1
|
Sodhi AS, Bhatia S, Batra N. Laccase: Sustainable production strategies, heterologous expression and potential biotechnological applications. Int J Biol Macromol 2024; 280:135745. [PMID: 39293621 DOI: 10.1016/j.ijbiomac.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India.
| |
Collapse
|
2
|
Shrestha S, Goswami S, Banerjee D, Garcia V, Zhou E, Olmsted CN, Majumder ELW, Kumar D, Awasthi D, Mukhopadhyay A, Singer SW, Gladden JM, Simmons BA, Choudhary H. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries. CHEMSUSCHEM 2024; 17:e202301460. [PMID: 38669480 DOI: 10.1002/cssc.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shubhasish Goswami
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Valentina Garcia
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Elizabeth Zhou
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
| | - Charles N Olmsted
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, United States
| |
Collapse
|
3
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
4
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
5
|
Wang C, Jia Y, Luo J, Chen B, Pan C. Characterization of thermostable recombinant laccase F from Trametes hirsuta and its application in delignification of rice straw. BIORESOURCE TECHNOLOGY 2024; 395:130382. [PMID: 38281550 DOI: 10.1016/j.biortech.2024.130382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Chengpeng Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingyi Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; Jiande Forestry Bureau, Hangzhou 311699, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Bao C, Liu Y, Li F, Cao H, Dong B, Cao Y. Expression and Characterization of Laccase Lac1 from Coriolopsis trogii Strain Mafic-2001 in Pichia pastoris and Its Degradation of Lignin. Appl Biochem Biotechnol 2023; 195:6150-6167. [PMID: 36847985 DOI: 10.1007/s12010-023-04390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The laccase gene (Lac1) was cloned from Coriolopsis trogii strain Mafic-2001. Full-length sequence of Lac1 containing 11 exons and 10 introns is composed of 2140 nucleotides (nts). mRNA of Lac1 encoded for a protein of 517 aa. Nucleotide sequence of the laccase was optimized and expressed in Pichia pastoris X-33. SDS-PAGE analysis showed that the molecular weight of the purified recombinant laccase rLac1 was about 70 kDa. The optimum temperature and pH of rLac1 were 40 ℃ and 3.0, respectively. rLac1 showed high residual activity (90%) in the solutions after 1 h incubation at the pH ranging from 2.5 to 8.0. rLac1 maintained over 60% of laccase activity at the temperatures ranging from 20 to 60 °C, and kept higher than 50% of its activity at 40 °C for 2 h. The activity of rLac1 was promoted by Cu2+ and inhibited by Fe2+. Under optimal conditions, lignin degradation rates of rLac1 on the substrates of rice straw, corn stover, and palm kernel cake were 50.24%, 55.49%, and 24.43% (the lignin contents of substrates untreated with rLac1 were 100%), respectively. Treated with rLac1, the structures of agricultural residues (rice straw, corn stover, and palm kernel cake) were obviously loosened which was reflected by the analysis of scanning electron microscopy and Fourier transform infrared spectroscopy. Based on the specific activity of rLac1 on the degradation of lignin, rLac1 from Coriolopsis trogii strain Mafic-2001 has the potential for in-depth utilization of agricultural residues.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Pleurotus pulmonarius: a protease-producing white rot fungus in lignocellulosic residues. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:43-50. [PMID: 35939153 DOI: 10.1007/s10123-022-00271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023]
Abstract
The production of proteases by white rot fungi, such as those of the genus Pleurotus, is related to the degradation of wood proteins, the substrate on which these fungi grow in the environment. From the point of view of production, they are still little explored for this purpose. A selection of agro-industrial residues highlighted corn bagasse as the best substrate for solid-state protease production using the basidiomycete Pleurotus pulmonarius. The enzyme production was maximized through a factorial design, where the enzyme activity increased from 137.8 ± 1.9 to 234.1 ± 2.7 U/mL. Factors such as temperature stability, pH, and chemical reagents were evaluated. The optimum temperature was 45 °C, showing low thermal stability at higher temperatures. The enzyme inhibition occurred by Mn2+ (50.3%) and Ba2+ (76.4%); SDS strongly inhibited the activity (82.4%), while pepstatin A partially inhibited (56%), suggesting an aspartic protease character. Regarding pH, the highest protease activity was obtained at pH 5.5. Partial characterization resulted in apparent values of the KM and Vmax constants of 0.61 mg/mL and 1.79 mM/min, respectively.
Collapse
|
9
|
Gao M, Xu Y, Yang G, Jin S, Hu X, Jiang Y, Zhu L, Li Z, Zhan X. One-step production of functional branched oligoglucosides with coupled fermentation of Pichia pastoris GS115 and Sclerotium rolfsii WSH-G01. BIORESOURCE TECHNOLOGY 2021; 335:125286. [PMID: 34022479 DOI: 10.1016/j.biortech.2021.125286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Endo-β-1,3-glucanase with high specific activity is a prerequisite for enzymatic preparation of valuable β-oligoglucosides. Heterologous expression in Pichia pastoris GS115 with error-prone PCR technology was implemented, and the mutant strain 7 N12 was obtained. The mutant endo-β-1,3-glucanase showed efficient specific activities for degrading curdlan (366 U mg-1) and scleroglucan (274.5 U mg-1). Thereafter, one-step production of functional branched oligoglucosides was established with coupled fermentation of Pichia pastoris and Sclerotium rolfsii. During the fermentation process, the endo-β-1,3-glucanase secreted by Pichia pastoris GS115 can efficiently hydrolyse scleroglucan metabolized by Sclerotium rolfsii WSH-G01. The maximum yields of β-oligoglucosides in the shake flasks and 7-L bioreactor reached 1.73 g L-1 and 12.71 g L-1, respectively, with polymerization degrees of 2-17. The successful implementation of heterologous expression with error-prone PCR and the coupled fermentation simplified the multi-step enzymatic β-oligoglucoside preparation procedures, which makes it a potential strategy for industrial production of functional oligosaccharides.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ying Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Guoshuai Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shuxia Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi 214125, PR China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
10
|
Gao M, Yang G, Li F, Wang Z, Hu X, Jiang Y, Yan J, Li Z, Zhan X. Efficient endo-β-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production. Int J Biol Macromol 2021; 182:1611-1617. [PMID: 34044029 DOI: 10.1016/j.ijbiomac.2021.05.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
The production of curdlan oligosaccharides, a multifunctional and valuable carbohydrate, by hydrolyzing polysaccharides is of great interest. The endo-β-1,3-glucanase derived from Trichoderma harzianum was expressed in Pichia pastoris with three commonly used promoters (AOX1, GAP and FLD1). The purified recombinant endo-β-1,3-glucanase expressed by Pichia pastoris with GAP promoter displayed high specific activity at pH 5.5 and 50 °C. Thereafter, a co-culture system of Pichia pastoris GS115 (GAP promoter) and Agrobacterium sp. was constructed in which Agrobacterium sp.-metabolized curdlan can be directly hydrolyzed by Pichia pastoris-secreted endo-β-1,3-glucanase to produce functional curdlan oligosaccharides. The co-culture conditions were optimized and the process was carried out in a 7-L bioreactor. The maximum yield of curdlan oligosaccharides reached 18.77 g/L with 3-10 degrees of polymerization. This study presents a novel and easy curdlan oligosaccharide production strategy that can replace traditional sophisticated production procedures and could potentially be implemented for production of other oligosaccharides.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| | - Guoshuai Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Feifei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Jiajun Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhitao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiaobei Zhan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Yaguchi AL, Lee SJ, Blenner MA. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Trends Biotechnol 2021; 39:1037-1064. [PMID: 33712323 DOI: 10.1016/j.tibtech.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023]
Abstract
Lignin is the second most abundant biopolymer on earth and is a major source of aromatic compounds; however, it is vastly underutilized owing to its heterogeneous and recalcitrant nature. Microorganisms have evolved efficient mechanisms that overcome these challenges to depolymerize lignin and funnel complex mixtures of lignin-derived monomers to central metabolites. This review summarizes recent synthetic biology efforts to enhance lignin depolymerization and aromatic catabolism in bacterial and fungal hosts for the production of both natural and novel bioproducts. We also highlight difficulties in engineering complex phenotypes and discuss the outlook for the future of lignin biological valorization.
Collapse
Affiliation(s)
- Allison L Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA; Current address: Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
12
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
13
|
Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020; 25:molecules25122811. [PMID: 32570772 PMCID: PMC7355594 DOI: 10.3390/molecules25122811] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
A large amount of agro-industrial waste is produced worldwide in various agricultural sectors and by different food industries. The disposal and burning of this waste have created major global environmental problems. Agro-industrial waste mainly consists of cellulose, hemicellulose and lignin, all of which are collectively defined as lignocellulosic materials. This waste can serve as a suitable substrate in the solid-state fermentation process involving mushrooms. Mushrooms degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize the degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be considered a prominent biotechnological process for the reduction and valorization of agro-industrial waste. Such waste is generated as a result of the eco-friendly conversion of low-value by-products into new resources that can be used to produce value-added products. Here, we have produced a brief review of the current findings through an overview of recently published literature. This overview has focused on the use of agro-industrial waste as a growth substrate for mushroom cultivation and lignocellulolytic enzyme production.
Collapse
Affiliation(s)
- Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanaporn Sujarit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand;
| | - Watsana Penkhrue
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Center of Excellence in Microbial Technology for Agricultural Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kritsana Jatuwong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhiti Vadthanarat
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: ; Tel.: +668-1881-3658
| |
Collapse
|