1
|
Liu Y, Wang J, Zheng H, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Qiu X, Peng G. Multi-functional properties of lactic acid bacteria strains derived from canine feces. Front Vet Sci 2024; 11:1404580. [PMID: 39161461 PMCID: PMC11330878 DOI: 10.3389/fvets.2024.1404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Probiotics, especially Lactic Acid Bacteria (LAB), can promote the health of host animals in a variety of ways, such as regulating intestinal flora and stimulating the host's immune system. Methods In this study, 206 LAB strains were isolated from 48 canine fecal samples. Eleven LAB strains were selected based on growth performance, acid and bile salt resistance. The 11 candidates underwent comprehensive evaluation for probiotic properties, including antipathogenic activity, adhesion, safety, antioxidant capacity, and metabolites. Results The results of the antipathogenic activity tests showed that 11 LAB strains exhibited strong inhibitory effect and co-aggregation ability against four target pathogens (E. coli, Staphylococcus aureus, Salmonella braenderup, and Pseudomonas aeruginosa). The results of the adhesion test showed that the 11 LAB strains had high cell surface hydrophobicity, self-aggregation ability, biofilm-forming ability and adhesion ability to the Caco-2 cells. Among them, Lactobacillus acidophilus (L177) showed strong activity in various adhesion experiments. Safety tests showed that 11 LAB strains are sensitive to most antibiotics, with L102, L171, and L177 having the highest sensitivity rate at 85.71%, and no hemolysis occurred in all strains. Antioxidant test results showed that all strains showed good H2O2 tolerance, high scavenging capacity for 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). In addition, 11 LAB strains can produce high levels of metabolites including exopolysaccharide (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study provides a thorough characterization of canine-derived LAB strains, highlighting their multifunctional potential as probiotics. The diverse capabilities of the strains make them promising candidates for canine dietary supplements, offering a holistic approach to canine health. Further research should validate their efficacy in vivo to ensure their practical application.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiali Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group Co., Ltd., Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Azevedo I, Barbosa J, Albano H, Nogueira T, Teixeira P. Lactic Acid Bacteria isolated from traditional and innovative alheiras as potential biocontrol agents. Food Microbiol 2024; 119:104450. [PMID: 38225051 DOI: 10.1016/j.fm.2023.104450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes' orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.
Collapse
Affiliation(s)
- Inês Azevedo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Joana Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| | - Helena Albano
- Escola Superior de Enfermagem de Coimbra, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios, 4990-706 Ponte de Lima, Portugal
| | - Teresa Nogueira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-157, Oeiras, 4485-655, Vairão, Portugal; CE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
3
|
Ishioka K, Miyazaki N, Nishiyama K, Suzutani T. Characterization of Lactococcus lactis 11/19-B1 Isolated from Kiwi Fruit as a Potential Probiotic and Paraprobiotic. Microorganisms 2023; 11:2949. [PMID: 38138093 PMCID: PMC10745553 DOI: 10.3390/microorganisms11122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Probiotics are live bacteria used as food additives that are beneficial to human health. Lactococcus lactis 11/19-B1 strain isolated from kiwi fruit stimulates innate immunity in silkworms. Intake of yogurt containing the living 11/19-B1 strain significantly decreases the level of low-density lipoproteins (LDLs) in high-LDL volunteers and improves atopic dermatitis in humans. In this study, the probiotic properties of the 11/19-B1 strain, such as sensitivity to antimicrobial compounds, biogenic amine production, some virulence genes for human health, antimicrobial activity, tolerance to gastric acid and bile acids, and ability to adhere to the intestinal mucosa, were evaluated. The 11/19-B1 strain did not show resistance to the tested antimicrobial compounds except cefoxitin and fosfomycin. In addition, no production of amines that can harm humans, the antimicrobial activity required for probiotics, and the absence of adhesion to Caco-2 cells suggest that it is unlikely to attach to the intestinal epithelium. The 11/19-B1 strain grew in 0.3% but not in 1% bile salt. In the presence of 2% skim milk, the survival rate of the 11/19-B1 strain under simulated gastrointestinal tract conditions was 67% even after 4 h. These results indicate that the 11/19-B1 strain may function as a probiotic or paraprobiotic to be utilized in the food industry.
Collapse
Affiliation(s)
- Ken Ishioka
- Department of Microbiology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (N.M.); (K.N.); (T.S.)
| | | | | | | |
Collapse
|
4
|
Ismael M, Qayyum N, Gu Y, Zhezhe Y, Cui Y, Zhang Y, Lü X. Protective effect of plantaricin bio-LP1 bacteriocin on multidrug-resistance Escherichia Coli infection by alleviate the inflammation and modulate of gut-microbiota in BALB/c mice model. Int J Biol Macromol 2023; 246:125700. [PMID: 37414312 DOI: 10.1016/j.ijbiomac.2023.125700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The rapid spread of multidrug-resistant pathogens with the low efficacy of common antibiotics for humans and animals in its clinical therapeutics are a global health concern. Therefore, there is a need to develop new treatment strategies to control them clinically. The study aimed to evaluate the effects of Plantaricin Bio-LP1 bacteriocin produced from Lactiplantibacillus plantarum NWAFU-BIO-BS29 to alleviate the inflammation caused by multidrug-resistance Escherichia Coli (MDR-E. coli) infection in BALB/c mice-model. The focus was given on aspects linked to the mechanism of the immune response. Results indicated that Bio-LP1 had highly promising effects on partially ameliorating MDR-E. coli infection by reducing the inflammatory response through inhibiting the overexpression of proinflammatory-cytokines such as secretion of tumor necrosis factor (TNF-α) and interleukin (IL-6 and IL-β) and strongly regulated theTLR4 signaling-pathway. Additionally, avoided the villous destruct, colon length shortening, loss of intestinal barrier integrity, and increased disease activity index. Furthermore, significantly increased the relative abundance of beneficial-intestinal-bacteria including Ligilactobacillus, Enterorhabdus, Pervotellaceae, etc. Finally, improved the intestinal mucosal barrier to alleviate the pathological damages and promote the production of short-chain fatty acids (SCFAs) a source of energy for the proliferation. In conclusion, plantaricin Bio-LP1 bacteriocin can be considered a safe alternative to antibiotics against MDR-E. coli-induced intestinal inflammation.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Sudanese Standard and Metrology Organization, Khartoum, 13573, Sudan
| | - Nageena Qayyum
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing, China
| | - Yu Zhezhe
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
6
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
7
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
8
|
Ismael M, Wang T, Yue F, Cui Y, Yantin Q, Qayyum N, Lü X. A comparison of mining methods to extract novel bacteriocins from Lactiplantibacillus plantarum NWAFU-BIO-BS29. Anal Biochem 2023; 661:114938. [PMID: 36379249 DOI: 10.1016/j.ab.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022]
Abstract
One of the most important challenges in the field of food safety is producing natural and safe substances that act against pathogens in food. Bacteriocins and antimicrobial peptides (AMPs) have an anti-pathogens effect for both Gram-negative and positive bacteria. The aim of this study was to isolate and characterize safe lactic acid bacteria from traditional Chinese fermented milk that can produce anti-bacterial molecule compounds and does not harm for humans and animals. Lactiplantibacillus plantarum NWAFU-BIO-BS29 was found to be safe, lacking 16 genes for virulence factors, biogenic amine production and antibiotic resistance, and no hemolysis activity was observed. In contrast, it has ability to produce a novel potential bacteriocin of Plantaricin Bio-LP1. Precipitation of bacteriocin by Ethyl-acetate proved to be a suitable method for the extraction the bacteriocin. Whilst, the purification steps were performed as follows: the protein purification system (AKTA-Purifier equipped with HiTrap (gel column)), followed by reversed phase high-performance liquid chromatography (RP-HPLC) equipped with C18 column. In addition, LC-MS-MS and MALDI-TOF were used to identify the peptide sequences and estimate the molecular weight, respectively. Notably, among the eight peptide sequences considered, a couple of sequences have been announced as uncharacterized in protein database (FDYYFFDKK and KEIDDNSIAVK) with a molecular mass less than 1.3 kDa. The MIC was 0.552 mg/ml and exhibited high stability under various temperature, pH, and enzymes conditions. The best activity was found at temperature and pH of 4 °C and 6 °C, respectively, which are the optimal conditions for preservation of most foods. We concluded that, the described method can arouse a growing interest in mining novel bacteriocins. Plantaricin Bio-LP1 is a potentially unique bacteriocin that is effective as a bio-preservative and could make a promising contribution in food and animal feed industries or in the medical field with further clinical studies.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Sudanese Standard and Metrology Organization, Khartoum, 13573, Sudan.
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Qin Yantin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Nageena Qayyum
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Wang Z, Zhang Y, Chen C, Fan S, Deng F, Zhao L. A novel bacteriocin isolated from Lactobacillus plantarum W3-2 and its biological characteristics. Front Nutr 2023; 9:1111880. [PMID: 36704783 PMCID: PMC9872010 DOI: 10.3389/fnut.2022.1111880] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, screening bacteriocin-producing strains from 2,000 plant-derived strains by agar well diffusion method was conducted. The corresponding produced bacteriocin was purified and identified by Sephadex gel chromatography, reversed-phase high-performance liquid chromatography (RP-HPLC), and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Meanwhile, the biological characteristics of bacteriocin were investigated. The targeted strain W3-2 was obtained and identified as Lactobacillus plantarum by morphological observation and 16S rRNA gene sequence analysis. Correspondingly, a novel bacteriocin (named plantaricin W3-2) produced by L. plantarum W3-2 with a molecular weight of 618.26 Da, and an amino acid sequence of AVEEE was separated, purified by Sephadex gel chromatography and RP-HPLC, and identified by LC-MS/MS. Further characteristics analysis displayed that plantaricin W3-2 had good thermal, pH stability, and broad-spectrum antimicrobial ability. In conclusion, plantaricin W3-2 can be used as a new food preservative.
Collapse
Affiliation(s)
- Zengguang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yixuan Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | | | - Shichao Fan
- Junjie Food Technology Co., Ltd., Shaoyang, China
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China,*Correspondence: Fangming Deng,
| | - Lingyan Zhao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China,Lingyan Zhao,
| |
Collapse
|
10
|
Ismael M, Gu Y, Cui Y, Wang T, Yue F, Yantin Q, Lü X. Lactic acid bacteria isolated from Chinese traditional fermented milk as novel probiotic strains and their potential therapeutic applications. 3 Biotech 2022; 12:337. [PMID: 36340806 PMCID: PMC9626708 DOI: 10.1007/s13205-022-03403-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/15/2022] [Indexed: 12/07/2022] Open
Abstract
Lactic acid bacteria (LAB) are believed to have health-promoting properties to the host and can be used in therapeutics interventions; intriguingly, they have the property to produce bio-preservatives substances. Therefore, this study aimed to mine probiotics and evaluate their safety, functional properties, and cholesterol-lowering capability. Seven potential probiotic strains were compared from 56 LAB strains isolated from traditional Chinese fermented milk. The results showed that all tested strains are tolerant to gastric acidity (45.5-83.26) and bile salts (11.92-92.91%) and have antibacterial activity against Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922. Likewise, it lowered the cholesterol levels in vitro by live cells (26.57-45.76%) and dead cells (29.53-50.97%) with remarkable aggregation ability (13.8-43.71%). Antioxidant properties and produce short chain fatty acids (SCFAs) were strain-dependent features. Upon assessment of the safety, Enterococcus faecium NWAFU-BIO-AS14 exhibited virulence factors genes (VFs) of (mur-2ed, odc, and tet(K)) and + hemolysis activity. While Enterococcus faecium NWAFU-BIO-A-B24 and Limosilactobacillus fermentum NWAFU-BIO-B-S6 have VFs of (odc, vanC2, and ant(6)-Ia). Limosilactobacillus fermentum NWAFU-BIO-D-B2 has only (odc). Thus, they are not considered as safe probiotics. In contrast, Lactiplantibacillus plantarum NWAFU-BIO-BS29, Companilactobacillus crustorum NWAFU-BIO-AS16, and Lactobacillus gallinarum NWAFU-BIO-D-S7 are the safest and best strains, respectively, due to the absence of 16 VFs and their sensitivity to antibiotics such as kanamycin, erythromycin, tetracycline, gentamycin, vancomycin, streptomycin, chloramphenicol, and ampicillin. Accordingly, these strains have a high potentiality to be used as starter cultures or safely applied as perfect probiotics in functionals food and feed. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03403-z.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
- Sudanese Standard and Metrology Organization, 13573 Khartoum, Sudan
| | - Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
- College of Food Science, China Agricultural University, Beijing, China
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Qin Yantin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
11
|
Martín I, Barbosa J, Pereira SI, Rodríguez A, Córdoba JJ, Teixeira P. Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Ismael M, Gu Y, Cui Y, Wang T, Yue F, Qin Y, Lü X. Probiotic of Lactiplantibacillus plantarum NWAFU-BIO-BS29 Isolated from Chinese Traditional Fermented Milk and Its Potential Therapeutic Applications Based on Gut Microbiota Regulation. Foods 2022; 11:3766. [PMID: 36496574 PMCID: PMC9738876 DOI: 10.3390/foods11233766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lactic acid bacteria are one of the bioresources that can promote the host's health and have potential therapeutic applications. This study aimed to evaluate the probiotic properties of novel Lactiplantibacillus plantarum NWAFU-BISO-BS29 isolated in vitro from traditional Chinese fermented milk, assess its safety, and study its interaction with the gut microbiota using a BALB/c mouse model. The findings reveal that this strain had a high tolerance to gastric acidity (64.4%) and bile salts (19.83-87.92%) with remarkable auto-aggregation and co-aggregation abilities (33.01-83.96%), respectively. Furthermore, it lowered the cholesterol levels in dead cells (44.02%) and live cells (34.95%) and produced short-chain fatty acids (SCFAs). Likewise, it showed good antioxidant properties and strong antipathogen activity against Escherichia coli and Staphylococcus aureus with inhibition zones at 21 and 25 mm, respectively. The safety assessment results indicate that all of the virulence factor genes were not detected in the whole DNA; additionally, no hemolysis or resistance to antibiotics commonly used in food and feed was observed. Interestingly, the 16S rRNA gene sequencing of the mouse gut microbiota showed a marked alteration in the microbial composition of the administrated group, with a noticeable increase in Firmicutes, Patescibacteria, Campylobacterota, Deferribacterota, Proteobacteria, and Cyanobacteria at the phylum level. The modulation of gut microbial diversity significantly improved the production of SCFCs due to the abundance of lactobacillus genera, which was consistent with the functional gene predictive analysis and is believed to have health-promoting properties. Based on these results, our novel strain is considered a safe and good probiotic and could hold high potential to be used as a starter culture or to safely supplement functional foods as a probiotic and may provide new insights into therapeutic interventions.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Sudanese Standards and Metrology Organization, Khartoum 13573, Sudan
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing 100083, China
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanting Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
13
|
Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon 2022; 8:e11063. [PMID: 36276732 PMCID: PMC9578979 DOI: 10.1016/j.heliyon.2022.e11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Lacticaseibacillus paracasei is one of the probiotic bacteria widely identified from fermented foods. The application of L. paracasei is commonly used in dairy and non-dairy products. To investigate the probiotic properties of L. paracasei cells including their acid, pepsin, pancreatin, and bile salt tolerances; adhesion ability; antipathogen activity; and antibiotic susceptibility, L. paracasei cells were incorporated into skim milk and lyophilized by freeze drying. Freeze-dried probiotic cells were add to green banana powder and low moisture additive food matrices and a storage analysis of the product was performed. The result showed that L. paracasei cells possessed potentially beneficial probiotic properties to survive stress in the gastrointestinal tract (GIT) and functional abilities as an anti-enteropathogenic agent; they were also safe to use and displayed antibiotic properties. Furthermore, the probiotic freeze-drying technique preserved high probiotic cell survivability (1011 CFU/g). In term of prolonged storage (60 days), the powder product was stable and maintained probiotic survival (107 CFU/g) while excluding non-probiotic growth. In conclusion, L. paracasei displayed probiotic properties in the GIT and was judged to be a highly acceptable product as a probiotics–banana rehydrated beverage.
Collapse
|
14
|
Lata P, Kumari R, Sharma KB, Rangra S, Savitri. In vitro evaluation of probiotic potential and enzymatic profiling of Pichia kudriavzevii Y33 isolated from traditional home-made mango pickle. J Genet Eng Biotechnol 2022; 20:132. [PMID: 36083419 PMCID: PMC9463414 DOI: 10.1186/s43141-022-00416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022]
Abstract
Background Fermented foods are the results of metabolic activities of various microorganisms. People have traditionally known how to culture desirable microorganisms, primarily lactic acid bacteria, yeasts, and filamentous molds, for the manufacture of edible foods. Yeast isolated from home-made mango pickle from Hamirpur, Himachal Pradesh, was assessed for probiotic properties and their enzymatic profiling. Results Four yeast isolates were isolated out of which P. kudriavzevii Y33 was selected on the basis of high acid tolerance as well as broadest antimicrobial activity. The selected isolate was observed to have high acid tolerance at pH 2 and show strong antimicrobial activity against all the pathogens examined. P. kudriavzevii Y33 can also withstand high bile concentration and showed high viability index, i.e., 95% at concentration of 2% of bile. The isolate was able to demonstrate high cholesterol assimilation in medium containing ox bile and taurocholate, at 88.58 and 86.83%, respectively. The autoaggregation ability of isolate increases with increasing the time of incubation and showed 87% of autoaggregation after 24 h of incubation. P. kudriavzevii Y33 exhibited resistance towards different antibiotics, found to be positive for exopolysaccharide production and showed no hemolytic activity. The isolate was observed to produce several enzymes such as β-galactosidase, protease, amylase, phytase, and lipase. Conclusions The results of the current study revealed that P. kudriavzevii Y33 has various beneficial qualities that suggest it could be used as probiotics. Enzymes produced by yeast isolate help in improving flavor and mineral availability in the fermented products.
Collapse
Affiliation(s)
- Prem Lata
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Reena Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Kiran Bala Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Shailja Rangra
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India.
| |
Collapse
|
15
|
Li J, Hu K, Hu L, Hou X, Li Q, Liu A, Chen S, Ao X, Hu X, He L, Tang H, Huang D, Yang Y, Zou L, Liu S. Adsorption Behavior of 3-phenoxybenzoic Acid by Lactobacillus Plantarum and Its Potential Application in Simulated Digestive Juices. Int J Mol Sci 2022; 23:ijms23105809. [PMID: 35628620 PMCID: PMC9146835 DOI: 10.3390/ijms23105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
3-PBA is a major degradation intermediate of pyrethroids. Its widespread existence in the environment poses a severe threat to the ecosystem and human health. This study evaluated the adsorption capacity of L. plantarum RS20 toward 3-PBA. Batch adsorption experiments indicated that the optimal adsorption conditions were a temperature of 37 °C and initial pH of 6.0–8.0, under which the removal rate was positively correlated with the cell concentration. In addition, there was no link between the incubation time and adsorption rate. The kinetic study showed that the adsorption process fitted well with the pseudo-second-order model, and the adsorption isotherms could be described by both Langmuir and Freundlich equations. Heat and acid treatments showed that the ability of strain RS20 in removing 3-PBA was independent of microbial vitality. Indeed, it was involved with chemisorption and physisorption via the cell walls. The cell walls made the highest contribution to 3-PBA removal, according to the adsorption experiments using different cellular components. This finding was further reconfirmed by SEM. FTIR spectroscopy analysis indicated that carboxyl, hydroxyl, amino groups, and –C–N were the functional sites for the binding of 3-PBA. The co-culture experiments showed that the adsorption of strain RS20 enhanced the degradation of 3-PBA by strain SC-1. Strain RS20 could also survive and effectively remove 3-PBA in simulated digestive juices. Collectively, strain RS20 could be employed as a biological detoxification agent for humans and animals by eliminating 3-PBA from foods, feeds, and the digestive tract in the future.
Collapse
Affiliation(s)
- Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Lu Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Daomei Huang
- Integrated Agricultural Development Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: ; Tel.: +86-0835-2882187
| |
Collapse
|
16
|
Hwanhlem N, Salaipeth L, Charoensook R, Kanjan P, Maneerat S. Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential. J Microbiol Biotechnol 2022; 32:355-364. [PMID: 35058398 PMCID: PMC9628785 DOI: 10.4014/jmb.2110.10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39°C, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.
Collapse
Affiliation(s)
- Noraphat Hwanhlem
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand,Corresponding author Phone: +6655962737 E-mail:
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pochanart Kanjan
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000 Thailand
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
17
|
Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods 2022; 11:foods11050757. [PMID: 35267390 PMCID: PMC8909736 DOI: 10.3390/foods11050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Seafood is an excellent source of nutrients, essential for a healthy diet, ranging from proteins and fatty acids to vitamins and minerals. Seafood products are highly perishable foods due to their nutritional characteristics and composition. The application of nontoxic, natural, and edible preservatives to extend the shelf-life and inhibit bacterial proliferation of several foods has been a hot topic. Consequently, this work aimed to perform the microbiological characterization of squid and shrimp skewers during their shelf-life (five days) and evaluate the susceptibility of randomly isolated microorganisms to several natural edible compounds so that their application for the preservation and shelf-life extension of the product might be analyzed in the future. The product had considerably high total microorganisms loads of about 5 log CFU/g at day zero and 9 log CFU/g at day five. In addition, high bacterial counts of Pseudomonas spp., Enterobacterales, and lactic acid bacteria (LAB) were found, especially on the last day of storage, being Pseudomonas the dominant genus. However, no Escherichia coli or Listeria monocytogenes were detected on the analyzed samples. One hundred bacterial isolates were randomly selected and identified through 16s rRNA sequencing, resulting in the detection of several Enterobacterales, Pseudomonas spp., and LAB. The antibacterial activity of carvacrol, olive leaf extract, limonene, Citrox®, different chitosans, and ethanolic propolis extracts was evaluated by the agar diffusion method, and the minimum inhibitory concentration was determined only for Citrox® since only this solution could inhibit all the identified isolates. At concentrations higher than or equal to 1.69% (v/v), Citrox® demonstrated bacteriostatic and bactericidal activity to 97% and 3% of the isolates, respectively. To our knowledge, there are no available data about the effectiveness of this commercial product on seafood isolates. Although preliminary, this study showed evidence that Citrox® has the potential to be used as a natural preservative in these seafood products, improving food safety and quality while reducing waste. However, further studies are required, such as developing a Citrox®-based coating and its application on this matrix to validate its antimicrobial effect.
Collapse
|
18
|
Evangelista AG, Danielski GM, Corrêa JAF, Cavalari CMDA, Souza IR, Luciano FB, Macedo REFD. Carnobacterium as a bioprotective and potential probiotic culture to improve food quality, food safety, and human health - a scoping review. Crit Rev Food Sci Nutr 2022; 63:6946-6959. [PMID: 35156482 DOI: 10.1080/10408398.2022.2038079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well-known that some bacteria can promote human and animal health. Bacteria of the genus Carnobacterium, while underexplored, have demonstrated significant probiotic and bioprotective potential. In this review, the recent scientific advances in this area are discussed. There are several requirements for a strain to be considered a probiotic or bioprotective agent, including the absence of antimicrobial resistance and the ability to colonize the gastrointestinal tract. Several researchers have reported such features in Carnobacterium bacteria, especially with regard to the production of antimicrobial substances. Research into animal production has advanced, especially in the aquaculture field, wherein inhibitory activity has been demonstrated against several important pathogens (for example Vibrio), and improvement in zootechnical indexes is evident. With respect to human health-related applications, research is still in the early stages. However, excellent in vitro results against pathogens, such as Candida albicans and Pseudomonas aeruginosa, have been reported. Carnobacterium bacteria have been assessed for a variety of applications in food, including direct application to the matrix and application to smart packaging, with proven effectiveness against Listeria monocytogenes. However, there is a lack of in vivo studies on Carnobacterium applications, which hinders its applications in various industries despite its high potential.
Collapse
Affiliation(s)
| | - Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Isabelle Ramos Souza
- Undergraduate Program in Veterinary Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
19
|
Wang J, Pu Y, Zeng Y, Chen Y, Zhao W, Niu L, Chen B, Yang Z, Wu L, Pan K, Jing B, Zeng D, Ni X. Multi-functional Potential of Five Lactic Acid Bacteria Strains Derived from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 2022; 15:668-681. [PMID: 35000110 DOI: 10.1007/s12602-021-09881-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The multi-functional properties of lactic acid bacteria (LAB) on host health have been a popular research topic. The aim of present study was to assess the multi-functional potential of five LAB strains isolated from giant panda. In this study, we analyzed five giant panda LAB strains (Weissella confuse WJ202003 (W3), WJ202009 (W9), WJ202021 (W21), BSP201703 (X3); Lactiplantibacillus plantarum BSGP201683 (G83)) and found that they exhibited rapid growth as well as strong acid production capacity. The five LAB strains possessed high cell surface hydrophobicity to the four tested solvents (xylene, hexadecane, chloroform, ethyl acetate; except strain W9), auto-aggregation ability, co-aggregation ability with three pathogens (Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella), adhesion ability to Caco-2 cell line, and strongly biofilm formation ability, suggesting an adhesion property. As investigated for their antioxidative potential, all the strains showed good tolerance to H2O2, high scavenging ability against 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl (OH-), and reduction ability. Furthermore, the five LAB strains could produce multiple probiotic substances, including exopolysaccharide (EPS), gamma-aminobutyric acid (GABA), bile salt hydrolase (BSH), cellulase (only strain G83), and protease (except strain X3), which was the first to report the production of EPS, GABA, BSH, cellulase, and protease in giant panda-derived LAB strain. These results demonstrated that strains W3, W9, W21, X3, and G83 had multi-functional potential and could be utilized as potential probiotics for giant panda.
Collapse
Affiliation(s)
- Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Pu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingyi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Benhao Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zihan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liqian Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
20
|
Sornsenee P, Chatatikun M, Mitsuwan W, Kongpol K, Kooltheat N, Sohbenalee S, Pruksaphanrat S, Mudpan A, Romyasamit C. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ 2021; 9:e12586. [PMID: 34909285 PMCID: PMC8641486 DOI: 10.7717/peerj.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. METHODS In this study, we evaluated the in vitro antimicrobial effects, antioxidant activity, and anti-inflammatory potential of 10 lyophilized cell-free supernatants (LCFS) of Lactobacillus isolates. LCFS was obtained via centrifugation and subsequent lyophilization of the supernatant collected from the culture medium ofeach isolate. The antibacterial and antibiofilm activities of the LCFS were determined using broth microdilution. The antioxidant potential was evaluated by measuring the total phenolic and flavonoid contents and 2,2-Diphennyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) radical scavenging activities. RESULTS All the isolates were able to inhibit the four tested pathogens. The isolates exhibited strong antibiofilm activity and eradicated the biofilms formed by Acinetobacter buamannii and Escherichia coli. All the prepared Lactobacillus LCFS contained phenols and flavonoids and exhibited antioxidant activities in the DPPH and ABTS+ radical scavenging assays. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that LCFS was not cytotoxic to RAW 264.7 cells. In addition, the ten Lactobacillus LCFS decreased the production of nitric oxide. CONCLUSIONS All the isolates have beneficial properties. This research sheds light on the role of postbiotics in functional fermented foods and pharmaceutical products. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Meliodosis (CERM), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Research Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Kantapich Kongpol
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Product, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasirat Sohbenalee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Supawita Pruksaphanrat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Amron Mudpan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Meliodosis (CERM), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
21
|
Ahmed ASI, El Moghazy GM, Elsayed TR, Goda HAL, Khalafalla GM. Molecular identification and in vitro evaluation of probiotic functional properties of some Egyptian lactic acid bacteria and yeasts. J Genet Eng Biotechnol 2021; 19:114. [PMID: 34351550 PMCID: PMC8342691 DOI: 10.1186/s43141-021-00212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The health-promoting effects along with global economic importance of consuming food products supplemented with probiotic microorganisms encouraged the researchers to discover new probiotics. RESULTS Fourteen lactic acid bacterial isolates were identified as Enterococcus mediterraneensis, Lactobacillus fermentum, and Streptococcus lutetiensis by 16S rRNA gene sequencing, and in vitro characterized for their actual probiotic potential. All E. mediterraneensis isolates were resistant to clindamycin, whereas Lb. fermentum isolates were resistant to ampicillin, clindamycin, and vancomycin. The E. mediterraneensis and Lb. fermentum isolates displayed high overall digestive survival, ranged from 1.35 ± 0.06 to 32.73 ± 0.84% and from 2.01 ± 0.01 to 23.9 ± 1.85%, respectively. All isolates displayed cell surface hydrophobicity, ranged between 15.44 ± 6.72 and 39.79 ± 2.87%. The strongest auto-aggregation capability, higher than 40%, was observed for most E. mediterraneensis and Lb. fermentum isolates. The E. mediterraneensis isolates (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) exhibited the greatest co-aggregation with Salmonella typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Bacillus cereus. Fifty-seven and fourteen hundredth percent of E. mediterraneensis isolates could be considered bacteriocinogenic against E. coli O157:H7, B. cereus, and S. aureus. CONCLUSION This study is the first one to isolate Enterococcus mediterraneensis in Egypt and to characterize it as new species of probiotics globally. According to the results, E. mediterraneensis (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) are the most promising in vitro probiotic candidates.
Collapse
Affiliation(s)
| | | | - Tarek Ragab Elsayed
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hanan Abdel Latif Goda
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Galal Mahmoud Khalafalla
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
22
|
Response of Lactiplantibacillus plantarum NMGL2 to Combinational Cold and Acid Stresses during Storage of Fermented Milk as Analyzed by Data-Independent Acquisition Proteomics. Foods 2021; 10:foods10071514. [PMID: 34209263 PMCID: PMC8305577 DOI: 10.3390/foods10071514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
To understand the mechanism of tolerance of lactic acid bacteria (LAB) during cold storage of fermented milk, 31 LAB strains were isolated from traditional fermented products, and Lactiplantibacillus plantarum NMGL2 was identified with good tolerance to both cold and acid stresses. Data-independent acquisition proteomics method was employed to analyze the response of Lpb. plantarum NMGL2 to the combinational cold and acid stresses during storage of the fermented milk made with the strain at 4 °C for 21 days. Among the differentially expressed proteins identified, 20 low temperature-resistant proteins and 10 acid-resistant proteins were found. Protein interaction analysis showed that the low temperature-resistant proteins associated with acid-resistant proteins were Hsp1, Hsp2, Hsp3, CspC, MurA1, MurC, MurD, MurE1, and MurI, while the acid-resistant proteins associated with low temperature-resistant proteins were DnaA, DnaK, GrpE, GroEL, and RbfA. The overall metabolic pathways of Lpb. plantarum NMGL2 in response to the stresses were determined including increased cell wall component biosynthesis, extracellular production of abundant glycolipids and glycoproteins, increased expression of F1Fo-ATPase, activation of glutamate deacidification system, enhanced expression of proteins and chaperones associated with cell repairing caused by the acidic and cold environment into the correct proteins. The present study for the first time provides further understanding of the proteomic pattern and metabolic changes of Lpb. plantarum in response to combinational cold and acid stresses in fermented milk, which facilitates potential application of Lpb. plantarum in fermented foods with enhanced survivability.
Collapse
|
23
|
Barbosa J, Albano H, Silva B, Almeida MH, Nogueira T, Teixeira P. Characterization of a Lactiplantibacillus plantarum R23 Isolated from Arugula by Whole-Genome Sequencing and Its Bacteriocin Production Ability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5515. [PMID: 34063896 PMCID: PMC8196627 DOI: 10.3390/ijerph18115515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
Lactiplantibacillus plantarum is one of the lactic acid bacteria species most used as probiotics and starter cultures in food production. Bacteriocin-producers Lpb. plantarum are also promising natural food preservatives. This study aimed to characterize Lpb. plantarum R23 and its bacteriocins (R23 bacteriocins). The genome sequence of Lpb. plantarum R23 was obtained by whole-genome sequencing (WGS) in an Illumina NovaSeq platform. The activity of Lpb. plantarum R23-produced bacteriocin against two Listeria monocytogenes strains (L7946 and L7947) was evaluated, and its molecular size was determined by tricine-SDS-PAGE. No virulence or antibiotic resistance genes were detected. Four 100% identical proteins to the class II bacteriocins (Plantaricin E, Plantaricin F, Pediocin PA-1 (Pediocin AcH), and Coagulin A) were found by WGS analysis. The small (<6.5 kDa) R23 bacteriocins were stable at different pH values (ranging from 2 to 8), temperatures (between 4 and 100 °C), detergents (all, except Triton X-100 and Triton X-114 at 0.01 g/mL), and enzymes (catalase and α-amylase), did not adsorb to the producer cells, had a bacteriostatic mode of action and their maximum activity (AU/mL = 12,800) against two L. monocytogenes strains occurred between 15 and 21 h of Lpb. plantarum R23 growth. Lactiplantibacillus plantarum R23 showed to be a promising bio-preservative culture because, besides being safe, it produces a stable bacteriocin or bacteriocins (harbors genes encoding for the production of four) inhibiting pathogens as L. monocytogenes. Further studies in different food matrices are required to confirm this hypothesis and its suitability as a future starter culture.
Collapse
Affiliation(s)
- Joana Barbosa
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Helena Albano
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Beatriz Silva
- Colégio de São Gonçalo, 4600-014 Amarante, Portugal;
| | | | - Teresa Nogueira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-157 Oeiras and 4485-655 Vairão, Portugal;
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paula Teixeira
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| |
Collapse
|
24
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
25
|
Rodríguez-Sánchez S, Fernández-Pacheco P, Seseña S, Pintado C, Palop ML. Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Özkan ER, Demirci T, Öztürk Hİ, Akın N. Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2799-2808. [PMID: 33135796 DOI: 10.1002/jsfa.10909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Eleven Lactobacillus (L.) strains were newly isolated from traditional Turkish Tulum cheeses and were characterized regarding their potential probiotic characteristics (bile and acid tolerance, gastric and pancreatic juice tolerance, lysozyme tolerance, adhesion ability), virulence determinants (hemolytic activity, antibiotic resistance, biogenic amine production), and functional properties (antibacterial activity, β-galactosidase activity, production of exopolysaccharides, cholesterol removal). RESULTS These isolates were identified as L. brevis, L. plantarum, L. paracasei, L. coryniformis, L. rhamnosus and L. helveticus by 16S rRNA sequencing. With regard to safety aspects, none of the tested Lactobacillus isolates showed hemolytic activity or biogenic amine production. All the Lactobacillus isolates except isolate 24 were found to be sensitive or intermediate sensitive to penicillin, which is a frequently used antibiotic. Nine Lactobacillus isolates showed antibacterial activity against Staphylococcus aureus ATCC 25923, while only isolates 15 and 449 exhibited inhibitory activity against Listeria monocytogenes ATCC 7644. All isolated strains survived, even in the presence of 10.00 g L-1 bile after 48 h, and exhibited good survival at pH 3, but only two isolates survived at pH 2. Among the strains, isolate 15 exhibited satisfactory auto-aggregative, cell-surface hydrophobicity features, cholesterol-lowering activity and good acid tolerance. Isolate 15 also showed the strongest bile and simulated pancreatic juice resistance and moderate lysozyme tolerance. CONCLUSION These outcomes suggest that isolate 15, identified as a L. plantarum strain from Tulum cheese, may be a promising probiotic candidate and could be suitable for use in several fermented foods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Talha Demirci
- Department of Food Engineering, University of Selcuk, Konya, Turkey
| | - Hale İnci Öztürk
- Department of Food Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Nihat Akın
- Department of Food Engineering, University of Selcuk, Konya, Turkey
| |
Collapse
|
27
|
Probiotic Properties of Lactobacillus Species Isolated from Fermented Palm Sap in Thailand. Probiotics Antimicrob Proteins 2021; 13:957-969. [PMID: 33595830 DOI: 10.1007/s12602-021-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Lactic acid bacteria (LAB), which are the most frequently used probiotics in foods, confer health benefits such as antimicrobial activity, immune stimulation, and anticancer activity. Fermented palm sap is a potential source of LAB. This study aimed to evaluate in vitro antimicrobial and probiotic properties of LAB isolated from traditional fermented palm sap in Thailand. Among 40 isolated LAB species, 10 were preliminarily selected for their antimicrobial activity. These 10 isolates were identified and confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequencing as Lactobacillus paracasei (8/10), Lactobacillus fermentum (1/10), and Lactobacillus brevis (1/10). They were evaluated for probiotic characteristics and antimicrobial activities against pathogens. These isolates were tolerant toward simulated gastrointestinal tract conditions, including low pH, pepsin, pancreatin, and bile salts. The 10 isolates retained strong auto-aggregation and cell surface hydrophobicity, and they adhered tightly to human intestinal epithelial cells. The isolates were susceptible to ampicillin, erythromycin, clindamycin, tetracycline, and chloramphenicol but resistant to vancomycin, kanamycin, and streptomycin. Moreover, all isolates exhibited no hemolytic activity. All isolates exhibited good antibacterial activity against nine pathogenic bacteria. Thus, these 10 Lactobacillus isolates from fermented palm sap are promising potential candidates for use as probiotics in functional fermented foods and pharmaceutical products.
Collapse
|
28
|
Jiang S, Cai L, Lv L, Li L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact 2021; 20:45. [PMID: 33593360 PMCID: PMC7885583 DOI: 10.1186/s12934-021-01537-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pediococcus pentosaceus, a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications. Results As an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities. Conclusions Therefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzhi Cai
- The Infectious Diseases Department, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Al-Nabulsi AA, Osaili TM, Oqdeh SB, Olaimat AN, Jaradat ZW, Ayyash M, Holley RA. Antagonistic effects of Lactobacillus reuteri against Escherichia coli O157:H7 in white-brined cheese under different storage conditions. J Dairy Sci 2021; 104:2719-2734. [PMID: 33455758 DOI: 10.3168/jds.2020-19308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
This study aimed to investigate the survival of the foodborne pathogen Escherichia coli O157:H7 in white-brined cheeses as influenced by the presence of Lactobacillus reuteri. The white cheeses were made from pasteurized bovine milk inoculated with E. coli O157:H7 (cocktail of 3 strains) to achieve ∼5 log10 cfu/g with absence or presence of Lb. reuteri (∼6 log10 cfu/g). Cheese samples were brined in 10% or 15% NaCl solution and stored at 10°C and 25°C for 28 d. The white-brined cheeses were assessed for salt content, pH, water activity (Aw), and numbers of E. coli O157:H7, Lb. reuteri, nonstarter lactic acid bacteria (NSLAB), yeasts, and molds. Results showed that E. coli O157:H7 survived in cheese stored in both brine solutions at 10°C and 25°C regardless of the presence of Lb. reuteri. A substantial reduction was observed in cheese stored in 10% NaCl brine at 25°C, followed by cheese stored in 15% NaCl brine at 10°C by 2.64 and 2.16 log10 cfu/g, respectively, in the presence of Lb. reuteri and by 1.02 and 1.87 log10 cfu/g, respectively, in the absence of Lb. reuteri under the same conditions. The pathogen in brine solutions survived but at a lower rate. Furthermore, the growth of Lb. reuteri and NSLAB were enhanced or slightly decreased in cheese and brine by 28 d, respectively. The salt concentrations of cheese ranged from 4 to 6% and 5 to 7% (wt/wt), during 28-d ripening in 10 and 15% brine, respectively. Values of pH and Aw slightly increased at d 1 after exposure to brine and reached 4.69 to 6.08 and 0.91 to 0.95, respectively, in all treatments. Therefore, the addition of Lb. reuteri can be used as a biopreservation method to inhibit the survival of E. coli O157:H7 in white-brined cheese when combined with the appropriate temperature, NaCl level, and storage time.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Clinical Nutrition and Dietetics, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Saba B Oqdeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13115, Jordan
| | - Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mutamed Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
30
|
Kocabay S, Çetinkaya S. Probiotic Properties of a Lactobacillus fermentum Isolated from New-born Faeces. J Oleo Sci 2020; 69:1579-1584. [PMID: 33177286 DOI: 10.5650/jos.ess20224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) have been demonstrated to have roles in many applications, ranging from lowering of cholesterol to immunological development. In this study, Lactobacillus fermentum was isolated from a new-born's faeces and its genotypic and probiotic characterizations were performed. Our results showed that the survival rate of isolated Lactobacillus fermentum was 39.39% at pH 2 and 81.34% in the stimulated gastric juice at pH 3. It also digested bile salts. Its surface hydrophobicity was found to be 57.59% in n-hexane. These findings indicated that the isolate can be a good probiotic candidate.
Collapse
Affiliation(s)
- Samet Kocabay
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University Malatya
| | - Serap Çetinkaya
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University
| |
Collapse
|
31
|
Vijayalakshmi S, Adeyemi DE, Choi IY, Sultan G, Madar IH, Park MK. Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. Lebensm Wiss Technol 2020; 130:109617. [DOI: https:/doi.10.1016/j.lwt.2020.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
32
|
Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|