1
|
Qin XS, Wang H. Central nervous system infection with Hantavirus in a solid organ transplant patient. Transpl Infect Dis 2024; 26:e14352. [PMID: 39526705 DOI: 10.1111/tid.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Xing-Song Qin
- Intensive Care Unit, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongyu Wang
- Intensive Care Unit, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Mikhel IB, Bakhrushina EO, Petrusevich DA, Nedorubov AA, Appolonova SA, Moskaleva NE, Demina NB, Kosenkova SI, Parshenkov MA, Krasnyuk II, Krasnyuk II. Development of an Intranasal In Situ System for Ribavirin Delivery: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:1125. [PMID: 39339163 PMCID: PMC11435039 DOI: 10.3390/pharmaceutics16091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, ribavirin has demonstrated effectiveness in treating glioblastoma through intranasal administration utilizing the nose-to-brain delivery route. Enhancing ribavirin's bioavailability can be achieved by utilizing intranasal stimuli-responsive systems that create a gel on the nasal mucosa. The research examined thermosensitive, pH-sensitive, and ion-selective polymers in various combinations and concentrations, chosen in line with the current Quality by Design (QbD) approach in pharmaceutical development. Following a thorough assessment of key parameters, the optimal composition of gellan gum at 0.5%, Poloxamer 124 at 2%, and purified water with ribavirin concentration at 100 mg/mL was formulated and subjected to in vivo testing. Through experiments on male rats, the nose-to-brain penetration mechanism of the active pharmaceutical ingredient (API) was elucidated, showcasing drug accumulation in the olfactory bulbs and brain.
Collapse
Affiliation(s)
- Iosif B. Mikhel
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Elena O. Bakhrushina
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Danila A. Petrusevich
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Andrey A. Nedorubov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Svetlana A. Appolonova
- Centre of Biopharmaceutical Analysis and Metabolomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (S.A.A.); (N.E.M.)
| | - Natalia E. Moskaleva
- Centre of Biopharmaceutical Analysis and Metabolomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (S.A.A.); (N.E.M.)
| | - Natalia B. Demina
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Svetlana I. Kosenkova
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Mikhail A. Parshenkov
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Ivan I. Krasnyuk
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Ivan I. Krasnyuk
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| |
Collapse
|
3
|
Almanaa TN, Mubarak A, Sajjad M, Ullah A, Hassan M, Waheed Y, Irfan M, Khan S, Ahmad S. Design and validation of a novel multi-epitopes vaccine against hantavirus. J Biomol Struct Dyn 2024; 42:4185-4195. [PMID: 37261466 DOI: 10.1080/07391102.2023.2219324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Hantavirus is a member of the order Bunyavirales and an emerging global pathogen. Hantavirus infections have affected millions of people globally based on available epidemiological data and research studies. Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are the two main human diseases associated with hantavirus infections. Hence, efforts are required to develop a potent vaccine against the pathogen. The only vaccine that is in use for hantavirus is an inactivated virus vaccine, "Hantavax", but it failed to produce neutralizing antibodies. Vaccine development is of much importance in dealing with the surge of hantavirus globally. In this study, hantavirus five proteins (N protein, G1 and G2, L protein, and non-structural proteins) were used in NetCTL 1.2 program to predict T-cell epitopes. To predict major histocompatibility complex (MHC) binding alleles, an immune epitope database (IEDB) was used. All predicted epitopes were then investigated for different immunoinformatics analyses such as antigenicity and toxicity analyses. The good water-soluble, non-toxic, probable antigenic, and DRB*0101 binder was selected. A multi-epitopes-based vaccine designing was then done where linkers were used to connect the shortlisted epitopes. In addition, an adjuvant molecule was supplementary to the multi-epitopes peptide to improve the vaccine's immunogenic potential. The final vaccine construct's three-dimensional structure was modeled by ab initio method. The vaccine molecule was then evaluated for its binding potential with TLR-3 immune receptor, which is key for its recognition and processing by the host immune system. Docking studies were performed using HADDOCK software. The best-docked complex was selected and visualized for intermolecular binding and interactions using UCSF Chimera 1.16 software. The findings revealed that the designed vaccine might be a potential vaccine against hantavirus and can be used in experimental animal model testings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Sajjad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Nusshag C, Schreiber P, Uhrig J, Zeier M, Krautkrämer E. In-cell Western assay to quantify infection with pathogenic orthohantavirus Puumala virus in replication kinetics and antiviral drug testing. Virus Res 2023; 337:199230. [PMID: 37777116 PMCID: PMC10590686 DOI: 10.1016/j.virusres.2023.199230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) represents a serious zoonotic disease caused by orthohantaviruses in Eurasia. A specific antiviral therapy is not available. HFRS is characterized by acute kidney injury (AKI) with often massive proteinuria. Infection of kidney cells may contribute to the clinical picture. However, orthohantaviral replication in kidney cells is not well characterized. Therefore, we aimed to perform a reliable high-throughput assay that allows the quantification of infection rates and testing of antiviral compounds in different cell types. We quantified relative infection rates of Eurasian pathogenic Puumala virus (PUUV) by staining of nucleocapsid protein (N protein) in an in-cell Western (ICW) assay. Vero E6 cells, derived from the African green monkey and commonly used in viral cell culture studies, and the human podocyte cell line CIHP (conditionally immortalized human podocytes) were used to test the ICW assay for replication kinetics and antiviral drug testing. Quantification of infection by ICW revealed reliable results for both cell types, as shown by their correlation with immunofluorescence quantification results by counting infected cells. Evaluation of antiviral efficacy of ribavirin by ICW assay revealed differences in the toxicity (TC) and inhibitory concentrations (IC) between Vero E6 cells and podocytes. IC5O of ribavirin in podocytes is about 12-fold lower than in Vero E6 cells. In summary, ICW assay together with relevant human target cells represents an important tool for the study of hantaviral replication and drug testing.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Josephine Uhrig
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany.
| |
Collapse
|
5
|
Chen RX, Gong HY, Wang X, Sun MH, Ji YF, Tan SM, Chen JM, Shao JW, Liao M. Zoonotic Hantaviridae with Global Public Health Significance. Viruses 2023; 15:1705. [PMID: 37632047 PMCID: PMC10459939 DOI: 10.3390/v15081705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome or hantavirus pulmonary syndrome (HCPS/HPS) in many countries. Some hantaviruses infect wild or domestic animals without causing severe symptoms. Rodents, shrews, and bats are reservoirs of various mammalian hantaviruses. Recent years have witnessed significant advancements in the study of hantaviruses including genomics, taxonomy, evolution, replication, transmission, pathogenicity, control, and patient treatment. Additionally, new hantaviruses infecting bats, rodents, shrews, amphibians, and fish have been identified. This review compiles these advancements to aid researchers and the public in better recognizing this zoonotic virus family with global public health significance.
Collapse
Affiliation(s)
- Rui-Xu Chen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Huan-Yu Gong
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Xiu Wang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Ming-Hui Sun
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Yu-Fei Ji
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Su-Mei Tan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Ji-Ming Chen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
6
|
Akram T, Gul I, Parveez Zia M, Hassan A, Khatun A, Shah RA, Ahmad SM, Ganai NA, Chikan NA, Kim WI, Shabir N. Ribavirin inhibits the replication of infectious bursal disease virus predominantly through depletion of cellular guanosine pool. Front Vet Sci 2023; 10:1192583. [PMID: 37601760 PMCID: PMC10433155 DOI: 10.3389/fvets.2023.1192583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The antiviral activity of different mutagens against single-stranded RNA viruses is well documented; however, their activity on the replication of double-stranded RNA viruses remains unexplored. This study aims to investigate the effect of different antivirals on the replication of a chicken embryo fibroblast-adapted Infectious Bursal Disease virus, FVSKG2. This study further explores the antiviral mechanism utilized by the most effective anti-IBDV agent. Methods The cytotoxicity and anti-FVSKG2 activity of different antiviral agents (ribavirin, 5-fluorouracil, 5-azacytidine, and amiloride) were evaluated. The virus was serially passaged in chicken embryo fibroblasts 11 times at sub-cytotoxic concentrations of ribavirin, 5-fluorouracil or amiloride. Further, the possible mutagenic and non-mutagenic mechanisms utilized by the most effective anti-FVSKG2 agent were explored. Results and Discussion Ribavirin was the least cytotoxic on chicken embryo fibroblasts, followed by 5-fluorouracil, amiloride and 5-azacytidine. Ribavirin inhibited the replication of FVSKG2 in chicken embryo fibroblasts significantly at concentrations as low as 0.05 mM. The extinction of FVSKG2 was achieved during serial passage of the virus in chicken embryo fibroblasts at ≥0.05 mM ribavirin; however, the emergence of a mutagen-resistant virus was not observed until the eleventh passage. Further, no mutation was observed in 1,898 nucleotides of the FVSKG2 following its five passages in chicken embryo fibroblasts in the presence of 0.025 mM ribavirin. Ribavarin inhibited the FVSKG2 replication in chicken embryo fibroblasts primarily through IMPDH-mediated depletion of the Guanosine Triphosphate pool of cells. However, other mechanisms like ribavirin-mediated cytokine induction or possible inhibition of viral RNA-dependent RNA polymerase through its interaction with the enzyme's active sites enhance the anti-IBDV effect. Ribavirin inhibits ds- RNA viruses, likely through IMPDH inhibition and not mutagenesis. The inhibitory effect may, however, be augmented by other non-mutagenic mechanisms, like induction of antiviral cytokines in chicken embryo fibroblasts or interaction of ribavirin with the active sites of RNA-dependent RNA polymerase of the virus.
Collapse
Affiliation(s)
- Towseef Akram
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Irfan Gul
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Mahrukh Parveez Zia
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| | - Amreena Hassan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Amina Khatun
- Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Nazir Ahmad Ganai
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Naveed Anjum Chikan
- Division of Computational Biology, Daskdan Innovations Pvt. Ltd., Srinagar, India
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
7
|
Wang M, Zhou Y, Wang Y, Du Y, Guo Z, Ma L, Zhang H, Wang Y. Correlation analysis of CD8 + cell overexpression and prognosis of hemorrhagic fever with renal syndrome-a case-control study. Front Pediatr 2023; 11:1168205. [PMID: 37215590 PMCID: PMC10196636 DOI: 10.3389/fped.2023.1168205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Background Hemorrhagic fever with Renal Syndrome (HFRS) is an infectious disease caused by Hantavirus with fever, hemorrhage and acute kidney injury (AKI) as clinical characteristics. The research on the etiology and pathogenesis of diseases has become a focus of attention. However, there are few related medical studies in children with HFRS. The prognosis of the children with HFRS remains to be explored. Objectives We explored risk factors in children with HFRS and summarize sensitive indicators that are conducive to the prognosis of the disease. Methods We designed a case-control study and recruited 182 HFRS pediatric patients (2014.01-2022.08). They were divided into two groups according to the severity of disease, including the control group(158 cases with mild and moderate subgroup)and the observation group (24 cases with severe and critical subgroup). Risk factors influencing prognosis were analyzed by binary logistic regression. The cutoff value, sensitivity and specificity of the risk factors prediction were calculated by receiver operating characteristic (ROC) and Yoden index. Results Lymphocyte subsets characteristics analysis showed that in observation group the indexes were decreased in lymphocyte, T lymphocytes (CD3)+, helper/inducible T lymphocytes (CD4+)/inhibition/cytotoxic T cells (CD8+), B lymphocytes (CD19+); and the elevated index was CD8+, the difference were all significant between two groups. (P < 0.05). With death as the primary outcome, it was found that the serum CD8+ (odds ratio [OR] 2.91, 95% confidence interval [CI] 1.65, 4.00; P < 0.01) was risk factor and significantly associated with mortality. The cutoff value of the serum CD8+ was 845 × 106/L, the sensitivity and specificity were 78.5%, 85.4%. With complications as the secondary outcomes, the serum CD8+ (OR 2.69, 95% CI 1.15, 4.88; P < 0.01) was found to be risk factors. The cutoff of the serum CD8+ was 690 × 106/L, the sensitivity and specificity were 69.3%, 75.1% respectively. Conclusion CD8+ may be significantly correlated with the severity and prognosis of HFRS in children.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Wang
- Correspondence: Yi Wang Hua Zhang
| |
Collapse
|
8
|
Sehgal A, Mehta S, Sahay K, Martynova E, Rizvanov A, Baranwal M, Chandy S, Khaiboullina S, Kabwe E, Davidyuk Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023; 15:v15020561. [PMID: 36851775 PMCID: PMC9966805 DOI: 10.3390/v15020561] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed.
Collapse
Affiliation(s)
- Ayushi Sehgal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sanya Mehta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ekaterina Martynova
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sara Chandy
- Childs Trust Medical Research Foundation, Kanchi Kamakoti Childs Trust Hospital, Chennai 600034, India
| | - Svetlana Khaiboullina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Emmanuel Kabwe
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan Research Institute of Epidemiology and Microbiology, Kazan 420012, Russia
| | - Yuriy Davidyuk
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence:
| |
Collapse
|
9
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
10
|
Virus-Associated Nephropathies: A Narrative Review. Int J Mol Sci 2022; 23:ijms231912014. [PMID: 36233315 PMCID: PMC9569621 DOI: 10.3390/ijms231912014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
While most viral infections cause mild symptoms and a spontaneous favorable resolution, some can lead to severe or protracted manifestations, specifically in immunocompromised hosts. Kidney injuries related to viral infections may have multiple causes related to the infection severity, drug toxicity or direct or indirect viral-associated nephropathy. We review here the described virus-associated nephropathies in order to guide diagnosis strategies and treatments in cases of acute kidney injury (AKI) occurring concomitantly with a viral infection. The occurrence of virus-associated nephropathy depends on multiple factors: the local epidemiology of the virus, its ability to infect renal cells and the patient's underlying immune response, which varies with the state of immunosuppression. Clear comprehension of pathophysiological mechanisms associated with a summary of described direct and indirect injuries should help physicians to diagnose and treat viral associated nephropathies.
Collapse
|
11
|
Blasiak A, Truong ATL, Wang P, Hooi L, Chye DH, Tan SB, You K, Remus A, Allen DM, Chai LYA, Chan CEZ, Lye DCB, Tan GYG, Seah SGK, Chow EKH, Ho D. IDentif.AI-Omicron: Harnessing an AI-Derived and Disease-Agnostic Platform to Pinpoint Combinatorial Therapies for Clinically Actionable Anti-SARS-CoV-2 Intervention. ACS NANO 2022; 16:15141-15154. [PMID: 35977379 DOI: 10.1021/acsnano.2c06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomedicine-based and unmodified drug interventions to address COVID-19 have evolved over the course of the pandemic as more information is gleaned and virus variants continue to emerge. For example, some early therapies (e.g., antibodies) have experienced markedly decreased efficacy. Due to a growing concern of future drug resistant variants, current drug development strategies are seeking to find effective drug combinations. In this study, we used IDentif.AI, an artificial intelligence-derived platform, to investigate the drug-drug and drug-dose interaction space of six promising experimental or currently deployed therapies at various concentrations: EIDD-1931, YH-53, nirmatrelvir, AT-511, favipiravir, and auranofin. The drugs were tested in vitro against a live B.1.1.529 (Omicron) virus first in monotherapy and then in 50 strategic combinations designed to interrogate the interaction space of 729 possible combinations. Key findings and interactions were then further explored and validated in an additional experimental round using an expanded concentration range. Overall, we found that few of the tested drugs showed moderate efficacy as monotherapies in the actionable concentration range, but combinatorial drug testing revealed significant dose-dependent drug-drug interactions, specifically between EIDD-1931 and YH-53, as well as nirmatrelvir and YH-53. Checkerboard validation analysis confirmed these synergistic interactions and also identified an interaction between EIDD-1931 and favipiravir in an expanded range. Based on the platform nature of IDentif.AI, these findings may support further explorations of the dose-dependent drug interactions between different drug classes in further pre-clinical and clinical trials as possible combinatorial therapies consisting of unmodified and nanomedicine-enabled drugs, to combat current and future COVID-19 strains and other emerging pathogens.
Collapse
Affiliation(s)
- Agata Blasiak
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Anh T L Truong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - De Hoe Chye
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Shi-Bei Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Kui You
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Alexandria Remus
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - David Michael Allen
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Division of Infectious Disease, Department of Medicine, National University Hospital, 119074, Singapore
| | - Louis Yi Ann Chai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Division of Infectious Disease, Department of Medicine, National University Hospital, 119074, Singapore
| | - Conrad E Z Chan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
- National Centre for Infectious Diseases (NCID), Jalan Tan Tock Seng, 308442, Singapore
| | - David C B Lye
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- National Centre for Infectious Diseases (NCID), Jalan Tan Tock Seng, 308442, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, 308433, Singapore
| | - Gek-Yen G Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Shirley G K Seah
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 117510, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| |
Collapse
|
12
|
Zhang Y, Huang Y, Xu Y. Antiviral Treatment Options for Severe Fever with Thrombocytopenia Syndrome Infections. Infect Dis Ther 2022; 11:1805-1819. [PMID: 36136218 PMCID: PMC9510271 DOI: 10.1007/s40121-022-00693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus that produces severe fever with thrombocytopenia syndrome (SFTS). It is widespread in Japan, South Korea, and Central and Eastern China. The epidemic has developed rapidly through China in recent years. SFTS cases have been reported in 25 provinces in China, mainly distributed in rural areas in mountainous and hilly areas. The infection has a high case fatality rate and no specific treatments or vaccinations. Therefore, early diagnosis and treatment of SFTS infection is important to survival and disease control. In this article, we provide an overview on different aspects of SFTS with an emphasis on management, to explore the current treatment and prophylactic measures further.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, China.
| |
Collapse
|
13
|
Zhang Y, Huang Y, Xu Y. Infection of Severe Fever with Thrombocytopenia Syndrome Virus as a Cause of a Child's Fever of Unknown Origin: A Case Report. Infect Drug Resist 2022; 15:4871-4875. [PMID: 36051658 PMCID: PMC9426678 DOI: 10.2147/idr.s378558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne disease resulted from SFTSV. It is found in Japan, South Korea, Central, and Eastern China. With the increasing prevalence of SFTS and the rapid spread of the SFTS virus (SFTSV) vector, it is obvious that this virus has pandemic potential and poses an imminent public health concern. Case Presentation We depict SFTS in a child from Anhui Province and conduct a review of all reported pediatric cases in China, which is an endemic area for SFTS. From 2011 to 2021, ten SFTS pediatric cases confirmed by RT-PCR were reported, with no child dying. Although SFTS cases in adolescents and children are uncommon, the reported literature showed that clinical symptoms in adolescents and children were milder than in adults. Conclusion To better understand this emerging disease, we described the clinical and epidemiological attributes of SFTS. We suggest that the possibility of SFTSV infection in children with seasonal and virus-related acute febrile diseases should be considered in major endemic areas.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
14
|
Abdelnabi R, Foo CS, Kaptein SJF, Zhang X, Do TND, Langendries L, Vangeel L, Breuer J, Pang J, Williams R, Vergote V, Heylen E, Leyssen P, Dallmeier K, Coelmont L, Chatterjee AK, Mols R, Augustijns P, De Jonghe S, Jochmans D, Weynand B, Neyts J. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine 2021; 72:103595. [PMID: 34571361 PMCID: PMC8461366 DOI: 10.1016/j.ebiom.2021.103595] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. Methods We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. Findings When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. Interpretation: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. Funding: stated in the acknowledgment.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Caroline S Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Thuc Nguyen Dan Do
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Lana Langendries
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Laura Vangeel
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Judith Breuer
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Juanita Pang
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Rachel Williams
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Valentijn Vergote
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | | - Raf Mols
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery & Disposition, Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery & Disposition, Box 921, 3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Division of Translational Cell and Tissue Research, B-3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium; Global Virus Network, GVN, Baltimore, MD 21201, USA
| |
Collapse
|