1
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
2
|
Aggarwal K, Singh S, Singla A, Kanagala SG, Anamika F, Singh B, Aggarwal P, Jain R. Unveiling the Silent Intruder: H. pylori's Hidden Link to Ischemic Heart Disease. Cardiol Rev 2024:00045415-990000000-00227. [PMID: 38445894 DOI: 10.1097/crd.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Cardiovascular disease is the leading cause of death. In addition to the well-known risk factors associated with cardiovascular disease, such as age, diabetes mellitus, smoking, hypertension, and obesity, there has been a growing concern regarding cardiac complications stemming from the Gram-negative bacteria Helicobacter pylori. While H. pylori is most commonly associated with chronic gastritis, peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma, it has also been implicated in extra gastric manifestations, encompassing cardiac, neurologic, ocular, and dermatologic issues. Key virulent factors for coronary artery disease include the vacuolating cytotoxin gene A and the cytotoxin-associated gene A. The most likely pathogenic mechanism of the relationship between H. pylori and coronary artery disease is initiating a chronic inflammatory process associated with infection and the modifications of classic risk factors. These alterations lead to the creation of prothrombotic and procoagulant environments. Here, we review the cardiac manifestations of H. pylori and the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Kanishk Aggarwal
- From the Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, IndiaDepartment of Internal Medicine
| | - Sandeep Singh
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ankur Singla
- From the Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, IndiaDepartment of Internal Medicine
| | | | - Fnu Anamika
- Department of Internal Medicine, University College of Medical Sciences, New Delhi, India
| | - Bhupinder Singh
- Department of Internal Medicine, Government Medical College, Amritsar, India
| | - Priyanka Aggarwal
- Department of Internal Medicine, Maharishi Markandeshwar Institute of Medical Science & Research, Mullana, Haryana, India
| | - Rohit Jain
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
3
|
Enayati A, Soghi A, Butler AE, Rizzo M, Sahebkar A. The Effect of Curcumin on the Gut-Brain Axis: Therapeutic Implications. J Neurogastroenterol Motil 2023; 29:409-418. [PMID: 37814431 PMCID: PMC10577457 DOI: 10.5056/jnm23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
The gut-brain axis describes the bidirectional communication between the gut, the enteric nervous system, and the central nervous system. The gut-brain axis has attracted increasing attention owing to its regulatory effect on dysbiosis and a wide range of related diseases. Several types of nutrients, such as curcumin, have been proposed as regulators of the dysbiotic state, and preclinical experiments have suggested that curcumin is not only beneficial but also safe. This review focuses on the interplay between curcumin and the gut microbiota. Moreover, it provides a comprehensive review of the crosstalk between the gut-brain axis and disease, whilst also discussing curcumin-mediated gut-brain axis-dependent and -independent signaling about modulation of gut microbiota dysbiosis. This will help to define the utility of curcumin as a novel therapeutic agent to regulate intestinal microflora dysbiosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Aida Soghi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Penumutchu S, Korry BJ, Hewlett K, Belenky P. Fiber supplementation protects from antibiotic-induced gut microbiome dysbiosis by modulating gut redox potential. Nat Commun 2023; 14:5161. [PMID: 37620319 PMCID: PMC10449846 DOI: 10.1038/s41467-023-40553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic-induced gut dysbiosis (AID) is a frequent and serious side effect of antibiotic use and mitigating this dysbiosis is a critical therapeutic target. We propose that the host diet can modulate the chemical environment of the gut resulting in changes to the structure and function of the microbiome during antibiotic treatment. Gut dysbiosis is typically characterized by increases in aerobic respiratory bacterial metabolism, redox potential, and abundance of Proteobacteria. In this study, we explore dietary fiber supplements as potential modulators of the chemical environment in the gut to reduce this pattern of dysbiosis. Using defined-diets and whole-genome sequencing of female murine microbiomes during diet modulation and antibiotic treatment, we find that fiber prebiotics significantly reduced the impact of antibiotic treatment on microbiome composition and function. We observe reduced abundance of aerobic bacteria as well as metabolic pathways associated with oxidative metabolism. These metatranscriptomic results are corroborated by chemical measurements of eH and pH suggesting that fiber dampens the dysbiotic effects of antibiotics. This work indicates that fiber may act as a potential therapeutic for AID by modulating bacterial metabolism in the gut to prevent an increase in redox potential and protect commensal microbes during antibiotic treatment.
Collapse
Affiliation(s)
- Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Katharine Hewlett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
Ford SH, Bruckner L, Thoyre S, Baker MJ, Bartlett TR, Hodges EA. Gut-Brain Axis Perspective on Negative Symptoms and Their Neighbors in Early Adolescence: Can We Move Care Upstream? J Psychosoc Nurs Ment Health Serv 2023:1-10. [PMID: 36853039 DOI: 10.3928/02793695-20230221-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The current study investigated symptom network patterns in adolescents from a gut-brain-axis (GBA) biopsychosocial perspective. Our secondary analysis of data from the Adolescent Brain Cognitive Development Study assessed symptom relationships using network analysis to provide information about multivariate structural dependencies among 41 signs and symptoms. Cross-sectional EBICglasso symptom networks were evaluated to assess patterns associated with anhedonia and depressed mood. Significant differences were identified between symptom neighbors of anhedonia compared with depressed mood based on stratification by age. The GBA perspective revealed several symptom neighbors that could expand clinical assessment, diagnosing criteria, education, and interventions for adolescents at risk for, or with, anhedonia or depressed mood. Results speak to the unique impact of symptoms on health that are not interchangeable with other symptoms and do not have equal effects. Mental health nurses should consider a holistic and proactive precision health approach to improving health and well-being through evidence-based assessment of symptom associations. [Journal of Psychosocial Nursing and Mental Health Services, xx(xx), xx-xx.].
Collapse
|
6
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
7
|
Polyphenols and Small Phenolic Acids as Cellular Metabolic Regulators. Curr Issues Mol Biol 2022; 44:4152-4166. [PMID: 36135197 PMCID: PMC9498149 DOI: 10.3390/cimb44090285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Polyphenols and representative small phenolic acids and molecules derived from larger constituents are dietary antioxidants from fruits, vegetables and largely other plant-based sources that have ability to scavenge free radicals. What is often neglected in polyphenol metabolism is bioavailability and the role of the gut microbiota (GMB), which has an essential role in health and disease and participates in co-metabolism with the host. The composition of the gut microbiota is in constant flux and is modified by multiple intrinsic and extrinsic factors, including antibiotics. Dietary or other factors are key modulators of the host gut milieu. In this review, we explore the role of polyphenols and select phenolic compounds as metabolic or intrinsic biochemistry regulators and explore this relationship in the context of the microbiota–gut–target organ axis in health and disease.
Collapse
|
8
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
9
|
Han S, Li Y, Song R, Gao H, Zhang W. Effect of Probiotics Supplementation on Heart Rate: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Nutr 2022; 9:829703. [PMID: 35392286 PMCID: PMC8982511 DOI: 10.3389/fnut.2022.829703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aims Probiotics consumption lowers the risk of cardiovascular disease, but whether it affects heart rate (HR) remains controversial. Therefore, our study aimed to assess the chronotropic effects of probiotics on heartbeat via a meta-analysis of randomized clinical trials. Methods Relevant studies were identified by searching PubMed, Cochrane library, and Clinical Trials databases up to October 2021. Either a fixed-effects or a random-effects model was used to calculate the pooled effect sizes and 95% confidence intervals (CIs). Results This meta-analysis included 13 studies involving 16 interventional trial arms and 931 participants according to inclusion criteria. The overall pooled estimate showed that probiotics supplementation had a slight, but no significant reduction of 0.28 bpm (95% CI: −1.17, 0.60) on HR. Relatively high heterogeneity was observed among included trials (I2 = 80.8%, P heterogeneity < 0.001). Subgroup analysis displayed that probiotics supplementation significantly reduced HR by 2.94 bpm (95% CI: −5.06, −0.82) among participants with baseline HR ≥ 75 bpm, by 1.17 bpm (95% CI: −2.34, −0.00) with probiotics dose ≥1 × 1010 CFU/day, and by 1.43 bpm (95% CI: −2.69, −0.17) with multiple-strain intervention. Meta-regression analysis showed that baseline HR was a major potential effect modifier of probiotics supplementation on lowering HR. Conclusion Hitherto, the overall evidence in the literature was insufficient to support the notion that probiotics supplementation has a class effect on HR reduction. However, in subgroup analysis, probiotics reduced HR significantly in those who had higher baseline HR, received a higher dose or multiple strains of probiotics.
Collapse
Affiliation(s)
- Shufen Han
- School of Public Health, Hangzhou Normal University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- *Correspondence: Shufen Han ;
| | - Yuezhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Ruijuan Song
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Hui Gao
- Prefecture Center for Disease Control and Prevention, Jiaxing, China
| | - Weiguo Zhang
- Independent Researcher, Irving, TX, United States
- Weiguo Zhang
| |
Collapse
|
10
|
Obrenovich M, Reddy VP. Special Issue: Microbiota-Gut-Brain Axis. Microorganisms 2022; 10:309. [PMID: 35208764 PMCID: PMC8875645 DOI: 10.3390/microorganisms10020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
There is emerging evidence that human health and disease are modulated by the microbiota and their various metabolites, formed through intestinal and gut bacterial metabolism [...].
Collapse
Affiliation(s)
- Mark Obrenovich
- Veteran’s Affairs Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - V. Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65401, USA
| |
Collapse
|
11
|
Ford SH, Hodges EA, Thoyre S, Baker M, Bartlett TR. Model Integration: Can Understanding Biopsychosocial Gut-Brain Axis Mechanistic Pathways Improve our Clinical Reasoning in Primary Care? J Nurse Pract 2021; 17:1208-1213. [PMID: 34899098 DOI: 10.1016/j.nurpra.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction Most NPs practice in primary care settings. Cognitive tools to inform and advance NP understanding of biopsychosocial mechanisms can support early recognition, interdisciplinary collaboration, interventions, and prevention of negative outcomes. Theory and Methods We describe the development of a model to support NP consideration of gut-brain axis (GBA) evidence-based pathways, contributing variables, and related health outcomes. Results The model's outcomes are factors associated with homeostasis or disruption of biological, psychological, and social systems. Discussion/conclusion This cognitive tool aims to support NP awareness of multi-domain GBA relationships to consider with differential diagnoses and clinical treatment of the "whole body system".
Collapse
Affiliation(s)
- Shannon H Ford
- UNCG School of Nursing, 237 McIver Street, Greensboro, NC 27402
| | - Eric A Hodges
- UNC School of Nursing, Carrington Hall CB#7460, Chapel Hill 27516
| | - Suzanne Thoyre
- UNC School of Nursing, Carrington Hall CB#7460, Chapel Hill 27516
| | - Maureen Baker
- UNC School of Nursing, Carrington Hall CB#7460, Chapel Hill 27516
| | - T Robin Bartlett
- The University of Alabama Capstone College of Nursing, Box 870358, Tuscaloosa, Alabama 35487
| |
Collapse
|
12
|
Baranyi A, Enko D, von Lewinski D, Rothenhäusler HB, Amouzadeh-Ghadikolai O, Harpf H, Harpf L, Traninger H, Obermayer-Pietsch B, Schweinzer M, Braun CK, Meinitzer A. Assessment of trimethylamine N-oxide (TMAO) as a potential biomarker of severe stress in patients vulnerable to posttraumatic stress disorder (PTSD) after acute myocardial infarction. Eur J Psychotraumatol 2021; 12:1920201. [PMID: 34104352 PMCID: PMC8168738 DOI: 10.1080/20008198.2021.1920201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a frequently observed stress-related disorder after acute myocardial infarction (AMI) and it is characterized by numerous symptoms, such as flashbacks, intrusions and anxiety, as well as uncontrollable thoughts and feelings related to the trauma. Biological correlates of severe stress might contribute to identifying PTSD-vulnerable patients at an early stage. Objective: Aims of the study were (1) to determine whether blood levels of trimethylamine N-oxide (TMAO) vary immediately after AMI in patients with/without AMI-induced PTSD symptomatology, (2) to investigate whether TMAO is a potential biomarker that might be useful in the prediction of PTSD and the PTSD symptom subclusters re-experiencing, avoidance and hyperarousal, and (3) to investigate whether TMAO varies immediately after AMI in patients with/without depression 6 months after AMI. Method: A total of 114 AMI patients were assessed with the Hamilton-Depression Scale after admission to the hospital and 6 months later. The Clinician Administered PTSD Scale for DSM-5 was used to explore PTSD-symptoms at the time of AMI and 6 months after AMI. To assess patients' TMAO status, serum samples were collected at hospitalization and 6 months after AMI. Results: Participants with PTSD-symptomatology had significantly higher TMAO levels immediately after AMI than patients without PTSD-symptoms (ANCOVA: TMAO(PTSD x time), F = 4.544, df = 1, p = 0.035). With the inclusion of additional clinical predictors in a hierarchical logistic regression model, TMAO became a significant predictor of PTSD-symptomatology. No significant differences in TMAO levels immediately after AMI were detected between individuals with/without depression 6 months after AMI. Conclusions: An elevated TMAO level immediately after AMI might reflect severe stress in PTSD-vulnerable patients, which might also lead to a short-term increase in gut permeability to trimethylamine, the precursor of TMAO. Thus, an elevated TMAO level might be a biological correlate for severe stress that is associated with vulnerability to PTSD.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Hanns Harpf
- ZARG Zentrum Für Ambulante Rehabilitation GmbH, Graz, Austria
| | - Leonhard Harpf
- ZARG Zentrum Für Ambulante Rehabilitation GmbH, Graz, Austria
| | - Heimo Traninger
- ZARG Zentrum Für Ambulante Rehabilitation GmbH, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Schweinzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Celine K Braun
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Wine Polyphenols and Health: Quantitative Research Literature Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The relationship between wine polyphenols and health has been receiving growing scientific attention in the last few years. To confirm this point, the proposed paper identifies the major contributors to academic journals regarding the relationships between wine polyphenols and health. The endpoints of the proposed study are to provide a comprehensive overview and analysis of the literature regarding the relationships between wine polyphenol and health based on a bibliometric analysis. Bibliometric data were extracted from the Scopus online database using the search string TITLE-ABS-KEY (wine AND polyphenol* AND health OR (“french paradox” OR “cardiovascular disease*” OR atherosclerosis OR microbiota) and analyzed using the VOSviewer bibliometric software to generate bubble maps and to visualize the obtained results. This perspective paper analyzes: (i) the research themes addressing the relationships between wine polyphenols and health; (ii) the major contributors’ origin, e.g., country and/or regions; (iii) the institutions where the research is based; (iv) the authors; and (v) the type of paper. These results represent a useful tool to identify emerging research directions, collaboration networks, and suggestions for more in-depth literature searches.
Collapse
|
14
|
Nagu P, Parashar A, Behl T, Mehta V. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2021; 71:1436-1455. [PMID: 33829390 DOI: 10.1007/s12031-021-01829-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and its pathogenesis is not fully known. Although there are several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid-β plaques, neurofibrillary tangles, and oxidative stress, none of them completely explain the origin and progression of AD. Emerging evidence suggests that gut microbiota and epigenetics can directly influence the pathogenesis of AD via their effects on multiple pathways, including neuroinflammation, oxidative stress, and amyloid protein. Various gut microbes such as Actinobacteria, Bacteroidetes, E. coli, Firmicutes, Proteobacteria, Tenericutes, and Verrucomicrobia are known to play a crucial role in the pathogenesis of AD. These microbes and their metabolites modulate various physiological processes that contribute to AD pathogenesis, such as neuroinflammation and other inflammatory processes, amyloid deposition, cytokine storm syndrome, altered BDNF and NMDA signaling, impairing neurodevelopmental processes. Likewise, epigenetic markers associated with AD mainly include histone modifications and DNA methylation, which are under the direct control of a variety of enzymes, such as acetylases and methylases. The activity of these enzymes is dependent upon the metabolites generated by the host's gut microbiome, suggesting the significance of epigenetics in AD pathogenesis. It is interesting to know that both gut microbiota and epigenetics are dynamic processes and show a high degree of variation according to diet, stressors, and environmental factors. The bidirectional relation between the gut microbiota and epigenetics suggests that they might work in synchrony to modulate AD representation, its pathogenesis, and progression. They both also provide numerous targets for early diagnostic biomarkers and for the development of AD therapeutics. This review discusses the gut microbiota and epigenetics connection in the pathogenesis of AD and aims to highlight vast opportunities for diagnosis and therapeutics of AD.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.,Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.
| |
Collapse
|
15
|
Casani-Cubel J, Benlloch M, Sanchis-Sanchis CE, Marin R, Lajara-Romance JM, de la Rubia Orti JE. The Impact of Microbiota on the Pathogenesis of Amyotrophic Lateral Sclerosis and the Possible Benefits of Polyphenols. An Overview. Metabolites 2021; 11:120. [PMID: 33672485 PMCID: PMC7923408 DOI: 10.3390/metabo11020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between gut microbiota and neurodegenerative diseases is becoming clearer. Among said diseases amyotrophic lateral sclerosis (ALS) stands out due to its severity and, as with other chronic pathologies that cause neurodegeneration, gut microbiota could play a fundamental role in its pathogenesis. Therefore, polyphenols could be a therapeutic alternative due to their anti-inflammatory action and probiotic effect. Thus, the objective of our narrative review was to identify those bacteria that could have connection with the mentioned disease (ALS) and to analyze the benefits produced by administering polyphenols. Therefore, an extensive search was carried out selecting the most relevant articles published between 2005 and 2020 on the PubMed and EBSCO database on research carried out on cell, animal and human models of the disease. Thereby, after selecting, analyzing and debating the main articles on this topic, the bacteria related to the pathogenesis of ALS have been identified, among which we can positively highlight the presence mainly of Akkermansia muciniphila, but also Lactobacillus spp., Bifidobacterium spp. or Butyrivibrio fibrisolvens. Nevertheless, the presence of Escherichia coli or Ruminococcus torques stand out negatively for the disease. In addition, most of these bacteria are associated with molecular changes also linked to the pathogenesis of ALS. However, once the main polyphenols related to improvements in any of these three ALS models were assessed, many of them show positive results that could improve the prognosis of the disease. Nonetheless, epigallocatechin gallate (EGCG), curcumin and resveratrol are the polyphenols considered to show the most promising results as a therapeutic alternative for ALS through changes in microbiota.
Collapse
Affiliation(s)
- Julia Casani-Cubel
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Health Science, Catholic University San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Raquel Marin
- Laboratory of Cellular Neurobiology, School of Medicine, Faculty of Health Sciences, University of La Laguna, 38190 Tenerife, Spain;
| | | | | |
Collapse
|
16
|
Obrenovich M, Jaworski H, Tadimalla T, Mistry A, Sykes L, Perry G, Bonomo RA. The Role of the Microbiota-Gut-Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms 2020; 8:E784. [PMID: 32456229 PMCID: PMC7285349 DOI: 10.3390/microorganisms8050784] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
: The human gut hosts a wide and diverse ecosystem of microorganisms termed the microbiota, which line the walls of the digestive tract and colon where they co-metabolize digestible and indigestible food to contribute a plethora of biochemical compounds with diverse biological functions. The influence gut microbes have on neurological processes is largely yet unexplored. However, recent data regarding the so-called leaky gut, leaky brain syndrome suggests a potential link between the gut microbiota, inflammation and host co-metabolism that may affect neuropathology both locally and distally from sites where microorganisms are found. The focus of this manuscript is to draw connection between the microbiota-gut-brain (MGB) axis, antibiotics and the use of "BUGS AS DRUGS" for neurodegenerative diseases, their treatment, diagnoses and management and to compare the effect of current and past pharmaceuticals and antibiotics for alternative mechanisms of action for brain and neuronal disorders, such as Alzheimer disease (AD), Amyotrophic Lateral Sclerosis (ALS), mood disorders, schizophrenia, autism spectrum disorders and others. It is a paradigm shift to suggest these diseases can be largely affected by unknown aspects of the microbiota. Therefore, a future exists for applying microbial, chemobiotic and chemotherapeutic approaches to enhance translational and personalized medical outcomes. Microbial modifying applications, such as CRISPR technology and recombinant DNA technology, among others, echo a theme in shifting paradigms, which involve the gut microbiota (GM) and mycobiota and will lead to potential gut-driven treatments for refractory neurologic diseases.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Hayden Jaworski
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Tara Tadimalla
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adil Mistry
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Lorraine Sykes
- Department of Laboratory Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA;
| | - George Perry
- Department of Biology University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|