1
|
Layús BI, Gómez MA, Cazorla SI, Rodriguez AV. A Postbiotic Formulation of Lactiplantibacillus plantarum CRL 759 Attenuates Endotoxin Induced Uveitis. Ocul Immunol Inflamm 2024; 32:1973-1982. [PMID: 38335476 DOI: 10.1080/09273948.2024.2310173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To evaluate the anti-inflammatory activity of a cell-free supernatant from Lactiplantibacillus plantarum CRL 759, in phosphate buffer modified according to Sorensen called POF-759. METHODS The activity of POF-759 administered by means of eye drops was evaluated on animals subcutaneously injected with the lipopolysaccharide animals in which uveitis was induced by a subcutaneous injection of lipopolysaccharide (EIU). Clinical signs of ocular inflammation, cytokines and proteins were examined in the aqueous humor. Additionally, cellular infiltration was evaluated by histopathological analysis. RESULTS The new postbiotic administered locally decreases signs of ocular damage, the number of infiltrating cells in the anterior and posterior chambers, the proinflammatory mediators and the proteins in the aqueous humor on mice with EIU. CONCLUSIONS Our results provide an impetus to relieve ocular inflammation and to identify and develop preventive and therapeutic approaches, to avoid deterioration and to maintain healthy eyes on inflammatory processes.
Collapse
Affiliation(s)
- Bárbara Ivana Layús
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - María Alejandra Gómez
- Servicio de Oftalomolgía, Hospital Ángel C. Padilla, San Miguel de Tucumán, Argentina
| | - Silvia Inés Cazorla
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Ana Virginia Rodriguez
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
2
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Wampers A, Huysentruyt K, Vandenplas Y. An update on the use of 'biotics' in pediatric infectious gastroenteritis. Expert Opin Pharmacother 2024; 25:1483-1496. [PMID: 39091043 DOI: 10.1080/14656566.2024.2387672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Acute gastroenteritis (AGE) is the consequence of a disturbed gastro-intestinal microbiome. Certain probiotic strains (Lacticaseibacillus rhamnosus, Saccharomyces boulardii CNCM I-745, Limosilactobacillus reuteri (L. reuteri) DSM 17,938, the combination of L. rhamnosus 19070-2 and L. reuteri DSM 12,246) reduce the duration and severity of diarrhea. AREAS COVERED Relevant literature was sourced from PubMed and CINAHL. Important reviews until 2021 were summarized in tables. New evidence for pro-, pre-, syn- and postbiotics in AGE was searched for. Postbiotics offer advantages regarding product stability and show accumulating evidence. Heterogeneity in studies regarding the in- and exclusion criteria, primary and secondary endpoints, type, dose, timing and duration of biotic administration limits the evidence. EXPERT OPINION Development of a core outcome set for children with AGE would be beneficial, as its application would increase the homogeneity of the available evidence. The vast majority of the 'biotics' is registered as food supplement. Regulations for food supplements prioritize safety over efficacy, making them considerably more tolerant compared to the regulation for registration as medication. We recommend that at least one randomized controlled trial is published with the commercialized product before marketing the product, despite the fact that legislation regarding food supplements requires only safety data.
Collapse
Affiliation(s)
- Alicia Wampers
- Vrije Universiteit Brussel (VUB), UZ Brussel, KidZ Health Castle, Brussels, Belgium
| | - Koen Huysentruyt
- Vrije Universiteit Brussel (VUB), UZ Brussel, KidZ Health Castle, Brussels, Belgium
| | - Yvan Vandenplas
- Vrije Universiteit Brussel (VUB), UZ Brussel, KidZ Health Castle, Brussels, Belgium
| |
Collapse
|
4
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
5
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10327-y. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Wang S, Wang P, Wang D, Shen S, Wang S, Li Y, Chen H. Postbiotics in inflammatory bowel disease: efficacy, mechanism, and therapeutic implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39007163 DOI: 10.1002/jsfa.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxin Wang
- Marine College, Shandong University, Weihai, China
| | - Pu Wang
- Marine College, Shandong University, Weihai, China
| | - Donghui Wang
- Marine College, Shandong University, Weihai, China
| | | | - Shiqi Wang
- Marine College, Shandong University, Weihai, China
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
7
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
8
|
Samarra A, Flores E, Bernabeu M, Cabrera-Rubio R, Bäuerl C, Selma-Royo M, Collado MC. Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:1-28. [PMID: 39060728 DOI: 10.1007/978-3-031-58572-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning human reproductive microbiota, and also, the microbial colonization during early life, focusing on the potential impact on infant development and health outcomes. Furthermore, we conclude that some dietary strategies including specific probiotics and other-biotics could become potentially valuable tools to modulate the maternal-neonatal microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Eduard Flores
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain.
| |
Collapse
|
9
|
Srirengaraj V, Razafindralambo HL, Rabetafika HN, Nguyen HT, Sun YZ. Synbiotic Agents and Their Active Components for Sustainable Aquaculture: Concepts, Action Mechanisms, and Applications. BIOLOGY 2023; 12:1498. [PMID: 38132324 PMCID: PMC10740583 DOI: 10.3390/biology12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production.
Collapse
Affiliation(s)
| | - Hary L. Razafindralambo
- ProBioLab, 5004 Namur, Belgium;
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Sustainable Management of Bio-Agressors & Microbial Technologies, Gembloux Agro-Bio Tech—Université de Liège, 5030 Gembloux, Belgium
| | | | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Long Xuyen City 90000, Vietnam;
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen 361021, China;
| |
Collapse
|
10
|
Saeed M, Afzal Z, Afzal F, Khan RU, Elnesr SS, Alagawany M, Chen H. Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects. Food Sci Anim Resour 2023; 43:1111-1127. [PMID: 37969321 PMCID: PMC10636223 DOI: 10.5851/kosfa.2023.e52] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| | - Zoya Afzal
- Department of Poultry Science, Faculty of
Animal Production and Technology, The Cholistan University of Veterinary and
Animal Sciences, Bahawalpur 63100, Pakistan
| | - Fatima Afzal
- Department of Life Sciences, Sogang
University, Seoul 04107, Korea
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of
Animal Husbandry and Veterinary Sciences, The University of Agriculture
Peshawar, Peshawar 25120, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty
of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of
Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huayou Chen
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Zhang X, Xu J, Ma M, Zhao Y, Song Y, Zheng B, Wen Z, Gong M, Meng L. Heat-Killed Lactobacillus rhamnosus ATCC 7469 Improved UVB-Induced Photoaging Via Antiwrinkle and Antimelanogenesis Impacts. Photochem Photobiol 2023; 99:1318-1331. [PMID: 36588480 DOI: 10.1111/php.13775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Exposure of ultraviolet B (UVB) radiation is the main factor from the environment to cause skin photoaging. Lactobacillus rhamnosus ATCC 7469, is a probiotic strain with a good track record for enhancing human health. The present study conducted the impacts of heat-killed L. rhamnosus ATCC 7469 (RL) on photoaging in vitro using mouse skin fibroblast (MSF) cells and human epidermal melanocytes (HEM) exposed to UVB. The results showed that (1) RL-protected UVB-induced cytotoxicity relating to absorb UVB and reduce DNA damage. (2) RL exerted the antiwrinkle impact involved in two aspects. Firstly, RL downregulated MMP-1, 2, 3 expressions associating with MAPK signaling, resulting in the increased the protein expression of COL1A1, further booting type I collagen abundant thereby promoting the antiwrinkle impact in MSF cells. Secondly, RL reduced ROS content, further decreasing oxidative damage relating to Nrf2/Sirt3/SOD2 signaling, thereby promoting the antiwrinkle impact in MSF cells. (3) RL suppressed tyrosinase and TYRP-2 activity and/or levels associating with PKA/CREB/MITF signaling, thereby promoting antimelanogenesis impact in HEM cells. In conclusion, our findings suggest that RL could reduce photoaging caused by UVB via antiwrinkle and antimelanogenesis properties and may be a potential antiphotoaging beneficial component, which is applied in the cosmetic industry.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jing Xu
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Mingzhu Ma
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Yadong Zhao
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yan Song
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhengshun Wen
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Miao Gong
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lingting Meng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
12
|
Postbiotics in Human Health: A Narrative Review. Nutrients 2023; 15:nu15020291. [PMID: 36678162 PMCID: PMC9863882 DOI: 10.3390/nu15020291] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In the 21st century, compressive health and functional foods are advocated by increasingly more people in order to eliminate sub-health conditions. Probiotics and postbiotics have gradually become the focus of scientific and nutrition communities. With the maturity and wide application of probiotics, the safety concerns and other disadvantages are non-negligible as we review here. As new-era products, postbiotics continue to have considerable potential as well as plentiful drawbacks to optimize. "Postbiotic" has been defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Here, the evolution of the concept "postbiotics" is reviewed. The underlying mechanisms of postbiotic action are discussed. Current insight suggests that postbiotics exert efficacy through protective modulation, fortifying the epithelial barrier and modulation of immune responses. Finally, we provide an overview of the comparative advantages and the current application in the food industry at pharmaceutical and biomedical levels.
Collapse
|
13
|
Oglio F, Bruno C, Coppola S, De Michele R, Masino A, Carucci L. Evidence on the Preventive Effects of the Postbiotic Derived from Cow's Milk Fermentation with Lacticaseibacillus paracasei CBA L74 against Pediatric Gastrointestinal Infections. Microorganisms 2022; 11:microorganisms11010010. [PMID: 36677302 PMCID: PMC9865848 DOI: 10.3390/microorganisms11010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Postbiotics are commonly defined as preparations of inanimate probiotics and/or their cellular components and/or their metabolites/end products that confer health benefits on the host. They have been suggested as a promising strategy to limit infectious diseases. Emerging evidence support the efficacy of the postbiotic derived from cow's milk fermentation with the probiotic Lacticaseibacillus paracasei CBAL74 (FM-CBAL74) in preventing pediatric infectious diseases. We aimed at reviewing the evidence available.
Collapse
Affiliation(s)
- Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- ImmunoNutriton Laboratory at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-3270390499
| | - Cristina Bruno
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- ImmunoNutriton Laboratory at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- ImmunoNutriton Laboratory at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta De Michele
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- ImmunoNutriton Laboratory at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
- ImmunoNutriton Laboratory at CEINGE Advanced Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
14
|
Mineral-Enriched Postbiotics: A New Perspective for Microbial Therapy to Prevent and Treat Gut Dysbiosis. Biomedicines 2022; 10:biomedicines10102392. [PMID: 36289654 PMCID: PMC9599024 DOI: 10.3390/biomedicines10102392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Postbiotics are non-viable probiotic preparations that confer a health benefit on the host. In the last years, scientific literature has proved that postbiotics have health-promoting features and technological advantages compared to probiotics, augmenting their full potential application in the food and pharmaceutical industries. The current work comprehensively summarizes the benefits and potential applications of postbiotics and essential mineral-enriched biomass and proposes a new strategy for microbial therapy—mineral-enriched postbiotics. We hypothesize and critically review the relationship between micronutrients (calcium, magnesium, iron, zinc, selenium) and postbiotics with gut microbiota, which has been barely explored yet, and how the new approach could be involved in the gut microbiome modulation to prevent and treat gut dysbiosis. Additionally, the bioactive molecules and minerals from postbiotics could influence the host mineral status, directly or through gut microbiota, which increases the mineral bioavailability. The review increases our understanding of the health improvements of mineral-enriched postbiotics, including antioxidant functions, highlighting their perspective on microbial therapy to prevent and threaten gut-related diseases.
Collapse
|
15
|
Sudhakaran G, Guru A, Haridevamuthu B, Murugan R, Arshad A, Arockiaraj J. Molecular properties of postbiotics and their role in controlling aquaculture diseases. AQUACULTURE RESEARCH 2022; 53:3257-3273. [DOI: 10.1111/are.15846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/13/2022] [Indexed: 10/16/2023]
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT) Chennai India
| |
Collapse
|
16
|
Bruno C, Paparo L, Pisapia L, Romano A, Cortese M, Punzo E, Berni Canani R. Protective effects of the postbiotic deriving from cow's milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes. Sci Rep 2022; 12:6268. [PMID: 35428750 PMCID: PMC9012738 DOI: 10.1038/s41598-022-10083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis-associated mortality in early childhood. Emerging clinical evidence suggest the efficacy of the postbiotic approach based on cow's milk fermentation with the probiotic Lacticaseibacillus paracasei CBAL74 (FM-CBAL74) in preventing pediatric acute gastroenteritis, but the mechanisms of action are still poorly characterized. We evaluated the protective action of FM-CBAL74 in an in vitro model of RV infection in human enterocytes. The number of infected cells together with the relevant aspects of RV infection were assessed: epithelial barrier damage (tight-junction proteins and transepithelial electrical resistance evaluation), and inflammation (reactive oxygen species, pro-inflammatory cytokines IL-6, IL-8 and TNF-α, and mitogen-activated protein kinase pathway activation). Pre-incubation with FM-CBA L74 resulted in an inhibition of epithelial barrier damage and inflammation mediated by mitogen-activated protein kinase pathway activation induced by RV infection. Modulating several protective mechanisms, the postbiotic FM-CBAL74 exerted a preventive action against RV infection. This approach could be a disrupting nutritional strategy against one of the most common killers for the pediatric age.
Collapse
Affiliation(s)
- Cristina Bruno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, CNR, Naples, Italy
| | - Alessia Romano
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maddalena Cortese
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Erika Punzo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy. .,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy. .,European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy. .,Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy. .,Task Force for Nutraceuticals and Functional Foods, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
17
|
Gut health benefit and application of postbiotics in animal production. J Anim Sci Biotechnol 2022; 13:38. [PMID: 35392985 PMCID: PMC8991504 DOI: 10.1186/s40104-022-00688-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Gut homeostasis is of importance to host health and imbalance of the gut usually leads to disorders or diseases for both human and animal. Postbiotics have been applied in manipulating of gut health, and utilization of postbiotics threads new lights into the host health. Compared with the application of probiotics, the characteristics such as stability and safety of postbiotics make it a potential alternative to probiotics. Studies have reported the beneficial effects of components derived from postbiotics, mainly through the mechanisms including inhibition of pathogens, strengthen gut barrier, and/or regulation of immunity of the host. In this review, we summarized the characteristics of postbiotics, main compounds of postbiotics, potential mechanisms in gut health, and their application in animal production.
Collapse
|
18
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
19
|
|
20
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|
21
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:ijms22094942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
22
|
Brink LR, Chichlowski M, Pastor N, Thimmasandra Narayanappa A, Shah N. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? Nutrients 2021; 13:870. [PMID: 33800961 PMCID: PMC7999376 DOI: 10.3390/nu13030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.
Collapse
Affiliation(s)
- Lauren R. Brink
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Nitida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | | | - Neil Shah
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Slough SL1 3UH, UK;
- University College London, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
23
|
Ke A, Parreira VR, Goodridge L, Farber JM. Current and Future Perspectives on the Role of Probiotics, Prebiotics, and Synbiotics in Controlling Pathogenic Cronobacter Spp. in Infants. Front Microbiol 2021; 12:755083. [PMID: 34745060 PMCID: PMC8567173 DOI: 10.3389/fmicb.2021.755083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cronobacter species, in particular C. sakazakii, is an opportunistic bacterial pathogen implicated in the development of potentially debilitating illnesses in infants (<12months old). The combination of a poorly developed immune system and gut microbiota put infants at a higher risk of infection compared to other age groups. Probiotics and prebiotics are incorporated in powdered infant formula and, in addition to strengthening gut physiology and stimulating the growth of commensal gut microbiota, have proven antimicrobial capabilities. Postbiotics in the cell-free supernatant of a microbial culture are derived from probiotics and can also exert health benefits. Synbiotics, a mixture of probiotics and prebiotics, may provide further advantages as probiotics and gut commensals degrade prebiotics into short-chain fatty acids that can provide benefits to the host. Cell-culture and animal models have been widely used to study foodborne pathogens, but sophisticated gut models have been recently developed to better mimic the gut conditions, thus giving a more accurate representation of how various treatments can affect the survival and pathogenicity of foodborne pathogens. This review aims to summarize the current understanding on the connection between Cronobacter infections and infants, as well as highlight the potential efficacy of probiotics, prebiotics, and synbiotics in reducing invasive Cronobacter infections during early infancy.
Collapse
|
24
|
Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021; 18:649-667. [PMID: 33948025 PMCID: PMC8387231 DOI: 10.1038/s41575-021-00440-6] [Citation(s) in RCA: 724] [Impact Index Per Article: 241.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of experts specializing in nutrition, microbial physiology, gastroenterology, paediatrics, food science and microbiology to review the definition and scope of postbiotics. The term 'postbiotics' is increasingly found in the scientific literature and on commercial products, yet is inconsistently used and lacks a clear definition. The purpose of this panel was to consider the scientific, commercial and regulatory parameters encompassing this emerging term, propose a useful definition and thereby establish a foundation for future developments. The panel defined a postbiotic as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Effective postbiotics must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. The panel also discussed existing evidence of health-promoting effects of postbiotics, potential mechanisms of action, levels of evidence required to meet the stated definition, safety and implications for stakeholders. The panel determined that a definition of postbiotics is useful so that scientists, clinical triallists, industry, regulators and consumers have common ground for future activity in this area. A generally accepted definition will hopefully lead to regulatory clarity and promote innovation and the development of new postbiotic products.
Collapse
Affiliation(s)
- Seppo Salminen
- grid.1374.10000 0001 2097 1371Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- grid.419051.80000 0001 1945 7738Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Akihito Endo
- grid.410772.70000 0001 0807 3368Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Colin Hill
- grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO USA
| | - Raanan Shamir
- grid.414231.10000 0004 0575 3167Institute of Pediatric Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach Tikva, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan R. Swann
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK ,grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hania Szajewska
- grid.13339.3b0000000113287408Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Gabriel Vinderola
- grid.10798.370000 0001 2172 9456Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| |
Collapse
|
25
|
Moradi M, Molaei R, Guimarães JT. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb Technol 2020; 143:109722. [PMID: 33375981 DOI: 10.1016/j.enzmictec.2020.109722] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Postbiotics may be defined as soluble metabolites released by food-grade microorganisms during the growth and fermentation in complex microbiological culture, food or gut. It is rich in high and low molecular weight biologically active metabolites. There are still gaps concerning these substances, mainly how to use them for food applications. Although the most recent work on preparation and application of postbiotics from several probiotics are very encouraging, the suitability of postbiotics to combat microorganisms that deal with food safety should be tested mainly by analyzing the chemical composition and conducting antagonistic tests. Consequently, foods can effectively benefit from an identified postbiotic with a defined effect. This review approached the recent advances in relation to the preparation of postbiotics from lactic acid bacteria. The function of different instrumental analysis techniques and factors affecting the chemical composition of postbiotics were also comprehensively reviewed.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|