1
|
Bakleh MZ, Kohailan M, Marwan M, Alhaj Sulaiman A. A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. Antibiotics (Basel) 2024; 13:958. [PMID: 39452224 PMCID: PMC11505126 DOI: 10.3390/antibiotics13100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The resurgence of colistin has become critical in combating multidrug-resistant Gram-negative bacteria. However, the emergence of mobilized colistin resistance (mcr) genes presents a crucial global challenge, particularly in the Arab world, which includes regions with unique conditions and ongoing conflicts in some parts. METHODS To address this issue, a systematic review was conducted using multiple databases, including Cochrane, PubMed, Scopus, Web of Science, and Arab World Research Source. RESULTS A total of 153 studies were included, revealing substantial heterogeneity in the prevalence of mcr genes across 15 Arab countries, with notable findings indicating that Egypt and Lebanon reported the highest number of cases. The analysis indicated that the most prevalent sequence types were ST10, ST101, and ST1011, all of which are Escherichia coli strains linked to significant levels of colistin resistance and multiple antimicrobial resistance profiles. CONCLUSIONS By analyzing the diverse findings from different Arab countries, this review lays a critical foundation for future research and highlights the necessity for enhanced surveillance and targeted interventions to address the looming threat of colistin resistance in the region. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42024584379.
Collapse
Affiliation(s)
- Mouayad Zuheir Bakleh
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Muhammad Kohailan
- Qatar Precision Health Institute, Qatar Foundation, Doha P. O. Box 5825, Qatar
| | - Muhammad Marwan
- Division of Biopsychology and Neuroscience, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Sarwar A, Aslam B, Rasool MH, Bekhit MMS, Sasanya J. A Health Threat from Farm to Fork: Shiga Toxin-Producing Escherichia coli Co-Harboring blaNDM-1 and mcr-1 in Various Sources of the Food Supply Chain. Pathogens 2024; 13:659. [PMID: 39204259 PMCID: PMC11357323 DOI: 10.3390/pathogens13080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
The dissemination of resistant pathogens through food supply chains poses a significant public health risk, spanning from farm to fork. This study analyzed the distribution of Shiga toxin-producing Escherichia coli (STEC) across various sources within the animal-based food supply chain. A total of 500 samples were collected from livestock, poultry, the environment, fisheries, and dairy. Standard microbiological procedures were employed to isolate and identify E. coli isolates, which were further confirmed using MALDI-TOF and virulence-associated genes (VAGs) such as stx1, stx2, ompT, hylF, iutA, fimH, and iss. The phenotypic resistance patterns of the isolates were determined using the disc diffusion method, followed by molecular identification of antibiotic resistance genes (ARGs) through PCR. STEC were subjected to PCR-based O typing using specific primers for different O types. Overall, 154 (30.5%) samples were confirmed as E. coli, of which 77 (50%) were multidrug-resistant (MDR) E. coli. Among these, 52 (67.53%) isolates exhibited an array of VAGs, and 21 (40.38%) were confirmed as STEC based on the presence of stx1 and stx2. Additionally, 12 out of 52 (23.07%) isolates were identified as non-O157 STEC co-harbouring mcr-1 and blaNDM-1. O26 STEC was found to be the most prevalent among the non-O157 types. The results suggest that the detection of STEC in food supply chains may lead to serious health consequences, particularly in developing countries with limited healthcare resources.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.S.); (M.H.R.)
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.S.); (M.H.R.)
| | - Muhammad Hidayat Rasool
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.S.); (M.H.R.)
| | - Mounir M. Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - James Sasanya
- International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
3
|
Oliveira RP, da Silva JS, da Silva GC, Rosa JN, Bazzolli DMS, Mantovani HC. Prevalence and characteristics of ESBL-producing Escherichia coli in clinically healthy pigs: implications for antibiotic resistance spread in livestock. J Appl Microbiol 2024; 135:lxae058. [PMID: 38444193 DOI: 10.1093/jambio/lxae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
AIM This study aimed to compare and characterize the resistance profile and the presence of extended-spectrum beta-lactamase (ESBL) related genes in Escherichia coli isolated from healthy finishing pigs fed with or without antibiotics in their diets. METHODS AND RESULTS A total of 27 ceftiofur-resistant E. coli isolates were obtained from 96 healthy pigs. The antibiotic resistance profile was tested, and all 27 isolates were classified as multidrug-resistant (MDR). A high proportion of isolates were resistant to cephalosporins, ampicillin, ciprofloxacin, and tetracyclines. The ESBL production was observed in 85% of isolates by double-disc synergy test. The MDR-E. coli isolates harbored ESBL genes, such as blaTEM, blaCTX-M-1, blaCTX-M-2, and blaCTX-M-8,25. In addition, other antibiotics resistance genes (ARGs) were also detected, such as sul2, ant(3″)-I, tetA, and mcr-1. The mobilization of the blaCTX-M gene was confirmed for nine E. coli isolates by conjugation assays. The presence of blaCTX-M on mobile genetic elements in these isolates was demonstrated by Southern blot hybridization, and the resistance to cephalosporins was confirmed in the transconjugants. Our results indicate the prevalence of CTX-M-producing E. coli strains harboring mobile genetic elements in the normal microbiota of healthy pigs. CONCLUSIONS These findings highlight the significance of ESBL genes as a global health concern in livestock and the potential spread of antimicrobial resistance to other members of the gastrointestinal tract microbiota.
Collapse
Affiliation(s)
- Rúzivia Pimentel Oliveira
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Laboratory of Molecular Genetics of Bacteria, Instituto de Biotecnologia Aplicada à Agropecuária (Bioagro), Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Juliana Soares da Silva
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Giarlã Cunha da Silva
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Jéssica Nogueira Rosa
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Denise Mara Soares Bazzolli
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Laboratory of Molecular Genetics of Bacteria, Instituto de Biotecnologia Aplicada à Agropecuária (Bioagro), Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Hilario C Mantovani
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706, Madison, WI, United States
| |
Collapse
|
4
|
Attalla ET, Khalil AM, Zakaria AS, Baker DJ, Mohamed NM. Genomic characterization of colistin-resistant Klebsiella pneumoniae isolated from intensive care unit patients in Egypt. Ann Clin Microbiol Antimicrob 2023; 22:82. [PMID: 37689686 PMCID: PMC10492301 DOI: 10.1186/s12941-023-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.
Collapse
Affiliation(s)
- Eriny T. Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Amal M. Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Azza S. Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | | | - Nelly M. Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| |
Collapse
|
5
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
6
|
Talat A, Miranda C, Poeta P, Khan AU. Farm to table: colistin resistance hitchhiking through food. Arch Microbiol 2023; 205:167. [PMID: 37014461 DOI: 10.1007/s00203-023-03476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Colistin is a high priority, last-resort antibiotic recklessly used in livestock and poultry farms. It is used as an antibiotic for treating multi-drug resistant Gram-negative bacterial infections as well as a growth promoter in poultry and animal farms. The sub-therapeutic doses of colistin exert a selection pressure on bacteria leading to the emergence of colistin resistance in the environment. Colistin resistance gene, mcr are mostly plasmid-mediated, amplifying the horizontal gene transfer. Food products such as chicken, meat, pork etc. disseminate colistin resistance to humans through zoonotic transfer. The antimicrobial residues used in livestock and poultry often leaches to soil and water through faeces. This review highlights the recent status of colistin use in food-producing animals, its association with colistin resistance adversely affecting public health. The underlying mechanism of colistin resistance has been explored. The prohibition of over-the-counter colistin sales and as growth promoters for animals and broilers has exhibited effective stewardship of colistin resistance in several countries.
Collapse
Affiliation(s)
- Absar Talat
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Toxicology Research Unit (TOXRUN), IUCS, CESPU, CRL, Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD)UTAD, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Asad U Khan
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
7
|
Phuadraksa T, Wichit S, Songtawee N, Tantimavanich S, Isarankura-Na-Ayudhya C, Yainoy S. Emergence of plasmid-mediated colistin resistance mcr-3.5 gene in Citrobacter amalonaticus and Citrobacter sedlakii isolated from healthy individual in Thailand. Front Cell Infect Microbiol 2023; 12:1067572. [PMID: 36683683 PMCID: PMC9846275 DOI: 10.3389/fcimb.2022.1067572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Citrobacter spp. are Gram-negative bacteria commonly found in environments and intestinal tracts of humans and animals. They are generally susceptible to third-generation cephalosporins, carbapenems and colistin. However, several antibiotic resistant genes have been increasingly reported in Citrobacter spp., which leads to the postulation that Citrobacter spp. could potentially be a reservoir for spreading of antimicrobial resistant genes. In this study, we characterized two colistin-resistant Citrobacter spp. isolated from the feces of a healthy individual in Thailand. Based on MALDI-TOF and ribosomal multilocus sequence typing, both strains were identified as Citrobacter sedlakii and Citrobacter amalonaticus. Genomic analysis and S1-nuclease pulsed field gel electrophoresis/DNA hybridization revealed that Citrobacter sedlakii and Citrobacter amalonaticus harbored mcr-3.5 gene on pSY_CS01 and pSY_CA01 plasmids, respectively. Both plasmids belonged to IncFII(pCoo) replicon type, contained the same genetic context (Tn3-IS1-ΔTnAs2-mcr-3.5-dgkA-IS91) and exhibited high transferring frequencies ranging from 1.03×10-4 - 4.6×10-4 CFU/recipient cell Escherichia coli J53. Colistin-MICs of transconjugants increased ≥ 16-fold suggesting that mcr-3.5 on these plasmids can be expressed in other species. However, beside mcr, other major antimicrobial resistant determinants in multidrug resistant Enterobacterales were not found in these two isolates. These findings indicate that mcr gene continued to evolve in the absence of antibiotics selective pressure. Our results also support the hypothesis that Citrobacter could be a reservoir for spreading of antimicrobial resistant genes. To the best of our knowledge, this is the first report that discovered human-derived Citrobacter spp. that harbored mcr but no other major antimicrobial resistant determinants. Also, this is the first report that described the presence of mcr gene in C. sedlakii and mcr-3 in C. amalonaticus.
Collapse
Affiliation(s)
- Thanawat Phuadraksa
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Srisurang Tantimavanich
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | | | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
8
|
Treilles M, Châtre P, Drapeau A, Madec JY, Haenni M. Spread of the mcr-1 colistin-resistance gene in Escherichia coli through plasmid transmission and chromosomal transposition in French goats. Front Microbiol 2023; 13:1023403. [PMID: 36687643 PMCID: PMC9846274 DOI: 10.3389/fmicb.2022.1023403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Colistin-resistance widely disseminated in food-producing animals due to decades of colistin use to treat diarrhea. The plasmid-borne mcr-1 gene has been extensively reported from bovine, swine and chicken worldwide, but smaller productions such as the goat farming sector were much less surveyed. Methods We looked for colistin-resistant isolates presenting plasmid-borne genes of the mcr family in both breeding (n=80) and fattening farms (n=5). Localization of the mcr-1 gene was performed using Southern blot analysis coupled to short-read and long-read sequencing. Results Only the mcr-1 gene was identified in 10% (8/80) of the breeding farms and four over the five fattening farms. In total, 4.2% (65/1561) of the animals tested in breeding farms and 60.0% (84/140) of those tested in fattening farms presented a mcr-1-positive E. coli. The mcr-1 gene was located either on the chromosome (32.2%) or on IncX4 (38.9%) and IncHI2 (26.8%) plasmids. As expected, both clonal expansion and plasmidic transfers were observed in farms where the mcr-1 gene was carried by plasmids. Tn6330 transposition was observed in the chromosome of diverse E. coli sequence types within the same farm. Discussion Our results show that the mcr-1 gene is circulating in goat production and is located either on plasmids or on the chromosome. Evidence of Tn6330 transposition highlighted the fact that chromosomal insertion does not impair the transmission capability of the mcr-1 gene. Only strict hygiene and biosecurity procedures in breeding farms, as well as a prudent use of antibiotics in fattening farms, can avoid such complex contamination pathways.
Collapse
Affiliation(s)
- Michaël Treilles
- Laboratoire d’Analyse Qualyse, Champdeniers Saint-Denis, France,Association Régionale de Prévention contre la résistance aux Antimicrobiens, Champdeniers Saint Denis, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France,*Correspondence: Marisa Haenni, ✉
| |
Collapse
|
9
|
Sadek M, Ortiz de la Rosa JM, Ramadan M, Nordmann P, Poirel L. Molecular Characterization of Extended-Spectrum ß-lactamase Producers, Carbapenemase Producers, Polymyxin-Resistant, and Fosfomycin-Resistant Enterobacterales Among Pigs from Egypt. J Glob Antimicrob Resist 2022; 30:81-87. [PMID: 35667645 DOI: 10.1016/j.jgar.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To perform the first prospective surveillance evaluating the occurrence of genes encoding colistin resistance, fosfomycin resistance, carbapenemase or extended-spectrum ß-lactamases (ESBLs) among Enterobacterial isolates recovered from the gut flora of pigs from Egypt. METHODS Between February and April 2020, eighty-one rectal swabs were collected from pigs in a slaughterhouse, Cairo, Egypt. Samples were screened for different resistance mechanisms using SuperPolymyxin, ChromID ESBL, SuperFOS, SuperCarba selective agar plates. Antimicrobial susceptibility testing was performed for all isolates using disk diffusion and broth microdilution techniques. PCR screening was performed for ESBLs, carbapenemases, mcr, and fosA genes. Mating-out assays, multilocus sequence typing analysis and plasmid typing were also performed. RESULTS A high prevalence of ESBLs, carbapenemases, fosfomycin and colistin resistance genes was evidenced among those isolates. The predominant ESBL identified was blaCTX-M-15, followed by blaCTX-M-9. We also identified blaNDM-5 and blaOXA-244. fosA3, fosA4, and fosA6 were identified in E. coli isolates. In addition, eleven MCR-1 producers were recovered. Notably, co-occurrence of ESBL genes and mcr or fosA genes was observed. MLST analysis revealed a high clonal diversity, ruling out the dissemination of one major clone. IncFIB-type was predominantly present among ESBL- and FosA-producers. The blaNDM-5 gene was carried on an IncX4-type, although the blaOXA-244 gene was chromosomally located. The mcr-1 gene was carried on a diversity of plasmids (IncI2, IncX4, and IncHI2). CONCLUSIONS These results raise serious public health concerns as Egyptian pig meat could serve as a reservoir for the antimicrobial resistance genes (ARGs) leading to worldwide dissemination.
Collapse
Affiliation(s)
- Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt; INSERM European Unit (IAME), University of Fribourg, Fribourg
| | - José Manuel Ortiz de la Rosa
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME), University of Fribourg, Fribourg
| | | | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME), University of Fribourg, Fribourg; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg; Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME), University of Fribourg, Fribourg; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg.
| |
Collapse
|
10
|
Puangseree J, Prathan R, Srisanga S, Angkittitrakul S, Chuanchuen R. Plasmid profile analysis of Escherichia coli and Salmonella enterica isolated from pigs, pork and humans. Epidemiol Infect 2022; 150:e110. [PMID: 35535461 PMCID: PMC9214845 DOI: 10.1017/s0950268822000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the epidemiology and association of antimicrobial resistance (AMR) among Escherichia coli and Salmonella in Thailand. The E. coli (n = 1047) and Salmonella (n = 816) isolates from pigs, pork and humans were screened for 18 replicons including HI1, HI2, I1-γ, X, L/M, N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIAs, F, K and B/O using polymerase chain reaction-based replicon typing. The E. coli (n = 26) and Salmonella (n = 3) isolates carrying IncF family replicons, ESBL and/or mcr genes were determined for FAB formula. IncF represented the major type of plasmids. Sixteen and eleven Inc groups were identified in E. coli (85.3%) and Salmonella (25.7%), respectively. The predominant replicon patterns between E. coli and Salmonella were IncK-F (23.7%) and IncF (46.2%). Significant correlations (P < 0.05) were observed between plasmid-replicon type and resistance phenotype. Plasmid replicon types were significantly different among sources of isolates and sampling periods. The most common FAB types between E. coli and Salmonella were F2:A-:B- (30.8%) and S1:A-:B- (66.7%), respectively. In conclusion, various plasmids present in E. coli and Salmonella. Responsible and prudent use of antimicrobials is suggested to reduce the selective pressures that favour the spread of AMR determinants. Further studies to understand the evolution of R plasmids and their contribution to the dissemination of AMR genes are warranted.
Collapse
Affiliation(s)
- Jiratchaya Puangseree
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songsak Srisanga
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Rungtip Chuanchuen
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Hu J, Yang J, Chen W, Liu Z, Zhao Q, Yang H, Sun Z, Chen X, Li J. Prevalence and Characteristics of mcr-1-Producing Escherichia coli in Three Kinds of Poultry in Changsha, China. Front Microbiol 2022; 13:840520. [PMID: 35464934 PMCID: PMC9021793 DOI: 10.3389/fmicb.2022.840520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Colistin is one of the last-line drugs against difficult to treat and multidrug-resistant Gram-negative bacteria. The emergence of mobile colistin resistance gene mcr-1 increased worldwide attention on colistin resistance. mcr-1 is the dominant gene that caused resistance to colistin in chicken-derived Escherichia coli (E. coli) in China; it has a broad resistance spectrum and causes multiple drug resistance problems. There are only few studies on mcr-positive E. coli (MCRPEC) from laying ducks and quails in China. Here, the molecular and epidemiological characteristics of MCRPEC from three kinds of poultry farms (laying duck, quail, and broiler) were investigated in Changsha, China. A total of 17 mcr-positive E. coli (MCRPEC) strains were screened in 690 samples from the three kinds of poultry farms. This is the first report on MCRPEC, to our best knowledge, derived from quail. All the MCRPEC strains were resistant to colistin, sulfamethoxazole-trimethoprim, florfenicol, tetracycline, and ciprofloxacin, and mildly resistant to tigecycline, gentamicin, piperacillin/tazobactam, cefotaxime, and ceftiofur. All the strains were sensitive to meropenem and amikacin. By bioinformatics analysis, 17 MCRPEC strains belonging to 11 MLST types were distributed in phylogroups A (58.8%), B1 (23.5%), and phylogroup D (17.6%). mcr-1 was located in IncI2 plasmid with typical plasmid conjugation transfer part, type IV secretory system, and tellurium-resistant protein, increasing transmission capacity to other bacteria. Monitoring of colistin-resistant bacteria in poultry farms should be strengthened.
Collapse
Affiliation(s)
- Jufang Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhihong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Qin Zhao
- Liuyang Animal Disease Prevention and Control Center, Hunan, China
| | - Hui Yang
- Liuyang Animal Disease Prevention and Control Center, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Xiaojun Chen,
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
- Jiyun Li,
| |
Collapse
|
12
|
Conjugative transfer of mcr-1-bearing plasmid from Salmonella to Escherichia coli in vitro on chicken meat and in mouse gut. Food Res Int 2022; 157:111263. [DOI: 10.1016/j.foodres.2022.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
|
13
|
Elbaradei A, Sayedahmed MS, El-Sawaf G, Shawky SM. Screening of mcr-1 among Gram-Negative Bacteria from Different Clinical Samples from ICU Patients in Alexandria, Egypt: One-Year Study. Pol J Microbiol 2022; 71:83-90. [PMID: 35635164 PMCID: PMC9152917 DOI: 10.33073/pjm-2022-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance represents a global dilemma. Our present study aimed to investigate the presence of mcr-1 among different Gram-negative bacteria including Enterobacteriaceae (except intrinsically resistant to colistin) and Pseudomonas aeruginosa. Gram-negative bacterial isolates were collected from different ICUs in several Alexandria hospitals from June 2019 to June 2020. The identification of these Gram-negative isolates was made using the VITEK-2® system (BioMérieux, France). SYBR Green-based PCR was used to screen for the presence of mcr-1 using a positive control that we amplified and sequenced earlier in our pilot study. All isolates were screened for the presence of mcr-1 regardless of their colistin susceptibility. Isolates that harbored mcr-1 were tested for colistin susceptibility and for the presence of some beta-lactamase genes. Klebsiella pneumoniae isolates harboring mcr-1 were capsule typed using the wzi sequence analysis. Four hundred eighty isolates were included in this study. Only six isolates harbored mcr-1.1. Of these, four were resistant to colistin, while two (K. pneumoniae and P. aeruginosa) were susceptible to colistin. Five of the six isolates were resistant to carbapenems. They harbored blaOXA-48, and three of them co-harbored blaNDM-1. K-58 was the most often found among our K. pneumoniae harboring mcr-1.1. To our knowledge, this is the first time to report colistin susceptible P. aeruginosa and K. pneumoniae harboring the mcr-1.1 gene in Egypt. Further studies are needed to investigate the presence of the mcr genes among colistin susceptible isolates to shed more light on its significance as a potential threat. ![]()
Collapse
Affiliation(s)
- Amira Elbaradei
- Department of Microbiology and Immunology, Faculty of Pharmacy , Pharos University in Alexandria , Alexandria , Egypt
- Alexandria University Hospital , Alexandria University , Alexandria , Egypt
| | - Mahrous S. Sayedahmed
- Department of Microbiology, Medical Research Institute , Alexandria University , Alexandria , Egypt
| | - Gamal El-Sawaf
- Department of Microbiology, Medical Research Institute , Alexandria University , Alexandria , Egypt
| | - Sherine M. Shawky
- Department of Microbiology, Medical Research Institute , Alexandria University , Alexandria , Egypt
| |
Collapse
|
14
|
Sonnevend Á, Alali WQ, Mahmoud SA, Ghazawi A, Bharathan G, Melegh S, Rizvi TA, Pál T. Molecular Characterization of MCR-1 Producing Enterobacterales Isolated in Poultry Farms in the United Arab Emirates. Antibiotics (Basel) 2022; 11:antibiotics11030305. [PMID: 35326769 PMCID: PMC8944778 DOI: 10.3390/antibiotics11030305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Data on the prevalence of MCR-producing Enterobacterales of animal origin are scarce from the Arabian Peninsula. We investigated the presence and variety of such strains from fecal specimens of poultry collected in four farms in the United Arab Emirates. Colonies from ten composite samples per farm grown on colistin-supplemented plates were PCR-screened for alleles of the mcr gene. Thirty-nine isolates selected based on species, colony morphology, and plasmid profile were subjected to whole genome sequencing. The panel of their resistance and virulence genes, MLST and cgMLST were established. Transferability and incompatibility types of the MCR-plasmids were determined. mcr-1.1 positive strains were identified in 36 of the 40 samples. Thirty-four multi-drug resistant Escherichia coli of 16 different sequence types, two Escherichia albertii, two Klebsiella pneumoniae and one Salmonella minnesota were identified. Beyond various aminoglycoside, tetracycline, and co-trimoxazole resistance genes, seven of them also carried ESBL genes and one blaCMY-2. Six IncHI2, 26 IncI2 and 4 IncX4 MCR-plasmids were mobilized, in case of the IncHI2 plasmids co-transferring ampicillin, chloramphenicol and tetracycline resistance. The diversity of mcr-1 positive strains suggest a complex local epidemiology calling for a coordinated surveillance including animals, retail meat and clinical cases.
Collapse
Affiliation(s)
- Ágnes Sonnevend
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.S.); (S.M.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
| | - Walid Q. Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Safat, Kuwait City 13110, Kuwait;
| | - Sara A. Mahmoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
| | - Greeshma Bharathan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.S.); (S.M.)
| | - Tahir A. Rizvi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Tibor Pál
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.S.); (S.M.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
- Correspondence:
| |
Collapse
|
15
|
Majewski P, Gutowska A, Smith DGE, Hauschild T, Majewska P, Hryszko T, Gizycka D, Kedra B, Kochanowicz J, Glowiński J, Drewnowska J, Swiecicka I, Sacha PT, Wieczorek P, Iwaniuk D, Sulewska A, Charkiewicz R, Makarewicz K, Zebrowska A, Czaban S, Radziwon P, Niklinski J, Tryniszewska EA. Plasmid Mediated mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland. Front Microbiol 2021; 12:547020. [PMID: 34956105 PMCID: PMC8703133 DOI: 10.3389/fmicb.2021.547020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/02/2021] [Indexed: 01/27/2023] Open
Abstract
Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a “last-resort” antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains. Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains. Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene. Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an “epidemic” plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | | | - Tomasz Hryszko
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, Białystok, Poland
| | - Dominika Gizycka
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Boguslaw Kedra
- Second Department of General and Gastroenterological Surgery, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Jerzy Glowiński
- Department of Vascular Surgery and Transplantation, Medical University of Białystok, Białystok, Poland
| | - Justyna Drewnowska
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Pawel T Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | | | | | - Slawomir Czaban
- Department of Anesthesiology and Intensive Care, Medical University of Białystok, Białystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Białystok, Poland.,Department of Hematology, Medical University of Białystok, Białystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | - Elzbieta A Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
16
|
Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Gao Q, Tian B, Cheng A. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149280. [PMID: 34364270 DOI: 10.1016/j.scitotenv.2021.149280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Colistin drug resistance is an emerging public health threat worldwide. The adaptability, existence and spread of colistin drug resistance in multiple reservoirs and ecological environmental settings is significantly increasing the rate of occurrence of multidrug resistant (MDR) bacteria such as Escherichia coli (E. coli). Here, we summarized the reports regarding molecular and biological characterization of mobile colistin resistance gene (mcr)-positive E. coli (MCRPEC), originating from diverse reservoirs, including but not limited to humans, environment, waste water treatment plants, wild, pets, and food producing animals. The MCRPEC revealed the abundance of clinically important resistance genes, which are responsible for MDR profile. A number of plasmid replicon types such as IncI2, IncX4, IncP, IncX, and IncFII with a predominance of IncI2 were facilitating the spread of colistin resistance. This study concludes the distribution of multiple sequence types of E. coli carrying mcr gene variants, which are possible threat to "One Health" perspective. In addition, we have briefly explained the newly known mechanisms of colistin resistance i.e. plasmid-encoded resistance determinant as well as presented the chromosomally-encoded resistance mechanisms. The transposition of ISApl1 into the chromosome and existence of intact Tn6330 are important for transmission and stability for mcr gene. Further, genetic environment of co-localized mcr gene with carbapenem-resistance or extended-spectrum β-lactamases genes has also been elaborated, which is limiting human beings to choose last resort antibiotics. Finally, environmental health and safety control measures along with spread mechanisms of mcr genes are discussed to avoid further propagation and environmental hazards of colistin resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Disease Investigation Laboratory, Livestock & Dairy Development Department, Zhob 85200, Balochistan, Pakistan
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
17
|
Qin J, Zhao Y, Wang A, Chi X, Wen P, Li S, Wu L, Bi S, Xu H. Comparative genomic characterization of multidrug-resistant Citrobacter spp. strains in Fennec fox imported to China. Gut Pathog 2021; 13:59. [PMID: 34645508 PMCID: PMC8513245 DOI: 10.1186/s13099-021-00458-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To investigate the antimicrobial profiles and genomic characteristics of MDR-Citrobacter spp. strains isolated from Fennec fox imported from Sudan to China. METHODS Four Citrobacter spp. strains were isolated from stool samples. Individual fresh stool samples were collected and subsequently diluted in phosphate buffered saline as described previously. The diluted fecal samples were plated on MacConkey agar supplemented with 1 mg/l cefotaxime and incubated for 20 h at 37 °C. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) was used for identification. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole-genome sequencing was performed on an Illumina Novaseq-6000 platform. Acquired antimicrobial resistance genes and plasmid replicons were detected using ResFinder 4.1 and PlasmidFinder 1.3, respectively. Comparative genomic analysis of 277 Citrobacter genomes was also performed. RESULTS Isolate FF141 was identified as Citrobacter cronae while isolate FF371, isolate FF414, and isolate FF423 were identified as Citrobacter braakii. Of these, three C. braakii isolates were further confirmed to be extended-spectrum β-lactamases (ESBL)-producer. All isolates are all multidrug resistance (MDR) with resistance to multiple antimicrobials. Plasmid of pKPC-CAV1321 belong to incompatibility (Inc) group. Comparative genomics analysis of Citrobacter isolates generated a large core-genome. Genetic diversity was observed in our bacterial collection, which clustered into five main clades. Human, environmental and animal Citrobacter isolates were distributed into five clusters. CONCLUSIONS To our knowledge, this is the first investigation of MDR-Citrobacter from Fennec Fox. Our phenotypic and genomic data further underscore the threat of increased ESBL prevalence in wildlife and emphasize that increased effort should be committed to monitoring the potentially rapid dissemination of ESBL-producers with one health perspective.
Collapse
Affiliation(s)
- Jie Qin
- Emergency Department of Taizhou Hospital, Taizhou, China
| | - Yishu Zhao
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Jinan, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Wang
- Department of Laboratory Medicine, Zhucheng People's Hospital, Zhucheng, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peipei Wen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjiao Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Bi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Anyanwu MU, Jaja IF, Oguttu JW, Jaja CJ, Chah KF, Shodeinde Shoyinka V. Is Africa ready for mobile colistin resistance threat? Infect Ecol Epidemiol 2021; 11:1962781. [PMID: 34377360 PMCID: PMC8344256 DOI: 10.1080/20008686.2021.1962781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a growing public health problem and a threat to effective treatment and prevention of an array of infections caused by bacteria. Africa is already faced with many socio-economic and health crises. Many countries in Africa can seldom boast of a standardized health care facility comparable to those in developed countries. Yet, the non-therapeutic use of COL has been banned in developed countries. However, in Africa, except for South Africa, COL is an over-the-counter (OTC) medication sold and dispensed by non-professionals/without a veterinarian's supervision. The ban of non-therapeutic COL in developed countries has proven to reduce the development of mobile colistin resistance (MCR) in humans and animals. The unregulated use of COL has been proven to select pathogenic and commensal bacteria resistance. A transmissible plasmid-mediated colistin determinant, mobile COL resistance (mcr) gene, which is rapidly transferred/acquired horizontally or laterally intra/inter-species/genera, has been reported. A highly promiscuous mobile genetic element like plasmids containing transposons, insertion sequences, and integrons aid the carriage/rapid transfer and acquisition of these mcr genes. Hence, we highlight the danger posed by escalating colistin (COL) resistance in the continent and the impetus to halt the indiscriminate and non-therapeutic use of COL to protect public health.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice, South Africa
- Risk and Vulnerability Science Centre, University of Fort Hare, Alice, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Roodepoort Johannesburg, South Africa
| | - Chinwe Juliana Jaja
- Risk and Vulnerability Science Centre, University of Fort Hare, Alice, South Africa
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
19
|
Moser AI, Kuenzli E, Campos-Madueno EI, Büdel T, Rattanavong S, Vongsouvath M, Hatz C, Endimiani A. Antimicrobial-Resistant Escherichia coli Strains and Their Plasmids in People, Poultry, and Chicken Meat in Laos. Front Microbiol 2021; 12:708182. [PMID: 34381435 PMCID: PMC8350485 DOI: 10.3389/fmicb.2021.708182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistant (AMR) Enterobacterales are widely distributed among the healthy population of the Indochinese peninsula, including Laos. However, the local reservoir of these pathogens are currently not known and possible sources such as agricultural settings and food have rarely been analyzed. In this work, we investigated the extended-spectrum cephalosporin- (ESC-) and colistin-resistant Escherichia coli strains (CST-R-Ec) isolated from the gut of local people, feces of poultry, and from chicken meat (60 samples each group) in Laos. Whole-genome sequencing (WGS) analysis based on both short- and long-read sequencing approaches were implemented. The following prevalence of ESC-R-Ec and CST-R-Ec were recorded, respectively: local people (70 and 15%), poultry (20 and 23.3%), and chicken meat (21.7 and 13.3%). Core-genome analysis, coupled with sequence type (ST)/core-genome ST (cgST) definitions, indicated that no common AMR-Ec clones were spreading among the different settings. ESC-R-Ec mostly possessed blaCTX–M–15 and blaCTX–M–55 associated to ISEcp1 or IS26. The majority of CST-R-Ec carried mcr-1 on IncX4, IncI2, IncP1, and IncHI1 plasmids similar or identical to those described worldwide; strains with chromosomal mcr-1 or possessing plasmid-mediated mcr-3 were also found. These results indicate a high prevalence of AMR-Ec in the local population, poultry, and chicken meat. While we did not observe the same clones among the three settings, most of the blaCTX–Ms and mcr-1/-3 were associated with mobile-genetic elements, indicating that horizontal gene transfer may play an important role in the dissemination of AMR-Ec in Laos. More studies should be planned to better understand the extent and dynamics of this phenomenon.
Collapse
Affiliation(s)
- Aline I Moser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Esther Kuenzli
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Thomas Büdel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | - Christoph Hatz
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Ramadan H, Soliman AM, Hiott LM, Elbediwi M, Woodley TA, Chattaway MA, Jenkins C, Frye JG, Jackson CR. Emergence of Multidrug-Resistant Escherichia coli Producing CTX-M, MCR-1, and FosA in Retail Food From Egypt. Front Cell Infect Microbiol 2021; 11:681588. [PMID: 34327151 PMCID: PMC8315045 DOI: 10.3389/fcimb.2021.681588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, multidrug-resistant (MDR) Escherichia coli isolates from retail food and humans assigned into similar Multilocus Sequence Types (MLST) were analyzed using whole genome sequencing (WGS). In silico analysis of assembled sequences revealed the existence of multiple resistance genes among the examined E. coli isolates. Of the six CTX-M-producing isolates from retail food, bla CTX-M-14 was the prevalent variant identified (83.3%, 5/6). Two plasmid-mediated fosfomycin resistance genes, fosA3, and fosA4, were detected from retail food isolates (one each from chicken and beef), where fosA4 was identified in the chicken isolate 82CH that also carried the colistin resistance gene mcr-1. The bla CTX-M-14 and fosA genes in retail food isolates were located adjacent to insertion sequences ISEcp1 and IS26, respectively. Sequence analysis of the reconstructed mcr-1 plasmid (p82CH) showed 96-97% identity to mcr-1-carrying IncI2 plasmids previously identified in human and food E. coli isolates from Egypt. Hierarchical clustering of core genome MLST (HierCC) revealed clustering of chicken isolate 82CH, co-harboring mcr-1 and fosA4 genes, with a chicken E. coli isolate from China at the HC200 level (≤200 core genome allelic differences). As E. coli co-harboring mcr-1 and fosA4 genes has only been recently reported, this study shows rapid spread of this genotype that shares similar genetic structures with regional and international E. coli lineages originating from both humans and food animals. Adopting WGS-based surveillance system is warranted to facilitate monitoring the international spread of MDR pathogens.
Collapse
Affiliation(s)
- Hazem Ramadan
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States.,Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Lari M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Mohammed Elbediwi
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt.,Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tiffanie A Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| |
Collapse
|
21
|
Genomic Insights into a Colistin-Resistant Uropathogenic Escherichia coli Strain of O23:H4-ST641 Lineage Harboring mcr-1.1 on a Conjugative IncHI2 Plasmid from Egypt. Microorganisms 2021; 9:microorganisms9040799. [PMID: 33920265 PMCID: PMC8069611 DOI: 10.3390/microorganisms9040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.
Collapse
|