1
|
Lo SW, Hung TH, Lin YT, Lee CS, Chen CY, Fang CJ, Lai PC. Clinical efficacy and safety of faecal microbiota transplantation in the treatment of irritable bowel syndrome: a systematic review, meta-analysis and trial sequential analysis. Eur J Med Res 2024; 29:464. [PMID: 39289768 PMCID: PMC11409544 DOI: 10.1186/s40001-024-02046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The aim of this study is to evaluate the efficacy and safety of faecal microbiota transplantation (FMT) for the treatment of irritable bowel syndrome (IBS). METHODS We searched four databases for randomised controlled trials (RCTs) that compared FMT with a control intervention in patients with IBS. The revised Cochrane risk-of-bias (RoB) tool was chosen for appraisal. Meta-analysis with trial sequential analysis (TSA) was conducted. Grading of Recommendations Assessment Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence (CoE). RESULTS We included 12 RCTs with a total of 615 participants. Meta-analyses showed no significant difference between the FMT and control groups in terms of clinical responses (relative risk [RR] = 1.44, 95% confidence interval [CI] 0.88-2.33) and changes in IBS Severity Scoring System (IBS-SSS) scores (standardised mean difference [SMD] = - 0.31, 95% CI - 0.72 to 0.09) and IBS Quality of Life (IBS-QOL) scores (SMD = 0.30, 95% CI - 0.09 to 0.69). Subgroup analysis revealed that in studies with low RoB and using endoscopy, nasojejunal tube and rectal enema delivery, FMT led to a significant improvement in clinical responses and changes in IBS-SSS and IBS-QOL scores. TSA suggested that the current evidence is inconclusive and that the CoE is very low. CONCLUSION This study suggests that patients with IBS may benefit from FMT especially when it is administered via endoscopy, nasojejunal tube or rectal enema. However, the certainty of evidence is very low. Further research is needed to confirm the efficacy and safety of FMT for IBS treatment. TRIAL REGISTRATION PROSPERO registration number CRD42020211002.
Collapse
Affiliation(s)
- Shao-Wei Lo
- Education Centre, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan
| | - Tsung-Hsuan Hung
- Education Centre, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan
| | - Yen-Tsen Lin
- Education Centre, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan
| | - Chun-Shen Lee
- Education Centre, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan
| | - Chiung-Yu Chen
- Education Centre, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Ju Fang
- Medical Library, National Cheng Kung University, Tainan, Taiwan
- Department of Secretariat, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Lai
- Education Centre, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan.
- Department of Paediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
3
|
Zikou E, Koliaki C, Makrilakis K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024; 12:1871. [PMID: 39200335 PMCID: PMC11352194 DOI: 10.3390/biomedicines12081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota represents a complex ecosystem of trillions of microorganisms residing in the human gastrointestinal tract, which is known to interact with the host physiology and regulate multiple functions. Alterations in gut microbial composition, diversity, and function are referred to as dysbiosis. Dysbiosis has been associated with a variety of chronic diseases, including Clostridioides difficile infections, but also cardiometabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). The implication of gut microbiota dysbiosis in the pathogenesis of both obesity and T2DM has paved the way to implementing novel therapeutic approaches for metabolic diseases through gut microbial reconfiguration. These interventions include probiotics, prebiotics, and synbiotics, while a more innovative approach has been fecal microbiota transplantation (FMT). FMT is a procedure that delivers healthy human donor stool to another individual through the gastrointestinal tract, aiming to restore gut microbiota balance. Several studies have investigated this approach as a potential tool to mitigate the adverse metabolic effects of gut microbiota aberrations associated with obesity and T2DM. The aim of the present review was to critically summarize the existing evidence regarding the clinical applications of FMT in the management of obesity and T2DM and provide an update on the potential of this method to remodel the entire host microbiota, leading thus to weight loss and sustained metabolic benefits. Safety issues, long-term efficacy, limitations, and pitfalls associated with FMT studies are further discussed, emphasizing the need for further research and standardization in certain methodological aspects in order to optimize metabolic outcomes.
Collapse
|
4
|
O'Sullivan D, Arora T, Durif C, Uriot O, Brun M, Riu M, Foguet-Romero E, Samarra I, Domingo-Almenara X, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S. Impact of Western Diet on Enterohemorrhagic Escherichia coli Colonization in the Human In Vitro Mucosal Artificial Colon as Mediated by Gut Microbiota. Nutrients 2024; 16:2046. [PMID: 38999794 PMCID: PMC11243482 DOI: 10.3390/nu16132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.
Collapse
Affiliation(s)
- Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Trisha Arora
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Marc Riu
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Elisabet Foguet-Romero
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Iris Samarra
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Xavier Domingo-Almenara
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
6
|
Jimonet P, Druart C, Blanquet-Diot S, Boucinha L, Kourula S, Le Vacon F, Maubant S, Rabot S, Van de Wiele T, Schuren F, Thomas V, Walther B, Zimmermann M. Gut Microbiome Integration in Drug Discovery and Development of Small Molecules. Drug Metab Dispos 2024; 52:274-287. [PMID: 38307852 DOI: 10.1124/dmd.123.001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.
Collapse
Affiliation(s)
- Patrick Jimonet
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Céline Druart
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stéphanie Blanquet-Diot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Lilia Boucinha
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stephanie Kourula
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Françoise Le Vacon
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Maubant
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Rabot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Tom Van de Wiele
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Frank Schuren
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Vincent Thomas
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Bernard Walther
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Michael Zimmermann
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| |
Collapse
|
7
|
Shah YR, Ali H, Tiwari A, Guevara-Lazo D, Nombera-Aznaran N, Pinnam BSM, Gangwani MK, Gopakumar H, Sohail AH, Kanumilli S, Calderon-Martinez E, Krishnamoorthy G, Thakral N, Dahiya DS. Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions. World J Hepatol 2024; 16:17-32. [PMID: 38313244 PMCID: PMC10835490 DOI: 10.4254/wjh.v16.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.
Collapse
Affiliation(s)
- Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Hassam Ali
- Division of Gastroenterology and Hepatology, East Carolina University/Brody School of Medicine, Greenville, NC 27858, United States
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India
| | - David Guevara-Lazo
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL 60612, United States
| | - Manesh Kumar Gangwani
- Department of Internal Medicine, The University of Toledo, Toledo, OH 43606, United States
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Ernesto Calderon-Martinez
- Department of Internal Medicine, Universidad Nacional Autonoma de Mexico, Ciudad De Mexico 04510, Mexico
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Nimish Thakral
- Department of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
8
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
9
|
Herviou P, Balvay A, Bellet D, Bobet S, Maudet C, Staub J, Alric M, Leblond-Bourget N, Delorme C, Rabot S, Denis S, Payot S. Transfer of the Integrative and Conjugative Element ICE St3 of Streptococcus thermophilus in Physiological Conditions Mimicking the Human Digestive Ecosystem. Microbiol Spectr 2023; 11:e0466722. [PMID: 36995244 PMCID: PMC10269554 DOI: 10.1128/spectrum.04667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.
Collapse
Affiliation(s)
- Pauline Herviou
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Aurélie Balvay
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Deborah Bellet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sophie Bobet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Claire Maudet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Johan Staub
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Monique Alric
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | | - Christine Delorme
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvain Denis
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| |
Collapse
|
10
|
García Mendez D, Sanabria J, Wist J, Holmes E. Effect of Operational Parameters on the Cultivation of the Gut Microbiome in Continuous Bioreactors Inoculated with Feces: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6213-6225. [PMID: 37070710 PMCID: PMC10143624 DOI: 10.1021/acs.jafc.2c08146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Since the early 1980s, multiple researchers have contributed to the development of in vitro models of the human gastrointestinal system for the mechanistic interrogation of the gut microbiome ecology. Using a bioreactor for simulating all the features and conditions of the gastrointestinal system is a massive challenge. Some conditions, such as temperature and pH, are readily controlled, but a more challenging feature to simulate is that both may vary in different regions of the gastrointestinal tract. Promising solutions have been developed for simulating other functionalities, such as dialysis capabilities, peristaltic movements, and biofilm growth. This research field is under constant development, and further efforts are needed to drive these models closer to in vivo conditions, thereby increasing their usefulness for studying the gut microbiome impact on human health. Therefore, understanding the influence of key operational parameters is fundamental for the refinement of the current bioreactors and for guiding the development of more complex models. In this review, we performed a systematic search for operational parameters in 229 papers that used continuous bioreactors seeded with human feces. Despite the reporting of operational parameters for the various bioreactor models being variable, as a result of a lack of standardization, the impact of specific operational parameters on gut microbial ecology is discussed, highlighting the advantages and limitations of the current bioreactor systems.
Collapse
Affiliation(s)
- David
Felipe García Mendez
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
| | - Janeth Sanabria
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
- Environmental
Microbiology and Biotechnology Laboratory, Engineering School of Environmental
& Natural Resources, Engineering Faculty, Universidad del Valle—Sede Meléndez, Cali, Colombia 76001
| | - Julien Wist
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
- Chemistry
Department, Universidad del Valle, 76001, Cali, Colombia
| | - Elaine Holmes
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
| |
Collapse
|
11
|
Wynn AB, Beyer G, Richards M, Ennis LA. Procedure, Screening, and Cost of Fecal Microbiota Transplantation. Cureus 2023; 15:e35116. [PMID: 36938236 PMCID: PMC10023044 DOI: 10.7759/cureus.35116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is currently considered a potential treatment for various GI-related illnesses, with the goal to replenish natural healthy flora of the GI tract that has been harmed because of antibiotic use or overgrowth of harmful bacteria. Current methods of administering the processed stool include colonoscopy and enema, while an oral capsule is being developed. Each method of administration carries its own set of risks, including adverse reactions to treatment, infection following the invasive administration procedure, and flare-ups of GI-related symptoms. Current oral administration through nasoduodenal tube poses a risk for aspiration which has not been ruled out as the cause of subsequent pneumonia and death in patient trials. The development of an oral capsule could address some of the faults of the current methods, not only making treatment more affordable and accessible but also less of a risk due to its minimally invasive nature. FMT is also a treatment option to attenuate adverse effects associated with antibiotic use, including combatting the emergence of antibiotic resistance, as well as adverse effects related to other medical treatments such as chemotherapy. While FMT is an unexplored treatment option for multiple gastrointestinal disorders and is currently still largely inaccessible for many patients financially, studies have suggested that it could be a more affordable treatment option long-term for patients as aspects of the treatment become more affordable with further research.
Collapse
Affiliation(s)
- Austin B Wynn
- Public Health, Environmental Health, Informatics, Information Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Garet Beyer
- Public Health, Environmental Health, Informatics, Information Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Megan Richards
- Public Health, Environmental Health, Informatics, Information Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Lisa A Ennis
- Public Health, Environmental Health, Informatics, Information Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
12
|
Green JE, McGuinness AJ, Berk M, Castle D, Athan E, Hair C, Strandwitz P, Loughman A, Nierenberg AA, Cryan JF, Mohebbi M, Jacka F. Safety and feasibility of faecal microbiota transplant for major depressive disorder: study protocol for a pilot randomised controlled trial. Pilot Feasibility Stud 2023; 9:5. [PMID: 36624505 PMCID: PMC9827014 DOI: 10.1186/s40814-023-01235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mental disorders, including major depressive disorder (MDD), are a leading cause of non-fatal burden of disease globally. Current conventional treatments for depression have significant limitations, and there have been few new treatments in decades. The microbiota-gut-brain-axis is now recognised as playing a role in mental and brain health, and promising preclinical and clinical data suggest Faecal Microbiota Transplants (FMT) may be efficacious for treating a range of mental illnesses. However, there are no existing published studies in humans evaluating the efficacy of FMT for MDD. METHODS AND DESIGN This protocol describes an 8-week, triple-blind, 2:1 parallel group, randomised controlled pilot trial (n = 15), of enema-delivered FMT treatment (n = 10) compared with a placebo enema (n = 5) in adults with moderate-to-severe MDD. There will be a further 26-week follow-up to monitor longer-term safety. Participants will receive four FMT or placebo enemas over four consecutive days. The primary aims of the study are to evaluate feasibility and safety of FMT as an adjunctive treatment for MDD in adults. Changes in gut microbiota will be assessed as a secondary outcome. Other data will be collected, including changes in depression and anxiety symptoms, and safety parameters. DISCUSSION Modification of the microbiota-gut-brain axis via FMT is a promising potential treatment for MDD, but there are no published rigorous clinical trials evaluating its use. If this study finds that our FMT strategy is safe and feasible, a larger fully powered RCT is planned. Further high-quality research in this field is urgently needed to address unmet need. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry: ACTRN12621000932864.
Collapse
Affiliation(s)
- Jessica E. Green
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, Australia
| | - Amelia J. McGuinness
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, University of Melbourne, Parkville, Australia ,grid.488596.e0000 0004 0408 1792Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Melbourne, Australia ,grid.418025.a0000 0004 0606 5526The Florey Institute for Neuroscience and Mental Health, Parkville, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | - David Castle
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Eugene Athan
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia ,grid.1021.20000 0001 0526 7079School of Medicine, Deakin University, Geelong, Australia
| | - Christopher Hair
- grid.414257.10000 0004 0540 0062Barwon Health, Geelong, Australia
| | | | - Amy Loughman
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Andrew A. Nierenberg
- grid.32224.350000 0004 0386 9924Dauten Family Center for Bipolar Treatment Innovation, Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John F. Cryan
- grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork and APC Microbiome, Cork, Ireland
| | - Mohammadreza Mohebbi
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- grid.414257.10000 0004 0540 0062Deakin University, Food & Mood Centre, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia ,grid.416107.50000 0004 0614 0346Centre for Adolescent Health, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Melbourne, Australia ,grid.1011.10000 0004 0474 1797James Cook University, Townsville, Australia
| |
Collapse
|
13
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|
14
|
Feng Y, Hang L, Zhou Y, Jiang FR, Yuan JY. Gut microbiota plays a role in irritable bowel syndrome by regulating 5-HT metabolism. Shijie Huaren Xiaohua Zazhi 2022; 30:941-949. [DOI: 10.11569/wcjd.v30.i21.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. Brain-gut-microbiota axis dysfunction is an important pathogenic factor for IBS, in which neurotransmitters and gut microbes play key roles. The gastrointestinal tract contains large amounts of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter that has been strongly linked to IBS-related symptoms. More than 90% of serotonin is synthesized in the gut by enterochromaffin cells (ECs), and certain intestinal flora can affect the occurrence and development of IBS by regulating 5-HT and its metabolism. In this review, we will discuss the role of gut microbiota in IBS by regulating 5-HT.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng-Ru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
15
|
A child is not an adult: development of a new in vitro model of the toddler colon. Appl Microbiol Biotechnol 2022; 106:7315-7336. [PMID: 36202936 DOI: 10.1007/s00253-022-12199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Early life is a critical period where gut ecosystem and functions are being established with significant impact on health. For regulatory, technical, and cost reasons, in vitro gut models can be used as a relevant alternative to in vivo assays. An exhaustive literature review was conducted to adapt the Mucosal Artificial Colon (M-ARCOL) to specific physicochemical (pH, transit time, and nutritional composition of ileal effluents) and microbial parameters from toddlers in the age range of 6 months-3 years, resulting in the Tm-ARCOL. In vitro fermentations were performed to validate this newly developed colonic model compared to in vivo toddler data. Results were also compared to those obtained with the classical adult configuration. Fecal samples from 5 toddlers and 4 adults were used to inoculate bioreactors, and continuous fermentations were performed for 8 days. Gut microbiota structure (lumen and mucus-associated microbiota) and functions (gas and short-chain fatty acids) were monitored. Clearly distinct microbial signatures were obtained between the two in vitro conditions, with lower α-diversity indices and higher abundances of infant-related microbial populations (e.g., Bifidobacteriaceae, Enterobacteriaceae) in toddler versus adult conditions. In accordance with in vivo data, methane was found only in adult bioreactors, while higher percentage of acetate but lower proportions of propionate and butyrate was measured in toddlers compared to adults. This new in vitro model will provide a powerful platform for gut microbiome mechanistic studies in a pediatric context, both in nutritional- (e.g., nutrients, probiotics, prebiotics) and health-related (e.g., drugs, enteric pathogens) studies. KEY POINTS: • Development of a novel in vitro colonic model recapitulating the toddler environment. • Specific toddler versus adult digestive conditions are preserved in vitro. • The new model provides a powerful platform for microbiome mechanistic studies.
Collapse
|
16
|
Zhang Y, Saint Fleur A, Feng H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota. Gut Microbes 2022; 14:2052698. [PMID: 35319337 PMCID: PMC8959509 DOI: 10.1080/19490976.2022.2052698] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the most prevalent pathogen of nosocomial diarrhea. In the United States, over 450,000 cases of C. difficile infection (CDI), responsible for more than 29,000 deaths, are reported annually in recent years. Because of the emergence of hypervirulent strains and strains less susceptible to vancomycin and fidaxomicin, new therapeutics other than antibiotics are urgently needed. The gut microbiome serves as one of the first-line defenses against C. difficile colonization. The use of antibiotics causes gut microbiota dysbiosis and shifts the status from colonization resistance to infection. Hence, novel CDI biotherapeutics capable of reconstituting normal gut microbiota have become a focus of drug development in this field.
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD21201, United States
| |
Collapse
|
17
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
18
|
Hoozemans J, de Brauw M, Nieuwdorp M, Gerdes V. Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites 2021; 11:353. [PMID: 34072995 PMCID: PMC8227414 DOI: 10.3390/metabo11060353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing, as are other manifestations of metabolic syndrome such as obesity and type 2 diabetes. NAFLD is currently the number one cause of chronic liver disease worldwide. The pathophysiology of NAFLD and disease progression is poorly understood. A potential contributing role for gut microbiome and metabolites in NAFLD is proposed. Currently, bariatric surgery is an effective therapy to prevent the progression of NAFLD and other manifestations of metabolic syndrome such as obesity and type 2 diabetes. This review provides an overview of gut microbiome composition and related metabolites in individuals with NAFLD and after bariatric surgery. Causality remains to be proven. Furthermore, the clinical effects of bariatric surgery on NAFLD are illustrated. Whether the gut microbiome and metabolites contribute to the metabolic improvement and improvement of NAFLD seen after bariatric surgery has not yet been proven. Future microbiome and metabolome research is necessary for elucidating the pathophysiology and underlying metabolic pathways and phenotypes and providing better methods for diagnostics, prognostics and surveillance to optimize clinical care.
Collapse
Affiliation(s)
- Jacqueline Hoozemans
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Maurits de Brauw
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Internal Medicine, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands
| |
Collapse
|