1
|
Tagele SB, Gachomo EW. Evaluating the effects of mefenoxam on taxonomic and functional dynamics of nontarget fungal communities during carrot cultivation. Sci Rep 2024; 14:9867. [PMID: 38684826 PMCID: PMC11058253 DOI: 10.1038/s41598-024-59587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Ridomil Gold SL (45.3% a.i. mefenoxam) is a widely used chemical fungicide for the control of oomycetes. However, its impact on fungal communities remains unexplored. Therefore, the goal of this study was to examine the effects of mefenoxam on the temporal dynamics of fungal taxonomic and functional diversities during carrot cultivation under four treatment groups: mefenoxam application with and without Pythium inoculation, and untreated control groups with and without Pythium inoculation. Our in vitro sensitivity assay showed that the maximum recommended concentration of mefenoxam, 0.24 ppm, did not suppress the mycelial growth of P. irregulare. At 100 ppm, mycelial growth was only reduced by 11.4%, indicating that the isolate was resistant to mefenoxam. MiSeq sequencing data revealed transient taxonomic variations among treatments 2 weeks post-treatment. Mortierella dominated the fungal community in the mefenoxam-Pythium combination treatment, as confirmed through PCR using our newly designed Mortierella-specific primers. Conversely, mefenoxam-Pythium combination had adverse effects on Penicillium, Trichoderma, and Fusarium, and decrease the overall alpha diversity. However, these compositional changes gradually reverted to those observed in the control by the 12th week. The predicted ecological functions of fungal communities in all Pythium and mefenoxam treatments shifted, leading to a decrease in symbiotrophs and plant pathogen functional groups. Moreover, the community-level physiological profiling approach, utilizing 96-well Biolog FF microplates, showed discernible variations in the utilization of 95 diverse carbon sources among the treatments. Notably, arbutin, L-arabinose, Tween 80, and succinamic acid demonstrated a strong positive association with Mortierella. Our findings demonstrate that a single application of mefenoxam at its recommended rate triggers substantial taxonomic and functional shifts in the soil fungal community. Considering this impact, the conventional agricultural practice of repeated mefenoxam application is likely to exert considerable shifts on the soil ecosystem that may affect agricultural sustainability.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
2
|
McLaughlin MS, Roy M, Abbasi PA, Carisse O, Yurgel SN, Ali S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:3822. [PMID: 38005718 PMCID: PMC10675458 DOI: 10.3390/plants12223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides-if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. This article reviews the conventional and alternative methods available to manage fungal pathogens, discusses their strengths and weaknesses, and identifies potential areas for future research.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 4H5, Canada
| | - Maria Roy
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Pervaiz A. Abbasi
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| | - Odile Carisse
- Saint-Jean-sur-Richelieu Research Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| |
Collapse
|
3
|
Báez ME, Sarkar B, Peña A, Vidal J, Espinoza J, Fuentes E. Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121545. [PMID: 37004862 DOI: 10.1016/j.envpol.2023.121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The fungicide chlorothalonil (CTL) and its metabolite hydroxy chlorothalonil (OH-CTL) constitute a risk of soil and water contamination, highlighting the need to find suitable soil remediation methods for these compounds. Surfactants can promote the bioavailability of organic compounds for enhanced microbial degradation, but the performance depends on soil and surfactant properties, sorption-desorption equilibria of contaminants and surfactants, and possible adverse effects of surfactants on microorganisms. This study investigated the influence of five surfactants [e.g., Triton X-100 (TX-100), sodium dodecyl sulphate (SDS), hexadecyltrimethylammonium bromide (HDTMA), Aerosol 22 and Tween 80] on the sorption-desorption, degradation, and mobility of CTL and OH-CTL in two volcanic and one non-volcanic soil. Sorption and desorption of fungicides depended on the sorption of surfactants on soils, surfactants' capacity to neutralize the net negative charge of soils, surfactants' critical micellar concentration, and pH of soils. HDTMA was strongly adsorbed on soils, which shifted the fungicide sorption equilibria by increasing the distribution coefficient (Kd) values. Contrarily, SDS and TX-100 lowered CTL and OH-CTL sorption on soils by decreasing the Kd values, which resulted in an efficient extraction of the fungicide compounds from soil. SDS increased the degradation of CTL, especially in the non-volcanic soil (DT50 values were 14 and 7 days in natural and amended soils, with final residues <7% of the initial dose), whereas TX-100 enabled an early start and sustenance of OH-CTL degradation in all soils. CTL and OH-CTL stimulated soil microbial activities without noticeable deleterious effects of the surfactants. SDS and TX-100 also reduced the vertical transport of OH-CTL in soils. Results of this study could be extended to soils in other regions of the world because the tested soils represent widely different physical, chemical, and biological properties.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Jorge Vidal
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Jeannette Espinoza
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Edwar Fuentes
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| |
Collapse
|
4
|
Changes to Soil Microbiome Resulting from Synergetic Effects of Fungistatic Compounds Pyrimethanil and Fluopyram in Lowbush Blueberry Agriculture, with Nine Fungicide Products Tested. Microorganisms 2023; 11:microorganisms11020410. [PMID: 36838375 PMCID: PMC9968141 DOI: 10.3390/microorganisms11020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023] Open
Abstract
Lowbush blueberries (Vaccinium spp.) are a crop of economic significance to Atlantic Canada, Quebec, and Maine. The fruit is produced by the management of naturally occurring plant populations. The plants have an intimate relationship with the soil microbiome and depend on it for their health and productivity. Fungicides are an important tool in combatting disease pressure but pose a potential risk to soil health. In this study, amplicon sequencing was used to determine the effects of six fungistatic compounds both alone and in combination via nine commercially available fungicide products on the bacterial and fungal microbiomes associated with lowbush blueberries and to study whether these effects are reflected in crop outcomes and plant phenotypes. One fungicide, Luna Tranquility, a combination of fluopyram and pyrimethanil, was found to impart significant effects to fungal and bacterial community structure, fungal taxonomic abundances, and bacterial functions relative to control. The two fungicides which contained fluopyram and pyrimethanil as single ingredients (Velum Prime and Scala, respectively) did not induce significant changes in any of these regards. These results suggest the possibility that these microbiome changes are the result of the synergistic effect of fluopyram and pyrimethanil on soil microbiomes. While these results suggest a significant disruption to the soil microbiome, no corresponding changes to crop development and outcomes were noted. Ultimately, the majority of the fungicides analysed in this trial did not produce significant changes to the soil microbiome relative to the untreated group (UTG). However, one of the fungicide treatments, Luna Tranquility, did produce significant changes to the soil ecosystem that could have longer-term effects on soil health and its future use may merit additional investigation onto its ecotoxicological properties.
Collapse
|
5
|
Vasilchenko AV, Poshvina DV, Semenov MV, Timofeev VN, Iashnikov AV, Stepanov AA, Pervushina AN, Vasilchenko AS. Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:660. [PMID: 36771744 PMCID: PMC9919142 DOI: 10.3390/plants12030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture as a pest control strategy. Despite the benefits of pesticides on crop yields, the persistence of chemical residues in soil has an unintended impact on non-targeted microorganisms. In the present study, we evaluated the potential adverse effects of a mixture of fungicides (difenoconazole, epoxiconazole, and kresoxim-methyl) on soil fungal and bacterial communities, as well as the manifestation of wheat diseases. In the fungicide-treated soil, the Shannon indices of both fungal and bacterial communities decreased, whereas the Chao1 indices did not differ compared to the control soil. Among bacterial taxa, the relative abundances of Arthrobacter and Sphingomonas increased in fungicide-treated soil due to their ability to utilize fungicides and other toxic compounds. Rhizopus and plant-beneficial Chaetomium were the dominant fungal genera, with their prevalence increasing by 2-4 times in the fungicide-treated soil. The genus Fusarium, which includes phytopathogenic species, which are notably responsible for root rot, was the most abundant taxon in each of the two conditions but its relative abundance was two times lower in fungicide-treated soils, consistent with a lower level of disease incidence in plants. The prediction of metabolic pathways revealed that the soil bacterial community had a high potential for degrading various pollutants, and the soil fungal community was in a state of recovery after the application of quinone outside inhibitor (QoI) fungicides. Fungicide-treated soil was characterized by an increase in soil microbial carbon, compared with the control soil. Collectively, the obtained results suggest that the application of difenoconazole, epoxiconazole, and kresoxim-methyl is an effective approach for pest control that does not pose a hazard for the soil ecosystem in the short term. However, it is necessary to carry out additional sampling to take into account the spatio-temporal impact of this fungicide mixture on the functional properties of the soil.
Collapse
Affiliation(s)
- Anastasia V. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Mikhail V. Semenov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Laboratory of Soil Carbon and Microbial Ecology, Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| | - Vyacheslav N. Timofeev
- Scientific Research Institute of Agriculture for Northern Trans-Ural Region—Branch of Tyumen Scientific Centre SB RAS, 625003 Tyumen, Russia
| | - Alexandr V. Iashnikov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Artyom A. Stepanov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Arina N. Pervushina
- International Integrated Research Laboratory for the Study of Climate Change, Land Use and Biodiversity, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| |
Collapse
|
6
|
Xue P, Liu X, Zhao L, Zhang J, He Z. Integrating high-throughput sequencing and metabolomics to investigate the stereoselective responses of soil microorganisms to chiral fungicide cis-epoxiconazole. CHEMOSPHERE 2022; 300:134198. [PMID: 35248591 DOI: 10.1016/j.chemosphere.2022.134198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The use of the chiral triazole fungicide cis-epoxiconazole in agricultural production continues to increase; however, little is known about the stereoselective and toxic responses of soil microorganisms to cis-epoxiconazole in the soil microenvironment. High-throughput sequencing and metabolomics were integrated to investigate the stereoselective response of soil microbial community structure, metabolic profile to cis-epoxiconazole exposure, and the correlation between the microbiomes and different metabolites. Soil microbial community structure and soil metabolic profile were significantly altered and exhibited significant enantioselectivity. The alpha diversity (Chao, Shannon, and Simpson diversity) of bacterial and fungus was not significantly affected, whereas the beta diversity (Bray-Curtis dissimilarity and PLS-DA) of bacterial and fungus was significantly altered in treatment of cis-epoxiconazole and its enantiomers (p-value < 0.05). The variation in bacterial and fungus community structure was the highest under (+)-enantiomer exposure, followed by exposure to racemate and (-)-enantiomer. Soil metabolomic analysis revealed that exposure to high or low doses of cis-epoxiconazole and its enantiomers resulted in different degrees of reprogramming of the soil metabolic pool. The 39 significantly changed metabolites mainly included small molecular organic acids, amino acids and their intermediates, and purine and adenosine intermediates. Six metabolic pathways were significantly disrupted. Different correlation patterns were observed between the significantly altered metabolites and microbes (p-value < 0.05) by Pearson correlation-based analysis. In conclusion, as xenobiotic pollutant, epoxiconazole altered the structure and metabolism of soil microorganisms with significant stereoselectivity mainly driven by 2R, 3S-(+)-cis-epoxiconazole. This study provided a more robust assessment of the risks of epoxiconazole exposure to soil microorganisms. Given the importance of the soil environment in agricultural production, characterization of the soil microbiome and metabolome can provide new insights into the ecological risks posed by exposure to the chiral triazole pesticide cis-epoxiconazole and its enantiomers.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Liuqing Zhao
- SCIEX, Analytical Instrument Trading Co., Ltd., Beijing, 100015, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd., Beijing, 100015, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| |
Collapse
|
7
|
Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol 2022; 106:104040. [DOI: 10.1016/j.fm.2022.104040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
|