1
|
Gentile A, Di Stasio L, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Nissim WG, Labra M, Castiglione S. Antibiotic resistance in urban soils: Dynamics and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 263:120120. [PMID: 39384008 DOI: 10.1016/j.envres.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments.
Collapse
Affiliation(s)
- Annamaria Gentile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Luca Di Stasio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy
| | - Gianmaria Oliva
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy.
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, (MI), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, (SA), Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
2
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135790. [PMID: 39276744 DOI: 10.1016/j.jhazmat.2024.135790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 105 to 1.6 × 106 copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 105 copies/m3, which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
3
|
Fan Y, Chen K, Dai Z, Peng J, Wang F, Liu H, Xu W, Huang Q, Yang S, Cao W. Land use/cover drive functional patterns of bacterial communities in sediments of a subtropical river, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174564. [PMID: 38972401 DOI: 10.1016/j.scitotenv.2024.174564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The bacterial community in sediment serves as an important indicator for assessing the environmental health of river ecosystems. However, the response of bacterial community structure and function in river basin sediment to different land use/cover changes has not been widely studied. To characterize changes in the structure, composition, and function of bacterial communities under different types of land use/cover, we studied the bacterial communities and physicochemical properties of the surface sediments of rivers. Surface sediment in cropland and built-up areas was moderately polluted with cadmium and had high nitrogen and phosphorus levels, which disrupted the stability of bacterial communities. Significant differences in the α-diversity of bacterial communities were observed among different types of land use/cover. Bacterial α-diversity and energy sources were greater in woodlands than in cropland and built-up areas. The functional patterns of bacterial communities were shown that phosphorus levels and abundances of pathogenic bacteria and parasites were higher in cropland than in the other land use/cover types; Urban activities have resulted in the loss of the denitrification function and the accumulation of nitrogen in built-up areas, and bacteria in forested and agricultural areas play an important role in nitrogen degradation. Differences in heavy metal and nutrient inputs driven by land use/cover result in variation in the composition, structure, and function of bacterial communities.
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Kan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Huibo Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, Fujian 361102, China
| | - Quanjia Huang
- Xiamen Environmental Monitoring Station, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
4
|
Kayiranga A, Isabwe A, Yao H, Shangguan H, Coulibaly JLK, Breed M, Sun X. Distribution patterns of soil bacteria, fungi, and protists emerge from distinct assembly processes across subcommunities. Ecol Evol 2024; 14:e11672. [PMID: 38988351 PMCID: PMC11236429 DOI: 10.1002/ece3.11672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Environmental change exerts a profound effect on soil microbial domains-including bacteria, fungi, and protists-that each perform vital ecological processes. While these microbial domains are ubiquitous and extremely diverse, little is known about how they respond to environmental changes in urban soil ecosystems and what ecological processes shape them. Here we investigated the community assembly processes governing bacteria, fungi, and protists through the lens of four distinct subcommunities: abundant, conditionally rare, conditionally abundant, and rare taxa. We show that transient taxa, including the conditionally rare and conditionally rare or abundant taxa, were the predominant subcommunities. Deterministic processes (e.g., environmental filtering) had major roles in structuring all subcommunities of fungi, as well as conditionally rare and abundant protists. Stochastic processes had strong effects in structuring all subcommunities of bacteria (except rare taxa) and conditionally rare protists. Overall, our study underscores the importance of complementing the traditional taxonomy of microbial domains with the subcommunity approach when investigating microbial communities in urban soil ecosystems.
Collapse
Affiliation(s)
- Alexis Kayiranga
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Justin Louis Kafana Coulibaly
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Martin Breed
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| |
Collapse
|
5
|
Yiallouris A, Pana ZD, Marangos G, Tzyrka I, Karanasios S, Georgiou I, Kontopyrgia K, Triantafyllou E, Seidel D, Cornely OA, Johnson EO, Panagiotou S, Filippou C. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024; 18:100720. [PMID: 38699438 PMCID: PMC11064618 DOI: 10.1016/j.onehlt.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Zoi D. Pana
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | | | | | | | | | | | | | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Elizabeth O. Johnson
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Stavros Panagiotou
- School of Medicine, European University, Cyprus
- Division of Medical Education, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Charalampos Filippou
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| |
Collapse
|
6
|
Pulikova E, Ivanov F, Gorovtsov A, Dudnikova T, Zinchenko V, Minkina T, Mandzhieva S, Barahov A, Sherbakov A, Sushkova S. Microbiological status of natural and anthropogenic soils of the Taganrog Bay coast at different levels of combined pollution with heavy metals and PAHs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9373-9390. [PMID: 36436180 DOI: 10.1007/s10653-022-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The effect of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) pollution on the microbiological status of soils on the coast of the Taganrog Bay and adjacent areas was studied. The content of total and exchangeable forms of HMs, the content of 16 priority PAHs and the abundance of several groups of culturable microorganisms was determined, namely copiotrophic, prototrophic, aerobic spore-forming bacteria, actinomycetes, molds and yeasts. The content of total and exchangeable forms of HMs in urban coastal soils in industrial zone significantly exceeded that in non-urban soils. The maximum concentrations of total forms of Mn, Cr, Ni, Cu, Zn, Pb and Cd are 1821, 871, 143, 89, 1390, 317 and 10 mg/kg, respectively. The median value of the total content of 16 PAHs in urban soils is 3 times higher than in the soils of natural areas and reached 4309 ng/g. The lowest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were found in the soils of industrial zone: 6.8, 13.8 and 0.63 million CFU g-1 dry soil, respectively. The largest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were recorded in the soils of natural areas-72.5, 136 and 5.73 million CFU g-1 dry soil, respectively. It was found that the abundance of copiotrophs, prototrophs, and aerobic spore-forming bacteria is more affected by the urbanization of coastal soils including the pollution of HMs and PAHs. Other groups of microorganisms (actinomycetes, molds and yeasts) turned out to be more resistant to anthropogenic factors.
Collapse
Affiliation(s)
| | - Fedor Ivanov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Andrey Gorovtsov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | - Anatoly Barahov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Alexey Sherbakov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090.
| |
Collapse
|
7
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
8
|
Christel A, Dequiedt S, Chemidlin-Prevost-Bouré N, Mercier F, Tripied J, Comment G, Djemiel C, Bargeot L, Matagne E, Fougeron A, Mina Passi JB, Ranjard L, Maron PA. Urban land uses shape soil microbial abundance and diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163455. [PMID: 37062324 DOI: 10.1016/j.scitotenv.2023.163455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/03/2023]
Abstract
Soil microbial biodiversity provides many useful services in cities. However, the ecology of microbial communities in urban soils remains poorly documented, and studies are required to better predict the impact of urban land use. We characterized microbial communities (archea/bacteria and fungi) in urban soils in Dijon (Burgundy, France). Three main land uses were considered - public leisure, traffic, and urban agriculture - sub-categorized in sub-land uses according to urban indexes and management practices. Microbial biomass and diversity were determined by quantifying and high-throughput sequencing of soil DNA. Variation partitioning analysis was used to rank soil physicochemical characteristics and land uses according to their relative contribution to the variation of soil microbial communities. Urban soils in Dijon harbored high levels of microbial biomass and diversity that varied according to land uses. Microbial biomass was 1.8 times higher in public leisure and traffic sites than in urban agriculture sites. Fungal richness increased by 25 % in urban agriculture soils, and bacterial richness was lower (by 20 %) in public leisure soils. Partitioning models explained 25.7 %, 46.2 % and 75.6 % of the variance of fungal richness, bacterial richness and microbial biomass, respectively. The organic carbon content and the C/N ratio were the best predictors of microbial biomass, whereas soil bacterial diversity was mainly explained by soil texture and land use. Neither metal trace elements nor polycyclic aromatic hydrocarbons contents explained variations of microbial communities, probably due to their very low concentration in the soils. The microbial composition results highlighted that leisure sites represented a stabilized habitat favoring specialized microbial groups and microbial plant symbionts, as opposed to urban agriculture sites that stimulated opportunistic populations able to face the impact of agricultural practices. Altogether, our results provide evidence that there is scope for urban planners to drive soil microbial diversity through sustainable urban land use and associated management practices.
Collapse
Affiliation(s)
- Amélie Christel
- AgroParisTech, 75732 Paris, France; Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Samuel Dequiedt
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | | | - Florian Mercier
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Julie Tripied
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Gwendoline Comment
- Platforme GenoSol, INRAE-Université de Bourgogne, CMSE, 21000 Dijon, France
| | - Christophe Djemiel
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | | | - Eric Matagne
- AGARIC-IG, 144 Rue Rambuteau, 71000 Macon, France
| | - Agnès Fougeron
- Jardin de l'Arquebuse Mairie de Dijon, CS 73310, 21033 Dijon Cedex, France
| | | | - Lionel Ranjard
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Alain Maron
- Agroécologie, Institut Agro, INRAE, Univ. Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
9
|
Medriano CA, Chan A, De Sotto R, Bae S. Different types of land use influence soil physiochemical properties, the abundance of nitrifying bacteria, and microbial interactions in tropical urban soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161722. [PMID: 36690092 DOI: 10.1016/j.scitotenv.2023.161722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities have led to unexpected changes in microbial community composition and structure, resulting in an interruption of soil ecological roles in urban environments. We questioned the impact of the different land use (e.g., agricultural, industrial, recreational, coastal, and residential areas) on the distribution of nitrifying bacteria and microbial interaction in tropical soil. The dominant nitrifying bacteria were ammonia-oxidizing archaea (AOA) in tropical soils up to 107 copies/g of soil, while the abundance of ammonia-oxidizing bacteria (AOB) was significantly higher in agricultural soil only. Comammox (CMX) was ubiquitous up to 105 copies/g of tropical soil, indicating that CMX might share ecological niches with AOA and considerably contribute to nitrification in urban areas. The most abundant phylum is Actinobacteria, accounting for 27-34 % relative abundance among most land-use types, but Proteobacteria was observed as the most prevalent phylum in agricultural soil. The physicochemical properties (e.g., soil pH and nutrient contents) of different types of land use influenced microbial richness and diversities associated with nitrogen cycling. Multivariate analysis disclosed that agricultural soils were distinct from other land uses because of the concentrations of nutrients and heavy metals and the abundance of microorganisms associated with nitrogen cycles. Also, the microbial co-occurrence network revealed that agricultural soils were a highly interconnected network of the microbial community. In this study, C: N ratio might have a significant impact on ecological networks and the abundance of nitrogen-related taxa, which could influence microbial interactions and complexity in tropical soils. Thus, the impact of anthropogenic land use induced changes in microbial composition and diversity, co-occurrence network, and nitrifying bacteria, leading to potential transformation in ecological services of tropical soils and nitrogen cycling in urban environments.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
| | - Amabel Chan
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
| | - Ryan De Sotto
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
| | - Sungwoo Bae
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore.
| |
Collapse
|
10
|
Burnett MS, Schütte UM, Harms TK. WIDESPREAD CAPACITY FOR DENITRIFICATION ACROSS A BOREAL FOREST LANDSCAPE. BIOGEOCHEMISTRY 2022; 158:215-232. [PMID: 36186670 PMCID: PMC9518932 DOI: 10.1007/s10533-022-00895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/18/2022] [Indexed: 06/16/2023]
Abstract
A warming climate combined with frequent and severe fires cause permafrost to thaw, especially in the region of discontinuous permafrost, where soil temperatures may only be a few degrees below 0 °C. Soil thaw releases carbon (C) and nitrogen (N) into the actively cycling pools, and whereas C emissions following permafrost thaw are well documented, the fates of N remain unclear. Denitrification could release N from ecosystems as nitrous oxide (N2O) or nitrogen gas (N2), but the contributions of these processes to the high-latitude N cycle remain uncertain. We quantified microbial capacity for denitrification and N2O production in boreal soils, lakes, and streams using anoxic C- and N-amended assays, and assessed correlates of denitrifying enzyme activity (DEA) in Interior Alaska. Riparian soils and stream sediments supported the highest potential rates of denitrification, upland soils were intermediate, and lakes supported lower rates, whereas deep permafrost soils supported little denitrification. Time since fire had no effect on denitrification potential in upland soils. Across all landscape positions, DEA was negatively correlated with ammonium pools. Within each landscape position, potential rate of denitrification increased with soil or sediment organic matter content. Widespread N loss to denitrification in boreal forests could constrain the capacity for N-limited primary producers to maintain C stocks in soils following permafrost thaw.
Collapse
Affiliation(s)
- Melanie S. Burnett
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
- Department of Earth and Planetary Science, McGill University, Montréal, Quebec H3A 2A7, Canada
| | - Ursel M.E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
| | - Tamara K. Harms
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
| |
Collapse
|