1
|
Carmichael MJ, Martinez M, Bräuer SL, Ardón M. Microbial Communities in Standing Dead Trees in Ghost Forests are Largely Aerobic, Saprophytic, and Methanotrophic. Curr Microbiol 2024; 81:229. [PMID: 38896154 PMCID: PMC11186919 DOI: 10.1007/s00284-024-03767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Standing dead trees (snags) are recognized for their influence on methane (CH4) cycling in coastal wetlands, yet the biogeochemical processes that control the magnitude and direction of fluxes across the snag-atmosphere interface are not fully elucidated. Herein, we analyzed microbial communities and fluxes at one height from ten snags in a ghost forest wetland. Snag-atmosphere CH4 fluxes were highly variable (- 0.11-0.51 mg CH4 m-2 h-1). CH4 production was measured in three out of ten snags; whereas, CH4 consumption was measured in two out of ten snags. Potential CH4 production and oxidation in one core from each snag was assayed in vitro. A single core produced CH4 under anoxic and oxic conditions, at measured rates of 0.7 and 0.6 ng CH4 g-1 h-1, respectively. Four cores oxidized CH4 under oxic conditions, with an average rate of - 1.13 ± 0.31 ng CH4 g-1 h-1. Illumina sequencing of the V3/V4 region of the 16S rRNA gene sequence revealed diverse microbial communities and indicated oxidative decomposition of deadwood. Methanogens were present in 20% of the snags, with a mean relative abundance of < 0.0001%. Methanotrophs were identified in all snags, with a mean relative abundance of 2% and represented the sole CH4-cycling communities in 80% of the snags. These data indicate potential for microbial attenuation of CH4 emissions across the snag-atmosphere interface in ghost forests. A better understanding of the environmental drivers of snag-associated microbial communities is necessary to forecast the response of CH4 cycling in coastal ghost forest wetlands to a shifting coastal landscape.
Collapse
Affiliation(s)
- Mary Jane Carmichael
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, VA, 24020, USA.
| | - Melinda Martinez
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, 20708, USA
| | - Suzanna L Bräuer
- Department of Biology, Appalachian State University, Boone, NC, 28608, USA
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
2
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
3
|
Schmider T, Hestnes AG, Brzykcy J, Schmidt H, Schintlmeister A, Roller BRK, Teran EJ, Söllinger A, Schmidt O, Polz MF, Richter A, Svenning MM, Tveit AT. Physiological basis for atmospheric methane oxidation and methanotrophic growth on air. Nat Commun 2024; 15:4151. [PMID: 38755154 PMCID: PMC11519548 DOI: 10.1038/s41467-024-48197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.
Collapse
Affiliation(s)
- Tilman Schmider
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Anne Grethe Hestnes
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Julia Brzykcy
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Hannes Schmidt
- Department of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1030, Vienna, Austria
| | - Arno Schintlmeister
- Department of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030, Vienna, Austria
| | - Benjamin R K Roller
- Department of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030, Vienna, Austria
| | - Ezequiel Jesús Teran
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN-UNCPBA-CONICET-CICPBA), Pinto, 399, Tandil (7000), Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Exactas, Instituto de Física Arroyo Seco (IFAS), Pinto, 399, Tandil (7000), Argentina
| | - Andrea Söllinger
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Oliver Schmidt
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Martin F Polz
- Department of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030, Vienna, Austria
| | - Andreas Richter
- Department of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1030, Vienna, Austria
| | - Mette M Svenning
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
4
|
Sawers RG. Perspective elucidating the physiology of a microbial cell: Neidhardt's Holy Grail. Mol Microbiol 2023; 120:54-59. [PMID: 36855806 DOI: 10.1111/mmi.15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
A living microbial cell represents a system of high complexity, integration, and extreme order. All processes within that cell interconvert free energy through a multitude of interconnected metabolic reactions that help to maintain the cell in a state of low entropy, which is a characteristic of all living systems. The study of macromolecular interactions outside this cellular environment yields valuable information about the molecular function of macromolecules but represents a system in comparative disorder. Consequently, care must always be taken in interpreting the information gleaned from such studies and must be compared with how the same macromolecules function in vivo, otherwise, discrepancies can arise. The importance of combining reductionist approaches with the study of whole-cell microbial physiology is discussed regarding the long-term aim of understanding how a cell functions in its entirety. This can only be achieved by the continued development of high-resolution structural and multi-omic technologies. It is only by studying the whole cell that we can ever hope to understand how living systems function.
Collapse
Affiliation(s)
- R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
6
|
Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022; 20:513-528. [PMID: 35414013 DOI: 10.1038/s41579-022-00724-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
The atmosphere has recently been recognized as a major source of energy sustaining life. Diverse aerobic bacteria oxidize the three most abundant reduced trace gases in the atmosphere, namely hydrogen (H2), carbon monoxide (CO) and methane (CH4). This Review describes the taxonomic distribution, physiological role and biochemical basis of microbial oxidation of these atmospheric trace gases, as well as the ecological, environmental, medical and astrobiological importance of this process. Most soil bacteria and some archaea can survive by using atmospheric H2 and CO as alternative energy sources, as illustrated through genetic studies on Mycobacterium cells and Streptomyces spores. Certain specialist bacteria can also grow on air alone, as confirmed by the landmark characterization of Methylocapsa gorgona, which grows by simultaneously consuming atmospheric CH4, H2 and CO. Bacteria use high-affinity lineages of metalloenzymes, namely hydrogenases, CO dehydrogenases and methane monooxygenases, to utilize atmospheric trace gases for aerobic respiration and carbon fixation. More broadly, trace gas oxidizers enhance the biodiversity and resilience of soil and marine ecosystems, drive primary productivity in extreme environments such as Antarctic desert soils and perform critical regulatory services by mitigating anthropogenic emissions of greenhouse gases and toxic pollutants.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia. .,Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Cowan DA, Ferrari BC, McKay CP. Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. ASTROBIOLOGY 2022; 22:225-232. [PMID: 35025628 PMCID: PMC8861918 DOI: 10.1089/ast.2021.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.
Collapse
Affiliation(s)
- Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Address correspondence to: Don A. Cowan, Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Building NW2, Room 3-12, Hatfield Campus, Lynnwood Road, Pretoria 0002, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, Australian Centre for Astrobiology, UNSW Sydney, Randwick, Australia
| | | |
Collapse
|
8
|
The Influence of Above-Ground Herbivory on the Response of Arctic Soil Methanotrophs to Increasing CH 4 Concentrations and Temperatures. Microorganisms 2021; 9:microorganisms9102080. [PMID: 34683401 PMCID: PMC8540837 DOI: 10.3390/microorganisms9102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
Rising temperatures in the Arctic affect soil microorganisms, herbivores, and peatland vegetation, thus directly and indirectly influencing microbial CH4 production. It is not currently known how methanotrophs in Arctic peat respond to combined changes in temperature, CH4 concentration, and vegetation. We studied methanotroph responses to temperature and CH4 concentration in peat exposed to herbivory and protected by exclosures. The methanotroph activity was assessed by CH4 oxidation rate measurements using peat soil microcosms and a pure culture of Methylobacter tundripaludum SV96, qPCR, and sequencing of pmoA transcripts. Elevated CH4 concentrations led to higher CH4 oxidation rates both in grazed and exclosed peat soils, but the strongest response was observed in grazed peat soils. Furthermore, the relative transcriptional activities of different methanotroph community members were affected by the CH4 concentrations. While transcriptional responses to low CH4 concentrations were more prevalent in grazed peat soils, responses to high CH4 concentrations were more prevalent in exclosed peat soils. We observed no significant methanotroph responses to increasing temperatures. We conclude that methanotroph communities in these peat soils respond to changes in the CH4 concentration depending on their previous exposure to grazing. This “conditioning” influences which strains will thrive and, therefore, determines the function of the methanotroph community.
Collapse
|
9
|
Greening C, Islam ZF, Bay SK. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol 2021; 30:330-337. [PMID: 34462186 DOI: 10.1016/j.tim.2021.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Molecular hydrogen (H2) is available in trace amounts in most ecosystems through atmospheric, biological, geochemical, and anthropogenic sources. Aerobic bacteria use this energy-dense gas, including at atmospheric concentrations, to support respiration and carbon fixation. While it was thought that aerobic H2 consumers are rare community members, here we summarize evidence suggesting that they are dominant throughout soils and other aerated ecosystems. Bacterial cultures from at least eight major phyla can consume atmospheric H2. At the ecosystem scale, H2 consumers are abundant, diverse, and active across diverse soils and are key primary producers in extreme environments such as hyper-arid deserts. On this basis, we propose that H2 is a universally available energy source for the survival of aerobic bacteria.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Zahra F Islam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|