1
|
Strandell K, Videholm S, Tornevi A, Björmsjö M, Silfverdal SA. Increased risk of bacterial pneumonia before and after respiratory syncytial virus infection in young children. Acta Paediatr 2024. [PMID: 39193847 DOI: 10.1111/apa.17405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
AIM The burden of respiratory disease is great among children. This study aimed to examine the temporal relationship between hospitalisation for respiratory syncytial virus (RSV) and bacterial pneumonia. METHODS A Swedish population-based cohort was created by combining data from the Swedish Medical Birth Register, the National Inpatient Register, the Cause of Death Register, the Total Population Register, and the Longitudinal Integration Database for Health Insurance and Labour Market Studies. Children born between 1998 and 2015 were included and followed for 2 years. We examined the temporal relationship between RSV hospitalisation and bacterial pneumonia using piecewise exponential models. RESULTS The final cohort comprised 1 641 747 children, 48.5% were females. There were 23 632 RSV and 4722 bacterial pneumonia hospitalisations, with mean age of 137.8 and 424.2 days, respectively. RSV hospitalisation was associated with bacterial pneumonia with an adjusted incidence rate ratio (aIRR) of 3.18. The risk was highest in the first month after RSV hospitalisation, aIRR 11.19. The risk of bacterial pneumonia was elevated for 4 months after RSV hospitalisation and before RSV hospitalisation. CONCLUSION We found an increased risk for bacterial pneumonia hospitalisation in children hospitalised for RSV both before and after RSV hospitalisation, indicating a bidirectional relationship.
Collapse
Affiliation(s)
- Karin Strandell
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | - Samuel Videholm
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | - Andreas Tornevi
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Maria Björmsjö
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | | |
Collapse
|
2
|
Wu H, Zhou HY, Zheng H, Wu A. Towards Understanding and Identification of Human Viral Co-Infections. Viruses 2024; 16:673. [PMID: 38793555 PMCID: PMC11126107 DOI: 10.3390/v16050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Viral co-infections, in which a host is infected with multiple viruses simultaneously, are common in the human population. Human viral co-infections can lead to complex interactions between the viruses and the host immune system, affecting the clinical outcome and posing challenges for treatment. Understanding the types, mechanisms, impacts, and identification methods of human viral co-infections is crucial for the prevention and control of viral diseases. In this review, we first introduce the significance of studying human viral co-infections and summarize the current research progress and gaps in this field. We then classify human viral co-infections into four types based on the pathogenic properties and species of the viruses involved. Next, we discuss the molecular mechanisms of viral co-infections, focusing on virus-virus interactions, host immune responses, and clinical manifestations. We also summarize the experimental and computational methods for the identification of viral co-infections, emphasizing the latest advances in high-throughput sequencing and bioinformatics approaches. Finally, we highlight the challenges and future directions in human viral co-infection research, aiming to provide new insights and strategies for the prevention, control, diagnosis, and treatment of viral diseases. This review provides a comprehensive overview of the current knowledge and future perspectives on human viral co-infections and underscores the need for interdisciplinary collaboration to address this complex and important topic.
Collapse
Affiliation(s)
- Hui Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China;
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China;
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| |
Collapse
|
3
|
Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Rodríguez Fernandez R, Kestler M, Bouza E. Respiratory syncytial virus: A new era. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:134-148. [PMID: 38205560 PMCID: PMC10945101 DOI: 10.37201/req/147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Respiratory syncytial virus (RSV) is a major public health problem that has undergone significant changes in recent years. First of all, it has become easier to diagnose with highly reliable and rapidly available confirmatory tests. This has led to a better understanding of its epidemiology and RSV has gone from being a disease of the pediatric age group, severe only in infants and immunosuppressed children, to being a common disease in people of all ages, particularly important in patients of advanced age or with immunosuppressive diseases. Recent therapeutic and prophylactic advances, both with long-lasting monoclonal antibodies and vaccines, are another reason for satisfaction. For these reasons, the COVID and Emerging Pathogens Committee of the Illustrious Official College of Physicians of Madrid (ICOMEM) has considered it pertinent to review this subject in the light of new knowledge and new resources for dealing with this infection. We have formulated a series of questions that we believe will be of interest not only to members of the College but also to any non-expert in this subject, with a particular focus on the situation of RSV infection in Spain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
4
|
Boattini M, Almeida A, Comini S, Bianco G, Cavallo R, Costa C. From Forgotten Pathogen to Target for New Vaccines: What Clinicians Need to Know about Respiratory Syncytial Virus Infection in Older Adults. Viruses 2024; 16:531. [PMID: 38675874 PMCID: PMC11053843 DOI: 10.3390/v16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is increasingly recognized as being implicated in acute illness in older adults, with a significant weight in hospitalizations for respiratory illness and death. By means of a best-evidence review, this paper aims to investigate whether RSV can be considered a forgotten pathogen in older patients, looking at trends in the literature volume and exploring possible epidemiological and clinical features underlying the focus given to it. We then present an assessment of its disease burden and present and future strategies for its reduction, particularly in light of the recent availability of new vaccines.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - André Almeida
- Department of Internal Medicine 4, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-024 Lisbon, Portugal;
- NOVA Medical School, Universidade Nova de Lisboa, Centro Clínico Académico de Lisboa, 1169-056 Lisbon, Portugal
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, 73100 Lecce, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|
5
|
Gadali KE, Rafya M, El Mansouri AE, Maatallah M, Vanderlee A, Mehdi A, Neyts J, Jochmans D, De Jonghe S, Benkhalti F, Sanghvi YS, Taourirte M, Lazrek HB. Design, synthesis, and molecular modeling studies of novel 2-quinolone-1,2,3-triazole-α-aminophosphonates hybrids as dual antiviral and antibacterial agents. Eur J Med Chem 2024; 268:116235. [PMID: 38377828 DOI: 10.1016/j.ejmech.2024.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
With the aim to identify new antiviral agents with antibacterial properties, a series of 2-quinolone-1,2,3-triazole derivatives bearing α-aminophosphonates was synthesized and characterized by 1H NMR, 13C NMR, 31P NMR, single crystal XRD and HRMS analyses. These compounds were examined against five RNA viruses (YFV, ZIKV, CHIKV, EV71 and HRV) from three distinct families (Picornaviridae, Togaviridae and Flaviviridae) and four bacterial strains (S. aureus, E. feacalis, E. coli and P. aeruginosa). The α-aminophosphonates 4f, 4i, 4j, 4k, 4p and 4q recorded low IC50 values of 6.8-10.91 μM, along with elevated selectivity indices ranging from 2 to more than 3, particularly against YFV, CHIKV and HRV-B14. Besides, the synthesized compounds were generally more sensitive toward Gram-positive bacteria, with the majority of them displaying significant potency against E. feacalis. Specifically, an excellent anti-enterococcus activity was obtained by compound 4q with MIC and MBC values of 0.03 μmol/mL, which were 8.7 and 10 times greater than those of the reference drugs ampicillin and rifampicin, respectively. Also, compounds 4f, 4p and 4q showed potent anti-staphylococcal activity with MIC values varying between 0.11 and 0.13 μmol/mL, compared to 0.27 μmol/mL for ampicillin. The results from DFT and molecular docking simulations were in agreement with the biological assays, proving the binding capability of hybrids 4f, 4i, 4j, 4k, 4p and 4q with viral and bacterial target enzymes through hydrogen bonds and other non-covalent interactions. The in silico ADME/Tox prediction revealed that these molecules possess moderate to good drug-likeness and pharmacokinetic properties, with a minimal chance of causing liver toxicity or carcinogenic effects.
Collapse
Affiliation(s)
- Khadija El Gadali
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco; Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech 40000, Morocco
| | - Meriem Rafya
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco
| | - Az-Eddine El Mansouri
- University of the Free State Faculty of Natural and Agricultural Sciences Chemistry Department 205 Nelson Mandela, Bloemfontein, 9301, South Africa
| | - Mohamed Maatallah
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech 40000, Morocco
| | - Arie Vanderlee
- Institut Européen des Membranes, IEM, UMR 5635, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Ahmad Mehdi
- ICGM, UMR5253 1919, Route de Mende 34293 Montpellier cedex 5, France
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Fatiha Benkhalti
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco
| | - Yogesh S Sanghvi
- Rasayan Inc, 2802 Crystal Ridge Road, Encinitas, CA 92024-6615, USA
| | - Moha Taourirte
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco.
| | - Hassan B Lazrek
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech 40000, Morocco.
| |
Collapse
|
6
|
Nguyen STT, Tran TA, Vo GV. Severe Pneumonia Caused by Respiratory Syncytial Virus and Adenovirus in Children from 2 to 24 Months at Children's Hospital 1 in Ho Chi Minh City, Vietnam. Viruses 2024; 16:410. [PMID: 38543775 PMCID: PMC10975604 DOI: 10.3390/v16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 05/23/2024] Open
Abstract
In Vietnam, due to the lack of facilities to detect respiratory viruses from patients' specimens, there are only a few studies on the detection of viral pathogens causing pneumonia in children, especially respiratory syncytial virus (RSV) and adenovirus (Adv). Here, we performed a cross-sectional descriptive prospective study on 138 children patients from 2 to 24 months old diagnosed with severe pneumonia hospitalized at the Respiratory Department of Children's Hospital 1 from November 2021 to August 2022. The number of patients selected in this study was based on the formula n = ([Z(1 - α/2)]2 × P [1 - P])/d2, with α = 0.05, p = 0.5, and d = 9%, and the sampling technique was convenient sampling until the sample size was met. A rapid test was used to detect RSV and Adv from the nasopharyngeal swabs and was conducted immediately after the patient's hospitalization. Laboratory tests were performed, medical history interviews were conducted, and nasotracheal aspirates were collected for multiplex real-time PCR (MPL-rPCR) to detect viral and bacterial pathogens. The results of the rapid test and the MPL-rPCR in the detection of both pathogens were the same at 31.9% (44/138) for RSV and 8.7% (7/138) for Adv, respectively. Using MPL-rPCR, the detection rate was 21% (29/138) for bacterial pathogens, 68.8% (95/138) for bacterial-viral co-infections, and 6.5% (9/138) for viral pathogens. The results showed few distinctive traits between RSV-associated and Adv-associated groups, and the Adv group children were more prone to bacterial infection than those in the RSV group. In addition, the Adv group experienced a longer duration of treatment and a higher frequency of re-hospitalizations compared to the RSV group. A total of 100% of Adv infections were co-infected with bacteria, while 81.82% of RSV co-infected with bacterial pathogens (p = 0.000009). This study might be one of the few conducted in Vietnam aimed at identifying viral pathogens causing severe pneumonia in children.
Collapse
Affiliation(s)
- Suong Thi Thu Nguyen
- School of Medicine, Vietnam National University—Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 710000, Vietnam
- Vietnam National University—Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Tuan Anh Tran
- School of Medicine, Vietnam National University—Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 710000, Vietnam
- Children’s Hospital 1, Ho Chi Minh City 710000, Vietnam
| | - Giau Van Vo
- School of Medicine, Vietnam National University—Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 710000, Vietnam
- Vietnam National University—Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
7
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Brown S, Evans SJ, Burgum MJ, Meldrum K, Herridge J, Akinbola B, Harris LG, Jenkins R, Doak SH, Clift MJD, Wilkinson TS. An In Vitro Model to Assess Early Immune Markers Following Co-Exposure of Epithelial Cells to Carbon Black (Nano)Particles in the Presence of S. aureus: A Role for Stressed Cells in Toxicological Testing. Biomedicines 2024; 12:128. [PMID: 38255233 PMCID: PMC10813740 DOI: 10.3390/biomedicines12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The exposure of human lung and skin to carbon black (CB) is continuous due to its widespread applications. Current toxicological testing uses 'healthy' cellular systems; however, questions remain whether this mimics the everyday stresses that human cells are exposed to, including infection. Staphylococcus aureus lung and skin infections remain prevalent in society, and include pneumonia and atopic dermatitis, respectively, but current in vitro toxicological testing does not consider infection stress. Therefore, investigating the effects of CB co-exposure in 'stressed' infected epithelial cells in vitro may better approximate true toxicity. This work aims to study the impact of CB exposure during Staphylococcus aureus infection stress in A549 (lung) and HaCaT (skin) epithelial cells. Physicochemical characterisation of CB confirmed its dramatic polydispersity and potential to aggregate. CB significantly inhibited S. aureus growth in cell culture media. CB did not induce cytokines or antimicrobial peptides from lung and skin epithelial cells, when given alone, but did reduce HaCaT and A549 cell viability to 55% and 77%, respectively. In contrast, S. aureus induced a robust interleukin (IL)-8 response in both lung and skin epithelial cells. IL-6 and human beta defensin (hβD)-2 could only be detected when cells were stimulated with S. aureus with no decreases in cell viability. However, co-exposure to CB (100 µg/mL) and S. aureus resulted in significant inhibition of IL-8 (compared to S. aureus alone) without further reduction in cell viability. Furthermore, the same co-exposure induced significantly more hβD-2 (compared to S. aureus alone). This work confirms that toxicological testing in healthy versus stressed cells gives significantly different responses. This has significant implications for toxicological testing and suggests that cell stresses (including infection) should be included in current models to better represent the diversity of cell viabilities found in lung and skin within a general population. This model will have significant application when estimating CB exposure in at-risk groups, such as factory workers, the elderly, and the immunocompromised.
Collapse
Affiliation(s)
- Scott Brown
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Stephen J. Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Michael J. Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Jack Herridge
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Blessing Akinbola
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Llinos G. Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Rowena Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Shareen H. Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Martin J. D. Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| |
Collapse
|
9
|
Sun YL, Zhao PP, Zhu CB, Li XM, Yuan B. Qingfei Formula Protects against Human Respiratory Syn cytial Virus-induced Lung Inflammatory Injury by Regulating the M APK Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:969-983. [PMID: 37605417 PMCID: PMC11165710 DOI: 10.2174/1386207326666230821121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Qingfei formula (QF) is an empirical formula that shows good clinical efficacy in treating human respiratory syncytial virus pneumonia (RSVP). However, the underlying mechanism remains unclear. This study explores the possible pharmacological actions of QF in RSVP treatment. METHODS We used a network pharmacology approach to identify the active ingredients of QF, forecast possible therapeutic targets, and analyze biological processes and pathways. Molecular docking simulation was used to evaluate the binding capability of active ingredients and therapeutic targets. Finally, in vivo experiments confirmed the reliability of network pharmacology-based prediction of underlying mechanisms. RESULTS The study identified 92 potential therapeutic targets and corresponding 131 active ingredients. Enrichment analysis showed that QF downregulated the MAPK signaling pathway and suppressed the inflammatory injury to the lungs induced by the RSV virus. Molecular docking simulations demonstrated that the core active ingredients of QF could stably bind to genes associated with the MAPK signaling pathway. QF had a protective effect against pneumonia in RSV-infected mice. The QF group exhibited a significant reduction in the levels of inflammatory mediators, interleukin- 6 (IL-6), interleukin-8 (CXCL8, IL-8), and P-STAT3, compared to the RSV-induced group. The QF group showed remarkably inhibited MAPK1+3(P-ERK1+2) and MAPK8(P-JNK) protein expression. CONCLUSION The current study showed that QF downregulated the MAPK signaling pathway, which inhibited pulmonary inflammation triggered by RSV infection. This study recommends the appropriate use of QF in the clinical management of RSVP.
Collapse
Affiliation(s)
- Ya-Lei Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Pei-Pei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Cheng-Bi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xin-Min Li
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| |
Collapse
|
10
|
Morgan N, Buys H, Muloiwa R. RSV infection in children hospitalised with severe lower respiratory tract infection in a low-middle-income setting: A cross-sectional observational study. PLoS One 2023; 18:e0291433. [PMID: 37708173 PMCID: PMC10501652 DOI: 10.1371/journal.pone.0291433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Low- and middle-income countries carry the largest burden of Respiratory syncytial virus (RSV) disease, with most deaths occurring in these settings. This study aimed to investigate the burden of RSV disease in South African children hospitalised with lower respiratory tract infection (LRTI), with specific reference to incidence, risk factors, and co-infections. METHODS A database from a previous prospective study containing demographic, laboratory and clinical data on children hospitalised with LRTIs in Cape Town, South Africa, was used. A nasopharyngeal swab (NP) and induced sputum (IS) were tested for RSV PCR. Descriptive statistics were used to characterise the study population, and a multivariable analysis of risk factors and co-infections was done. RESULTS RSV was detected in 142 (30.9%; 95% CI 26.7-35.3) of the included 460 study children with LRTI. The median age of RSV-positive children was 4.6 (IQR 2.4-9.7) months compared to RSV-negative children of 10.5 (IQR 4.4-21.3) months, P = <0.001. Most cases occurred in autumn and winter with 126 (89%) cases over this period. IS demonstrated greater sensitivity for RSV diagnosis with 135 cases (95.1%) detected on IS and 57 cases (40.1%) identified on NP; P<0.001. The median length of hospital stay was 3.3 (SD 4.2) days in the RSV positive group and 2.7 (SD 3.3) days in the RSV negative group; P<0.001. The median number of detected viral pathogens was 1 (IQR 0-2) in RSV-positive children (when RSV was excluded from the count) compared to 2 (IQR 2-3) in RSV negative children; P<0.001. The presence of RSV was independently associated with a reduction in the frequency of most viruses tested for on PCR. CONCLUSIONS RSV is common in children hospitalised with LRTI and mainly affects younger children. There is an urgent need to find an effective vaccine to prevent RSV pneumonia in children worldwide, especially in LMICs that carry the greatest burden of disease.
Collapse
Affiliation(s)
- Nicole Morgan
- Department of Paediatrics & Child Health, University of Cape Town, Cape Town, South Africa
- Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
| | - Heloise Buys
- Department of Paediatrics & Child Health, University of Cape Town, Cape Town, South Africa
- Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
| | - Rudzani Muloiwa
- Department of Paediatrics & Child Health, University of Cape Town, Cape Town, South Africa
- Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
| |
Collapse
|
11
|
Pinky L, DeAguero JR, Remien CH, Smith AM. How Interactions during Viral-Viral Coinfection Can Shape Infection Kinetics. Viruses 2023; 15:1303. [PMID: 37376603 PMCID: PMC10301061 DOI: 10.3390/v15061303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory viral infections are a leading global cause of disease with multiple viruses detected in 20-30% of cases, and several viruses simultaneously circulating. Some infections with unique viral copathogens result in reduced pathogenicity, while other viral pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV), followed by influenza A virus (IAV) after 3 days. The results suggest that IAV reduced the rate of RSV production, while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios that had not been examined experimentally, including a different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight-loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis shows that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to the slower clearance of IAV-infected cells by the other viruses. The improved outcome when IAV followed RV, on the other hand, could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.
Collapse
Affiliation(s)
- Lubna Pinky
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joseph R. DeAguero
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Sun YL, Zhao PP, Zhu CB, Jiang MC, Li XM, Tao JL, Hu CC, Yuan B. Integrating metabolomics and network pharmacology to assess the effects of quercetin on lung inflammatory injury induced by human respiratory syncytial virus. Sci Rep 2023; 13:8051. [PMID: 37198253 DOI: 10.1038/s41598-023-35272-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Quercetin (QR) has significant anti-respiratory syncytial virus (RSV) effects. However, its therapeutic mechanism has not been thoroughly explored. In this study, a lung inflammatory injury model caused by RSV was established in mice. Untargeted lung tissue metabolomics was used to identify differential metabolites and metabolic pathways. Network pharmacology was used to predict potential therapeutic targets of QR and analyze biological functions and pathways modulated by QR. By overlapping the results of the metabolomics and the network pharmacology analyses, the common targets of QR that were likely to be involved in the amelioration of RSV-induced lung inflammatory injury by QR were identified. Metabolomics analysis identified 52 differential metabolites and 244 corresponding targets, while network pharmacology analysis identified 126 potential targets of QR. By intersecting these 244 targets with the 126 targets, hypoxanthine-guanine phosphoribosyltransferase (HPRT1), thymidine phosphorylase (TYMP), lactoperoxidase (LPO), myeloperoxidase (MPO), and cytochrome P450 19A1 (CYP19A1) were identified as the common targets. The key targets, HPRT1, TYMP, LPO, and MPO, were components of purine metabolic pathways. The present study demonstrated that QR effectively ameliorated RSV-induced lung inflammatory injury in the established mouse model. Combining metabolomics and network pharmacology showed that the anti-RSV effect of QR was closely associated with purine metabolism pathways.
Collapse
Affiliation(s)
- Ya-Lei Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei-Pei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Bi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Xin-Min Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-Lei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chan-Chan Hu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
13
|
Pinky L, DeAguero JR, Remien CH, Smith AM. How Interactions During Viral-Viral Coinfection Can Shape Infection Kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535744. [PMID: 37066297 PMCID: PMC10104040 DOI: 10.1101/2023.04.05.535744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Respiratory virus infections are a leading cause of disease worldwide with multiple viruses detected in 20-30% of cases and several viruses simultaneously circulating. Some infections with viral copathogens have been shown to result in reduced pathogenicity while other virus pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV) followed by influenza A virus (IAV) after 3 days. The results suggested that IAV reduced the rate of RSV production while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios not examined experimentally, including different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis showed that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to slower clearance of IAV infected cells by the other viruses. On the contrary, the improved outcome when IAV followed RV could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.
Collapse
|
14
|
Geppe NA, Zaplatnikov AL, Kondyurina EG, Chepurnaya MM, Kolosova NG. The Common Cold and Influenza in Children: To Treat or Not to Treat? Microorganisms 2023; 11:microorganisms11040858. [PMID: 37110281 PMCID: PMC10146091 DOI: 10.3390/microorganisms11040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The common cold, which is mostly caused by respiratory viruses and clinically represented by the symptoms of acute respiratory viral infections (ARVI) with mainly upper respiratory tract involvement, is an important problem in pediatric practice. Due to the high prevalence, socio-economic burden, and lack of effective prevention measures (except for influenza and, partially, RSV infection), ARVI require strong medical attention. The purpose of this descriptive literature review was to analyze the current practical approaches to the treatment of ARVI to facilitate the choice of therapy in routine practice. This descriptive overview includes information on the causative agents of ARVI. Special attention is paid to the role of interferon gamma as a cytokine with antiviral and immunomodulatory effects on the pathogenesis of ARVI. Modern approaches to the treatment of ARVI, including antiviral, pathogenesis-directed and symptomatic therapy are presented. The emphasis is on the use of antibody-based drugs in the immunoprophylaxis and immunotherapy of ARVI. The data presented in this review allow us to conclude that a modern, balanced and evidence-based approach to the choice of ARVI treatment in children should be used in clinical practice. The published results of clinical trials and systematic reviews with meta-analyses of ARVI in children allow us to conclude that it is possible and expedient to use broad-spectrum antiviral drugs in complex therapy. This approach can provide an adequate response of the child’s immune system to the virus without limiting the clinical possibilities of using only symptomatic therapy.
Collapse
|
15
|
Tonetti FR, Tomokiyo M, Fukuyama K, Elean M, Moyano RO, Yamamuro H, Shibata R, Quilodran-Vega S, Kurata S, Villena J, Kitazawa H. Post-immunobiotics increase resistance to primary respiratory syncytial virus infection and secondary pneumococcal pneumonia. Benef Microbes 2023; 14:209-221. [PMID: 37128181 DOI: 10.3920/bm2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-β, IFN-γ, interleukin(IL) - 1β, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-β, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.
Collapse
Affiliation(s)
- F Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - M Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - K Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - M Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - R Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - H Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - R Shibata
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - S Quilodran-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Avenida Vicente Méndez 595, 3801061 Chillán, Chile
| | - S Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - J Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - H Kitazawa
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| |
Collapse
|
16
|
Raya Tonetti F, Clua P, Fukuyama K, Marcial G, Sacur J, Marranzino G, Tomokiyo M, Vizoso-Pinto G, Garcia-Cancino A, Kurata S, Kitazawa H, Villena J. The Ability of Postimmunobiotics from L. rhamnosus CRL1505 to Protect against Respiratory Syncytial Virus and Pneumococcal Super-Infection Is a Strain-Dependent Characteristic. Microorganisms 2022; 10:2185. [PMID: 36363777 PMCID: PMC9694915 DOI: 10.3390/microorganisms10112185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2023] Open
Abstract
Previously, we demonstrated that the non-viable strain Lacticaseibacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulated the respiratory innate antiviral immune response triggered by Toll-like receptor (TLR)-3 activation in infant mice, improving the resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In this work, we evaluated the effect of other non-viable L. rhamnosus strains and their peptidoglycans on the respiratory immune response and their impact on primary and secondary respiratory infections. In addition, the duration of the protective effect induced by NV1505 and PG1505 as well as their ability to protect against different Streptococcus pneumoniae serotypes were evaluated. Our results showed that among the five selected L. rhamnosus strains (CRL1505, CRL498, CRL576, UCO25A and IBL027), NV1505 and NVIBL027 improved the protection against viral and pneumococcal infections by modulating the respiratory immune response. Of note, only the PG1505 presented immunomodulatory activities when compared with the other purified peptidoglycans. Studies on alveolar macrophages showed that NV1505 and PG1505 differentially modulated the expression of IL-6, IFN-γ, IFN-β, TNF-α, OAS1, RNAseL and IL-27 genes in response to RSV infection, and IL-6, IFN-γ, IL-1β, TNF-α, CCL2, CXCL2, CXCL10 and IL-27 in response to pneumococcal challenge. Furthermore, we demonstrated that NV1505 and PG1505 treatments protected mice against secondary pneumococcal pneumonia produced by different serotypes of S. pneumoniae until 30 days after stimulation with poly(I:C). This work advances the characterization of the protective effect of NV1505 and PG1505 by demonstrating that they increase resistance against the pneumococcal serotypes 3, 6B, 14 and 19F, with an effect that lasts up to 30 days after the primary viral inflammation. The results also confirm that the immunomodulatory properties of NV1505 and PG1505 are unique and are not shared by other members of this species, and suggest the existence of a capacity to stimulate trained immunity in alveolar macrophages.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Patricia Clua
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Guillermo Marcial
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucuman 4000, Argentina
| | - Gabriela Marranzino
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), San Miguel de Tucuman 4000, Argentina
| | - Mikado Tomokiyo
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucuman 4000, Argentina
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion 4030000, Chile
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
17
|
Bhar A, Gierse LC, Meene A, Wang H, Karte C, Schwaiger T, Schröder C, Mettenleiter TC, Urich T, Riedel K, Kaderali L. Application of a maximal-clique based community detection algorithm to gut microbiome data reveals driver microbes during influenza A virus infection. Front Microbiol 2022; 13:979320. [PMID: 36338082 PMCID: PMC9630851 DOI: 10.3389/fmicb.2022.979320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Influenza A Virus (IAV) infection followed by bacterial pneumonia often leads to hospitalization and death in individuals from high risk groups. Following infection, IAV triggers the process of viral RNA replication which in turn disrupts healthy gut microbial community, while the gut microbiota plays an instrumental role in protecting the host by evolving colonization resistance. Although the underlying mechanisms of IAV infection have been unraveled, the underlying complex mechanisms evolved by gut microbiota in order to induce host immune response following IAV infection remain evasive. In this work, we developed a novel Maximal-Clique based Community Detection algorithm for Weighted undirected Networks (MCCD-WN) and compared its performance with other existing algorithms using three sets of benchmark networks. Moreover, we applied our algorithm to gut microbiome data derived from fecal samples of both healthy and IAV-infected pigs over a sequence of time-points. The results we obtained from the real-life IAV dataset unveil the role of the microbial families Ruminococcaceae, Lachnospiraceae, Spirochaetaceae and Prevotellaceae in the gut microbiome of the IAV-infected cohort. Furthermore, the additional integration of metaproteomic data enabled not only the identification of microbial biomarkers, but also the elucidation of their functional roles in protecting the host following IAV infection. Our network analysis reveals a fast recovery of the infected cohort after the second IAV infection and provides insights into crucial roles of Desulfovibrionaceae and Lactobacillaceae families in combating Influenza A Virus infection. Source code of the community detection algorithm can be downloaded from https://github.com/AniBhar84/MCCD-WN.
Collapse
Affiliation(s)
- Anirban Bhar
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Claudia Karte
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | | | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
19
|
Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The Microbiome as Part of the Contemporary View of Tuberculosis Disease. Pathogens 2022; 11:pathogens11050584. [PMID: 35631105 PMCID: PMC9147979 DOI: 10.3390/pathogens11050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
The study of the microbiome has changed our overall perspective on health and disease. Although studies of the lung microbiome have lagged behind those on the gastrointestinal microbiome, there is now evidence that the lung microbiome is a rich, dynamic ecosystem. Tuberculosis is one of the oldest human diseases, it is primarily a respiratory infectious disease caused by strains from the Mycobacterium tuberculosis Complex. Even today, during the COVID-19 pandemic, it remains one of the principal causes of morbidity and mortality worldwide. Tuberculosis disease manifests itself as a dynamic spectrum that ranges from asymptomatic latent infection to life-threatening active disease. The review aims to provide an overview of the microbiome in the tuberculosis setting, both in patients’ and animal models. We discuss the relevance of the microbiome and its dysbiosis, and how, probably through its interaction with the immune system, it is a significant factor in tuberculosis’s susceptibility, establishment, and severity.
Collapse
Affiliation(s)
- Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico;
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Néstor Alvarado-Peña
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Eugenia Silva-Herzog
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de Mexico-Instituto Nacional de Medicina Genomica (UNAM-INMEGEN), Mexico City 14610, Mexico
- Correspondence:
| |
Collapse
|
20
|
Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses 2021; 13:v13091725. [PMID: 34578306 PMCID: PMC8472850 DOI: 10.3390/v13091725] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory tract infections constitute a significant public health problem, with a therapeutic arsenal that remains relatively limited and that is threatened by the emergence of antiviral and/or antibiotic resistance. Viral–bacterial co-infections are very often associated with the severity of these respiratory infections and have been explored mainly in the context of bacterial superinfections following primary influenza infection. This review summarizes our current knowledge of the mechanisms underlying these co-infections between respiratory viruses (influenza viruses, RSV, and SARS-CoV-2) and bacteria, at both the physiological and immunological levels. This review also explores the importance of the microbiome and the pathological context in the evolution of these respiratory tract co-infections and presents the different in vitro and in vivo experimental models available. A better understanding of the complex functional interactions between viruses/bacteria and host cells will allow the development of new, specific, and more effective diagnostic and therapeutic approaches.
Collapse
|