectrum. The titer of LPCS28 will not be significantly affected by heating at a temperature of 60 °C for one hour. In both reconstituted powdered infant formula (RPIF) and liquid milk, the pre-added LPCS28, after the thermal processing at 63 °C for 30 min, significantly inhibited the post-contaminated C. sakazakii (103 CFU/mL) and eventually reduced the number of C. sakazakii to below the limit of detection (<10 CFU/mL) within 9 h at 37 °C and significantly delayed the increase of bacterial concentration in the samples at 23 °C. The phylogenetic analysis revealed that LPCS28 belonged to a new genus, we proposed as Nanhuvirus, under the family Straboviridae. These findings suggest that phage LPCS28 is a promising biological control agent for pathogenic C. sakazakii in the dairy industry.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Libère Ndayishimiye
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingxiang Xin
- China Institute of Veterinary Drug Control, Beijing 100086, China
| | - Manshan Cai
- Institute of Animal Science, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Longjian Zhang
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Renwei Wu
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Shi
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China
| | - Yingwang Ye
- School of Food Science and Bioengineering, Hefei University of Technology, Anhui, Hefei 230009, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY 10065, USA.
| |
Collapse
|
15
|
Wójcicki M, Świder O, Średnicka P, Shymialevich D, Ilczuk T, Koperski Ł, Cieślak H, Sokołowska B, Juszczuk-Kubiak E. Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food. Int J Mol Sci 2023; 24:10134. [PMCID: PMC10299301 DOI: 10.3390/ijms241210134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Due to irrational antibiotic stewardship, an increase in the incidence of multidrug resistance of bacteria has been observed recently. Therefore, the search for new therapeutic methods for pathogen infection treatment seems to be necessary. One of the possibilities is the utilization of bacteriophages (phages)—the natural enemies of bacteria. Thus, this study is aimed at the genomic and functional characterization of two newly isolated phages targeting MDR Salmonella enterica strains and their efficacy in salmonellosis biocontrol in raw carrot–apple juice. The Salmonella phage vB_Sen-IAFB3829 (Salmonella phage strain KKP 3829) and Salmonella phage vB_Sen-IAFB3830 (Salmonella phage strain KKP 3830) were isolated against S. I (6,8:l,-:1,7) strain KKP 1762 and S. Typhimurium strain KKP 3080 host strains, respectively. Based on the transmission electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the viruses were identified as members of tailed bacteriophages from the Caudoviricetes class. Genome sequencing revealed that these phages have linear double-stranded DNA and sizes of 58,992 bp (vB_Sen-IAFB3829) and 50,514 bp (vB_Sen-IAFB3830). Phages retained their activity in a wide range of temperatures (from −20 °C to 60 °C) and active acidity values (pH from 3 to 11). The exposure of phages to UV radiation significantly decreased their activity in proportion to the exposure time. The application of phages to the food matrices significantly reduced the level of Salmonella contamination compared to the control. Genome analysis showed that both phages do not encode virulence or toxin genes and can be classified as virulent bacteriophages. Virulent characteristics and no possible pathogen factors make examined phages feasible to be potential candidates for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Tomasz Ilczuk
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Łukasz Koperski
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7 Str., 02-106 Warsaw, Poland; (T.I.); (Ł.K.)
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (P.Ś.); (E.J.-K.)
| |
Collapse
|
16
|
Shahdadi M, Safarirad M, Berizi E, Mazloomi SM, Hosseinzadeh S, Zare M, Derakhshan Z, Rajabi S. A systematic review and modeling of the effect of bacteriophages on Salmonella spp. Reduction in chicken meat. Heliyon 2023; 9:e14870. [PMID: 37025894 PMCID: PMC10070888 DOI: 10.1016/j.heliyon.2023.e14870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023] Open
Abstract
Prevention and control of foodborne pathogens are of vital public health importance, and poultry meat is recognized as a major source of Salmonella infection in humans. Therefore, it is necessary to reduce the presence of salmonella in poultry meat. This article provided a systematic review and modeling to assess the effect of various factors on bacteriophages' function on Salmonella spp. Reduction in poultry meat. Twenty-two studies were included based on the inclusion and exclusion criteria mentioned in the methodology. The results showed that each unit increase in bacterial dose, phage dose, and temperature increases the Salmonella reduction by about 7%, 20%, and 1%, respectively. In addition, wild-type phages were more efficient than commercial-type phages, and this result was statistically significant (β = 1.124; p-value <0.001). This multivariate analysis is a helpful tool to predict the role of various factors in the role of phage in reducing Salmonella in poultry meat.
Collapse
Affiliation(s)
- Mohsen Shahdadi
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Safarirad
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Enayat Berizi
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| | - Seyed Mohammad Mazloomi
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Morteza Zare
- Research Committee, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Derakhshan
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Rajabi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Choo KW, Mao L, Mustapha A. CAM-21, a novel lytic phage with high specificity towards Escherichia coli O157:H7 in food products. Int J Food Microbiol 2023; 386:110026. [PMID: 36444789 DOI: 10.1016/j.ijfoodmicro.2022.110026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has become a serious global concern for food safety. Despite the application of different traditional biocontrol methods in the food industry, food borne disease outbreaks linked to this organism remain. Due to their high specificity, lytic bacteriophages are promising antimicrobial agents that could be utilized to control pathogens in foods. In this study, a novel Escherichia phage, CAM-21, was isolated from a dairy farm environment. CAM-21 showed targeted host specificity towards various serotypes of Shiga toxin-producing E. coli, including O157:H7, O26, O103, and O145. Morphological analyses revealed that CAM-21 has a polyhedron capsid and a contractile tail with a diameter of about 92.83 nm, and length of about 129.75 nm, respectively. CAM-21 showed a strong inhibitory effect on the growth of E. coli O157:H7, even at a multiplicity of infection (MOI) of as low as 0.001. Phage adsorption and one-step growth analysis indicated that the target pathogen was rapidly lysed by CAM-21 that exhibited a short latent time (20 min). Electron microscopic and genomic DNA analyses suggested that CAM-21 is a lytic phage, classified as a new species in the Tequatrovirus genus of the Myoviridae Family. Based on whole genome sequencing, CAM-21 has a double-stranded DNA with 166,962 bp, 265 open reading frames and 11 tRNA. The genome of CAM-21 did not encode toxins, virulence factors, antibiotic resistance, lysogeny or allergens. Phylogenetic and genomic comparative analyses suggested that CAM-21 is a T4-like phage species. The growth of E. coli O157:H7 was effectively controlled in milk, ground beef and baby spinach at MOIs of 1000 and 10,000. CAM-21 significantly (P ≤ 0.05) reduced the bacterial counts of the treated foods, ranging from 1.4-2.0 log CFU/mL in milk to 1.3-1.4 log CFU/g in ground beef and baby spinach. These findings suggest that the lytic phage, CAM-21, is a potential candidate for controlling E. coli O157:H7 contamination in foods.
Collapse
Affiliation(s)
- Kai Wen Choo
- Food Science Program, University of Missouri, Columbia, United States of America
| | - Liang Mao
- Food Science Program, University of Missouri, Columbia, United States of America
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, United States of America.
| |
Collapse
|
18
|
Tailoring the Host Range of Ackermannviridae Bacteriophages through Chimeric Tailspike Proteins. Viruses 2023; 15:v15020286. [PMID: 36851500 PMCID: PMC9965104 DOI: 10.3390/v15020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is challenging, time-consuming, and restrictive. To address this, SPTD1.NL, a previously published luciferase reporter bacteriophage for Salmonella, was used to investigate manipulation of host range through receptor-binding protein engineering. Similar to related members of the Ackermannviridae bacteriophage family, SPTD1.NL possessed a receptor-binding protein gene cluster encoding four tailspike proteins, TSP1-4. Investigation of the native gene cluster through chimeric proteins identified TSP3 as the tailspike protein responsible for Salmonella detection. Further analysis of chimeric phages revealed that TSP2 contributed off-target Citrobacter recognition, whereas TSP1 and TSP4 were not essential for activity against any known host. To improve the host range of SPTD1.NL, TSP1 and TSP2 were sequentially replaced with chimeric receptor-binding proteins targeting Salmonella. This engineered construct, called RBP-SPTD1-3, was a superior diagnostic reporter, sensitively detecting additional Salmonella serovars while also demonstrating improved specificity. For industrial applications, bacteriophages of the Ackermannviridae family are thus uniquely versatile and may be engineered with multiple chimeric receptor-binding proteins to achieve a custom-tailored host range.
Collapse
|
19
|
Yang Y, Du H, Zou G, Song Z, Zhou Y, Li H, Tan C, Chen H, Fischetti VA, Li J. Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: A review. J Control Release 2023; 353:634-649. [PMID: 36464065 DOI: 10.1016/j.jconrel.2022.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Intestinal flora regulation is an effective method to intervene and treat diseases associated with microbiome imbalance. In addition to conventional probiotic supplement, phage delivery has recently exhibited great prospect in modifying gut flora composition and regulating certain gene expression of gut bacteria. However, the protein structure of phage is vulnerable to external factors during storage and delivery, which leads to the loss of infection ability and flora regulation function. Encapsulation strategy provides an effective solution for improving phage stability and precisely controlling delivery dosage. Different functional materials including enzyme-responsive and pH-responsive polymers have been used to construct encapsulation carriers to protect phages from harsh conditions and release them in the colon. Meanwhile, diverse carriers showed different characteristics in structure and function, which influenced their protective effect and delivery efficiency. This review systematically summarizes recent research progress on the phage encapsulation and delivery, with an emphasis on function properties of carrier systems in the protection effect and colon-targeted delivery. The present review may provide a theoretical reference for the encapsulation and delivery of phage as microbiota modulator, so as to expedite the development of functional material and delivery carrier, as well as the advances in practical application of intestinal flora regulation.
Collapse
Affiliation(s)
- Yufan Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Li
- Faculty of Bioscience Engineering, Ghent University, Gent 9000, Belgium
| | - Chen Tan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York 10065, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York 10065, USA; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
20
|
Jin M, Chen J, Zhao X, Hu G, Wang H, Liu Z, Chen WH. An Engineered λ Phage Enables Enhanced and Strain-Specific Killing of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2022; 10:e0127122. [PMID: 35876591 PMCID: PMC9431524 DOI: 10.1128/spectrum.01271-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are ideal alternatives to traditional antimicrobial agents in a world where antimicrobial resistance (AMR) is emerging and spreading at an unprecedented speed. In addition, due to their narrow host ranges, phages are also ideal tools to modulate the gut microbiota in which alterations of specific bacterial strains underlie human diseases, while dysbiosis caused by broad-spectrum antibiotics can be harmful. Here, we engineered a lambda phage (Eλ) to target enterohemorrhagic Escherichia coli (EHEC) that causes a severe, sometimes lethal intestinal infection in humans. We enhanced the killing ability of the Eλ phage by incorporating a CRISPR-Cas3 system into the wild-type λ (wtλ) and the specificity by introducing multiple EHEC-targeting CRISPR spacers while knocking out the lytic gene cro. In vitro experiments showed that the Eλ suppressed the growth of EHEC up to 18 h compared with only 6 h with the wtλ; at the multiplicity of infection (MOI) of 10, the Eλ killed the EHEC cells with ~100% efficiency and did not affect the growth of other laboratory- and human-gut isolated E. coli strains. In addition, the EHEC cells did not develop resistance to the Eλ. Mouse experiments further confirmed the enhanced and strain-specific killing of the Eλ to EHEC, while the overall mouse gut microbiota was not disturbed. Our methods can be used to target other genes that are responsible for antibiotic resistance genes and/or human toxins, engineer other phages, and support in vivo application of the engineered phages. IMPORTANCE Pathogenic strains of Escherichia coli are responsible for 0.8 million deaths per year and together ranked the first among all pathogenic species. Here, we obtained, for the first time, an engineered phage, Eλ, that could specifically and efficiently eliminate EHEC, one of the most common and often lethal pathogens that can spread from person to person. We verified the superior performance of the Eλ over the wild-type phage with in vitro and in vivo experiments and showed that the Eλ could suppress EHEC growth to nondetectable levels, fully rescue the EHEC-infected mice, and rescore disturbed mouse gut microbiota. Our results also indicated that the EHEC did not develop resistance to the Eλ, which has been the biggest challenge in phage therapy. We believe our methods can be used to target other pathogenic strains of E. coli and support in vivo application of the engineered phages.
Collapse
Affiliation(s)
- Menglu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueyang Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoru Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hailei Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Hua Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
21
|
Zhou C, Huang D, Wang Z, Shen P, Wang P, Xu Z. CRISPR Cas12a‐based “sweet” biosensor coupled with personal glucose meter readout for the point‐of‐care testing of
Salmonella. J Food Sci 2022; 87:4137-4147. [DOI: 10.1111/1750-3841.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ziyi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Pu Wang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
22
|
Garbaj AM, Gawella TBB, Sherif JA, Naas HT, Eshamah HL, Azwai SM, Gammoudi FT, Abolghait SK, Moawad AA, Barbieri I, Eldaghayes IM. Occurrence and antibiogram of multidrug-resistant Salmonella enterica isolated from dairy products in Libya. Vet World 2022; 15:1185-1190. [PMID: 35765472 PMCID: PMC9210834 DOI: 10.14202/vetworld.2022.1185-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Foodborne illnesses are a serious challenge to human health and the economic sector. For example, salmonellosis remains a burden in developed and developing nations. Rapid and reliable molecular methods to identify Salmonella strains are essential for minimizing human infection. This study aimed to identify Salmonella spp. in raw milk and dairy products using conventional and molecular techniques and to test the antibiotic susceptibility of the isolated strains.
Materials and Methods: One hundred and thirty-one milk and dairy product samples were randomly collected from different localities in Libya. Samples were examined for the presence of Salmonella by conventional culture techniques, including cultivation in Rappaport-Vassiliadis broth and streaking on xylose lysine deoxycholate agar. Identification also used polymerase chain reaction and partial sequencing of 16S rDNA. Twenty-four antibiotics were used for the examination of antimicrobial resistance of Salmonella spp. isolates with the agar disk diffusion method (Kirby–Bauer technique). Multi-antibiotic resistance index and antibiotic resistance index (ARI)for Salmonella enterica isolates were calculated.
Results: Twenty-one of 131 samples (16%) were positive for Salmonella spp. recovered from 9 (16%), 2 (11%), 4 (22.2%), and 6 (46%) samples of raw cow milk, fermented raw milk, and fresh locally made soft cheeses, Maasora and Ricotta), respectively. Samples of ice cream, milk powder, and infant formula showed no Salmonella spp. contamination. Only 9 of 21 (42.8%) isolates were confirmed as S. enterica by partial sequence 16S rDNA analysis. All isolates were resistant to amoxycillin, bacitracin, penicillin G, lincomycin, vancomycin, clindamycin, and cloxacillin with an ARI of 0.042. In contrast, all tested strains were sensitive to levofloxacin, doxycycline, and ciprofloxacin. In addition, all of the tested isolates (100%) were resistant to more than one antibiotic.
Conclusion: This study demonstrated the applicability of molecular techniques, compared with conventional methods, as preferable for the identification of Salmonella in milk and dairy products and thus reduction of milk-borne transmission to the consumers. From the view of public health, isolation and identification of Salmonella multidrug-resistant strains from raw cow's milk and locally prepared dairy products sold in the Libyan markets indicate the need to improve the handling and processing of milk and dairy products to minimize the prevalence of Salmonella, one of the most important foodborne microorganisms that cause food poisoning.
Collapse
Affiliation(s)
- Aboubaker M. Garbaj
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Tahani B. Ben Gawella
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Jihan A. Sherif
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Hesham T. Naas
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Hanan L. Eshamah
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Salah M. Azwai
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Fatim T. Gammoudi
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Said K. Abolghait
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ashraf A. Moawad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, 12211 Giza 12211, Egypt
| | - Ilaria Barbieri
- Department of Genetics, The Lombardy and Emilia Romagna Experimental Zootechnic Institute, Via Bianchi 9, Brescia 25124, Italy
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
23
|
The use of bacteriophage-based edible coatings for the biocontrol of Salmonella in strawberries. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Almutairi M, Imam M, Alammari N, Hafiz R, Patel F, Alajel S. Using Phages to Reduce Salmonella Prevalence in Chicken Meat: A Systematic Review. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:15-27. [PMID: 36161190 PMCID: PMC9041517 DOI: 10.1089/phage.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Salmonellosis is an infection that significantly impacts chicken and humans who consume it; it is a burden on public health and a contributor to commercial losses in the chicken industry worldwide. To tackle chicken meat-related bacterial infections, significant quantities of antibiotics alongside several infection prevention measures are used worldwide. However, chemical additives, such as organic acids, and chlorine-based interventions all have different limitations. These include feed refusal due to a change of taste, and incompatibility between organic acids and other inoculated preservative agents such as antimicrobial agents. Phages are host-specific viruses that interact with bacteria in a specific manner. Therefore, they possess unique biological and therapeutic features that can be used to reduce bacterial contamination, leading to improved food safety and quality. This systematic review examines the current evidence regarding the effectiveness of various phages on Salmonella colonization in chicken meat. This review summarizes findings from 17 studies that were conducted in vitro with similar experimental conditions (temperature and incubation parameters) to test the efficacy of isolated and commercially available phages on chicken raw meat samples. The current evidence suggests that most of the in vitro studies that used phages as a biocontrol to eradicate Salmonella contamination in chicken meat were successful. This indicates that phages constitute a promising solution worldwide for tackling foodborne bacteria, including Salmonella.
Collapse
Affiliation(s)
| | - Mohammed Imam
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | | | - Radwan Hafiz
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sulaiman Alajel
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
- Address for correspondence: Suliman Alajel, PhD, Saudi Food and Drug Authority, 4904 Northern Ring Road, Hittin-Riyadh 13513-7148, Saudi Arabia
| |
Collapse
|
25
|
Martinez-Soto CE, Cucić S, Lin JT, Kirst S, Mahmoud ES, Khursigara CM, Anany H. PHIDA: A High Throughput Turbidimetric Data Analytic Tool to Compare Host Range Profiles of Bacteriophages Isolated Using Different Enrichment Methods. Viruses 2021; 13:2120. [PMID: 34834927 PMCID: PMC8623551 DOI: 10.3390/v13112120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and are present in niches where bacteria thrive. In recent years, the suggested application areas of lytic bacteriophage have been expanded to include therapy, biocontrol, detection, sanitation, and remediation. However, phage application is constrained by the phage's host range-the range of bacterial hosts sensitive to the phage and the degree of infection. Even though phage isolation and enrichment techniques are straightforward protocols, the correlation between the enrichment technique and host range profile has not been evaluated. Agar-based methods such as spotting assay and efficiency of plaquing (EOP) are the most used methods to determine the phage host range. These methods, aside from being labor intensive, can lead to subjective and incomplete results as they rely on qualitative observations of the lysis/plaques, do not reflect the lytic activity in liquid culture, and can overestimate the host range. In this study, phages against three bacterial genera were isolated using three different enrichment methods. Host range profiles of the isolated phages were quantitatively determined using a high throughput turbidimetric protocol and the data were analyzed with an accessible analytic tool "PHIDA". Using this tool, the host ranges of 9 Listeria, 14 Salmonella, and 20 Pseudomonas phages isolated with different enrichment methods were quantitatively compared. A high variability in the host range index (HRi) ranging from 0.86-0.63, 0.07-0.24, and 0.00-0.67 for Listeria, Salmonella, and Pseudomonas phages, respectively, was observed. Overall, no direct correlation was found between the phage host range breadth and the enrichment method in any of the three target bacterial genera. The high throughput method and analytics tool developed in this study can be easily adapted to any phage study and can provide a consensus for phage host range determination.
Collapse
Affiliation(s)
- Carlos E. Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Janet T. Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Sarah Kirst
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - El Sayed Mahmoud
- Faculty of Applied Science and Technology, The Sheridan College Institute of Technology and Advanced Learning, Oakville, ON L6H 2L1, Canada;
| | - Cezar M. Khursigara
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (C.E.M.-S.); (S.C.); (J.T.L.); (S.K.); (C.M.K.)
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
26
|
Ramos-Vivas J, Elexpuru-Zabaleta M, Samano ML, Barrera AP, Forbes-Hernández TY, Giampieri F, Battino M. Phages and Enzybiotics in Food Biopreservation. Molecules 2021; 26:molecules26175138. [PMID: 34500572 PMCID: PMC8433972 DOI: 10.3390/molecules26175138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, biopreservation through protective bacterial cultures and their antimicrobial products or using antibacterial compounds derived from plants are proposed as feasible strategies to maintain the long shelf-life of products. Another emerging category of food biopreservatives are bacteriophages or their antibacterial enzymes called "phage lysins" or "enzybiotics", which can be used directly as antibacterial agents due to their ability to act on the membranes of bacteria and destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly because they have a practically unique host range that gives them great specificity. In addition to their potential ability to specifically control strains of pathogenic bacteria, their use does not generate a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in general all processes of manufacturing, preservation, and distribution of food. We present here an overview of the scientific background of phages and enzybiotics in the food industry, as well as food applications of these biopreservatives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
| | - María Luisa Samano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - Alina Pascual Barrera
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | | | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| |
Collapse
|
27
|
Xie Y, Thompson T, O'Leary C, Crosby S, Nguyen QX, Liu M, Gill JJ. Differential Bacteriophage Efficacy in Controlling Salmonella in Cattle Hide and Soil Models. Front Microbiol 2021; 12:657524. [PMID: 34262535 PMCID: PMC8273493 DOI: 10.3389/fmicb.2021.657524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Asymptomatic Salmonella carriage in beef cattle is a food safety concern and the beef feedlot environment and cattle hides are reservoirs of this pathogen. Bacteriophages present an attractive non-antibiotic strategy for control of Salmonella in beef. In this study, four diverse and genetically unrelated Salmonella phages, Sergei, Season12, Sw2, and Munch, were characterized and tested alone and in combination for their ability to control Salmonella in cattle hide and soil systems, which are relevant models for Salmonella control in beef production. Phage Sergei is a member of the genus Sashavirus, phage Season12 was identified as a member of the Chivirus genus, Sw2 was identified as a member of the T5-like Epseptimavirus genus, and Munch was found to be a novel “jumbo” myovirus. Observed pathogen reductions in the model systems ranged from 0.50 to 1.75 log10 CFU/cm2 in hides and from 0.53 to 1.38 log10 CFU/g in soil, with phages Sergei and Sw2 producing greater reductions (∼1 log10 CFU/cm2 or CFU/g) than Season12 and Munch. These findings are in accordance with previous observations of phage virulence, suggesting the simple ability of a phage to form plaques on a bacterial strain is not a strong indicator of antimicrobial activity, but performance in liquid culture assays provides a better predictor. The antimicrobial efficacies of phage treatments were found to be phage-specific across model systems, implying that a phage capable of achieving bacterial reduction in one model is more likely to perform well in another. Phage combinations did not produce significantly greater efficacy than single phages even after 24 h in the soil model, and phage-insensitive colonies were not isolated from treated samples, suggesting that the emergence of phage resistance was not a major factor limiting efficacy in this system.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Animal Science, Texas A&M University, College Station, TX, United States.,Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Tyler Thompson
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Chandler O'Leary
- Center for Phage Technology, Texas A&M University, College Station, TX, United States.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Stephen Crosby
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Quang X Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, United States.,Center for Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
28
|
Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Res Int 2021; 147:110492. [PMID: 34399488 DOI: 10.1016/j.foodres.2021.110492] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023]
Abstract
Salmonella is one of the most common foodborne pathogens around the world. Phages are envisioned as a new strategy to control foodborne pathogenic bacteria and food safety. A Salmonella specific lytic phage vB_SalS-LPSTLL (LPSTLL) was selected for food applications on the basis of lytic range, lytic efficiency, functional stability and characteristics. Phage LPSTLL was able to lyse 11 Salmonella serotypes, which represents the broadest range reported Salmonella phages, and was able to suppress the growth of Salmonella enterica in liquid culture over nine hours. LPSTLL exhibited rapid reproductive activity with a short latent period and a large burst size in one-step growth experiment. LPSTLL remained active over a pH range of 3.0 to 12.0, and at incubation temperatures up to 60 °C for 60 min, indicating wide applicability for food processing and storage. Significant reductions of viable Salmonella were observed in diverse foods (milk, apple juice, chicken and lettuce) with reductions up to 2.8 log CFU/mL recorded for milk. Sensory evaluation indicated that treatment with phage LPSTLL did not alter the visual or tactile quality of food matrices. Genome analysis of LPSTLL indicated the absence of any virulence or antimicrobial resistance genes. Genomic comparisons suggest phage LPSTLL constitutes a novel member of a new genus, the LPSTLLvirus with the potential for Salmonella biocontrol in the food industry.
Collapse
|
29
|
Ilhan H, Tayyarcan EK, Caglayan MG, Boyaci İH, Saglam N, Tamer U. Replacement of antibodies with bacteriophages in lateral flow assay of Salmonella Enteritidis. Biosens Bioelectron 2021; 189:113383. [PMID: 34087727 DOI: 10.1016/j.bios.2021.113383] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
In this study, the analytical performance of bacteriophages for Salmonella Enteritidis was investigated using lateral flow assay (LFA) technique. The analytical performance characteristics of bacteriophages were compared with antibodies which are regularly used as analyte-specific agents in the lateral flow immunoassay test strip. Bacteriophages could be an alternative analyte-specific agents to antibodies in lateral flow assay testing of bacteria since they offer comparable sensitivity, specificity, and accuracy. In the present study, Surface Enhanced Raman Spectroscopy (SERS) and colorimetric measurements were combined in one platform and sensitive quantitation of target bacteria was accomplished with a total quantitative analysis time of less than 30 min. The developed Salmonella Enteritidis F5-4 phage-based LFA specifically responds to Salmonella Enteritidis, while lower SERS responses to different bacteria types including Bacillus subtilis, Micrococcus luteus, Escherichia coli, Salmonella Typhimurium were observed. The developed test strips were also applied for the determination of Salmonella Enteritidis in spiked chicken and egg samples.
Collapse
Affiliation(s)
- Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Emine Kubra Tayyarcan
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Mehmet Gokhan Caglayan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - İsmail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Necdet Saglam
- Department of Nanotechnology, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| |
Collapse
|
30
|
Islam MS, Yang X, Euler CW, Han X, Liu J, Hossen MI, Zhou Y, Li J. Application of a novel phage ZPAH7 for controlling multidrug-resistant Aeromonas hydrophila on lettuce and reducing biofilms. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Biocontrol of Salmonella Enteritidis on chicken meat and skin using lytic SE-P3, P16, P37, and P47 bacteriophages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Population Dynamics between Erwinia amylovora, Pantoea agglomerans and Bacteriophages: Exploiting Synergy and Competition to Improve Phage Cocktail Efficacy. Microorganisms 2020; 8:microorganisms8091449. [PMID: 32971807 PMCID: PMC7563384 DOI: 10.3390/microorganisms8091449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are viruses capable of recognizing with high specificity, propagating inside of, and destroying their bacterial hosts. The phage lytic life cycle makes phages attractive as tools to selectively kill pathogenic bacteria with minimal impact on the surrounding microbiome. To effectively harness the potential of phages in therapy, it is critical to understand the phage–host dynamics and how these interactions can change in complex populations. Our model examined the interactions between the plant pathogen Erwinia amylovora, the antagonistic epiphyte Pantoea agglomerans, and the bacteriophages that infect and kill both species. P. agglomerans strains are used as a phage carrier; their role is to deliver and propagate the bacteriophages on the plant surface prior to the arrival of the pathogen. Using liquid cultures, the populations of the pathogen, carrier, and phages were tracked over time with quantitative real-time PCR. The jumbo Myoviridae phage ϕEa35-70 synergized with both the Myoviridae ϕEa21-4 and Podoviridae ϕEa46-1-A1 and was most effective in combination at reducing E. amylovora growth over 24 h. Phage ϕEa35-70, however, also reduced the growth of P. agglomerans. Phage cocktails of ϕEa21-4, ϕEa46-1-A1, and ϕEa35-70 at multiplicities of infections (MOIs) of 10, 1, and 0.01, respectively, no longer inhibited growth of P. agglomerans. When this cocktail was grown with P. agglomerans for 8 h prior to pathogen introduction, pathogen growth was reduced by over four log units over 24 h. These findings present a novel approach to study complex phage–host dynamics that can be exploited to create more effective phage-based therapies.
Collapse
|
33
|
Islam MS, Hu Y, Mizan MFR, Yan T, Nime I, Zhou Y, Li J. Characterization of Salmonella Phage LPST153 That Effectively Targets Most Prevalent Salmonella Serovars. Microorganisms 2020; 8:microorganisms8071089. [PMID: 32708328 PMCID: PMC7409278 DOI: 10.3390/microorganisms8071089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
Foodborne diseases represent a major risk to public health worldwide. In this study, LPST153, a novel Salmonella lytic phage with halo (indicative of potential depolymerase activity) was isolated by employing Salmonella enterica serovar Typhimurium ATCC 13311 as the host and had excellent lytic potential against Salmonella. LPST153 is effectively able to lyse most prevalent tested serotypes of Salmonella, including S. Typhimurium, S. Enteritidis, S. Pullorum and S. Gallinarum. Morphological analysis revealed that phage LPST153 belongs to Podoviridae family and Caudovirales order and could completely prevent host bacterial growth within 9 h at multiplicity of infection (MOI) of 0.1, 1, 10 and 100. LPST153 had a latent period of 10 min and a burst size of 113 ± 8 PFU/cell. Characterization of the phage LPST153 revealed that it would be active and stable in some harsh environments or in different conditions of food processing and storage. After genome sequencing and phylogenetic analysis, it is confirmed that LPST153 is a new member of the Teseptimavirus genus of Autographivirinae subfamily. Further application experiments showed that this phage has potential in controlling Salmonella in milk and sausage. LPST153 was also able to inhibit the formation of biofilms and it had the ability to reduce and kill bacteria from inside, including existing biofilms. Therefore, the phage LPST153 could be used as a potential antibacterial agent for Salmonella control in the food industry.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (I.N.)
| | - Yang Hu
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK;
| | | | - Ting Yan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (I.N.)
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (I.N.)
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence:
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (I.N.)
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY 10065-6399, USA
| |
Collapse
|
34
|
Peng Q, Fang M, Liu X, Zhang C, Liu Y, Yuan Y. Isolation and Characterization of a Novel Phage for Controlling Multidrug-Resistant Klebsiella pneumoniae. Microorganisms 2020; 8:microorganisms8040542. [PMID: 32283667 PMCID: PMC7232175 DOI: 10.3390/microorganisms8040542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens has severely threatened global health. A phage with the ability to efficiently and specifically lyse bacteria is considered an alternative for controlling multidrug-resistant bacterial pathogens. The discovery of novel agents for controlling the infections caused by K. pneumoniae is urgent due to the broad multidrug-resistance of K. pneumoniae. Only a few phage isolates have been reported to infect multidrug-resistant K. pneumoniae. In this study, by using the multidrug-resistant K. pneumoniae strain as an indicator, a novel phage called vB_KleS-HSE3, which maintains high antibacterial activity and high physical stability, was isolated from hospital sewage. This phage infected one of four tested multidrug-resistant K. pneumoniae strains. This phage belongs to the Siphoviridae family and a comparative genomic analysis showed that this phage is part of a novel phage lineage among the Siphoviridae family of phages that infect strains of Klebsiella. Based on its features, the vB_KleS-HSE3 phage has potential for controlling infections caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.P.); (M.F.); (X.L.); (C.Z.); (Y.L.)
| | - Meng Fang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.P.); (M.F.); (X.L.); (C.Z.); (Y.L.)
| | - Xushan Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.P.); (M.F.); (X.L.); (C.Z.); (Y.L.)
| | - Chunling Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.P.); (M.F.); (X.L.); (C.Z.); (Y.L.)
| | - Yue Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Q.P.); (M.F.); (X.L.); (C.Z.); (Y.L.)
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|