1
|
Peng J, Wang D, He P, Wei P, Zhang L, Lan W, Li Y, Chen W, Zhao Z, Jiang L, Zhou L. Exploring the environmental influences and community assembly processes of bacterioplankton in a subtropical coastal system: Insights from the Beibu Gulf in China. ENVIRONMENTAL RESEARCH 2024; 259:119561. [PMID: 38972345 DOI: 10.1016/j.envres.2024.119561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Due to rapid urbanization, the Beibu Gulf, a semi-closed gulf in the northwestern South China Sea, faces escalating ecological and environmental threats. Understanding the assembly mechanisms and driving factors of bacterioplankton in the Beibu Gulf is crucial for preserving its ecological functions and services. In the present study, we investigated the spatiotemporal dynamics of bacterioplankton communities and their assembly mechanisms in the Beibu Gulf based on the high-throughput sequencing of the bacterial 16 S rRNA gene. Results showed significantly higher bacterioplankton diversity during the wet season compared to the dry season. Additionally, distinct seasonal variations in bacterioplankton composition were observed, characterized by an increase in Cyanobacteria and Thermoplasmatota and a decrease in Proteobacteria and Bacteroidota during the wet season. Null model analysis revealed that stochastic processes governed bacterioplankton community assembly in the Beibu Gulf, with drift and homogenizing dispersal dominating during the dry and wet seasons, respectively. Enhanced deterministic assembly of bacterioplankton was also observed during the wet season. Redundancy and random forest model analyses identified the physical properties (e.g., temperature) and nutrient content (e.g., nitrate) of water as primary environmental drivers influencing bacterioplankton dynamics. Moreover, variation partitioning and distance-decay of similarity revealed that environmental filtering played a significant role in shaping bacterioplankton variations in this rapidly developed coastal ecosystem. These findings advance our understanding of bacterioplankton assembly in coastal ecosystems and establish a theoretical basis for effective ecological health management amidst ongoing global changes.
Collapse
Affiliation(s)
- Jinxia Peng
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Dapeng Wang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Pingping He
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Pinyuan Wei
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Li Zhang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, 536000, China
| | - Yusen Li
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Wenjian Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Linyuan Jiang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China.
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Li M, Cheng X, Li S, Li B, Ma L, Chen X. Human activities strengthen the influence of deterministic processes in the mechanisms of fish community assembly in tropical rivers of Yunnan, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122131. [PMID: 39121627 DOI: 10.1016/j.jenvman.2024.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Human-induced global alterations have worsened the severe decrease in fish biodiversity in rivers. To successfully reduce the pace of reduction in fish diversity, it is crucial to prioritize the understanding of how human activities impact the processes that shape and maintain fish diversity. Traditional fish survey methods are based on catch collection and morphological identification, which is often time-consuming and ineffective. Hence, these methods are inadequate for conducting thorough and detailed large-scale surveys of fish ecology. The rapid progress in molecular biology techniques has transformed environmental DNA (eDNA) technique into a highly promising method for studying fish ecology. In this work, we conducted the first systematic study of fish diversity and its formation and maintenance mechanism in the Xishuangbanna section of the Lancang River using eDNA metabarcoding. The eDNA metabarcoding detected a total of 159 species of freshwater fishes spanning 13 orders, 34 families, and 99 genera. The fishes in the order cypriniformes were shown to be overwhelmingly dominant. At different intensities of anthropogenic activity, we found differences in fish community composition and assembly. The analysis of the Sloan's neutral community model fitting revealed that stochastic processes were the dominant factor in the shaping of fish communities in the Xishuangbanna section of the Lancang River. We have further confirmed this result by using the phylogenetic normalized stochasticity ratio. Furthermore, our findings indicate that as human activities get more intense, the influence of stochastic processes on the shaping of fish communities decreases, while the influence of deterministic processes eventually becomes more prominent. Finally, we discovered that salinity positively correlated with fish community changes in the high-intensity anthropogenic sample sites, but all environmental factors had little effect on fish community changes in the low-intensity and moderate-intensity anthropogenic sample sites. Our study not only validated the potential application of eDNA metabarcoding for monitoring fish diversity in tropical rivers, but also revealed how fish communities respond to human activities. This knowledge will serve as a solid foundation for the protection of fish resources in tropical rivers.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyitaw 05282, Myanmar; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Mengla, 666303, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Cheng
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Bo Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyitaw 05282, Myanmar; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Mengla, 666303, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xiaoyong Chen
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyitaw 05282, Myanmar; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Mengla, 666303, China.
| |
Collapse
|
3
|
Modenutti B, Martyniuk N, Bastidas Navarro M, Balseiro E. Glacial Influence Affects Modularity in Bacterial Community Structure in Three Deep Andean North-Patagonian Lakes. MICROBIAL ECOLOGY 2023; 86:1869-1880. [PMID: 36735066 DOI: 10.1007/s00248-023-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
We analyze the bacteria community composition and the ecological processes structuring these communities in three deep lakes that receive meltwater from the glaciers of Mount Tronador (North-Patagonia, Argentina). Lakes differ in their glacial connectivity and in their turbidity due to glacial particles. Lake Ventisquero Negro is a recently formed proglacial lake and it is still in contact with the glacier. Lakes Mascardi and Frías lost their glacial connectivity during the Pleistocene-Holocene transition. Total dissolved solid concentration has a significant contribution to the environmental gradient determining the segregation of the three lakes. The newly formed lake Ventisquero Negro conformed a particular bacterial community that seemed to be more related to the microorganisms coming from glacier melting than to the other lakes of the basin. The net relatedness index (NRI) showed that the bacterial community of lake Ventisquero Negro is determined by environmental filtering, while in the other lakes, species interaction would be a more important driver. The co-occurrence network analysis showed an increase in modularity and in the number of modules when comparing Lake Ventisquero Negro with the two large glacier-fed lakes suggesting an increase in heterogeneity. At the same time, the presence of modules with phototrophic bacteria (Cyanobium strains) in lakes Frías and Mascardi would reflect the increase of this functional photosynthetic association. Overall, our results showed that the reduction in ice masses in Patagonia will affect downstream large deep Piedmont lakes losing the glacial influence in their bacterial communities.
Collapse
Affiliation(s)
- Beatriz Modenutti
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Nicolás Martyniuk
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Esteban Balseiro
- Laboratorio de Limnología, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina.
| |
Collapse
|
4
|
Determinants and Assembly Mechanism of Bacterial Community Structure in Ningxia Section of the Yellow River. Microorganisms 2023; 11:microorganisms11020496. [PMID: 36838461 PMCID: PMC9967387 DOI: 10.3390/microorganisms11020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The Yellow River is a valuable resource in the Ningxia Hui Autonomous Region and plays a vital role in local human activities and biodiversity. Bacteria are a crucial component of river ecosystems, but the driving factors and assembly mechanisms of bacterial community structure in this region remain unclear. Herein, we documented the bacterial community composition, determinants, co-occurrence pattern, and assembly mechanism for surface water and sediment. In comparison to sediment, the bacterioplankton community showed significant seasonal variation, as well as less diversity and abundance. The network topology parameters indicated that the sediment bacterial network was more stable than water, but the bacterioplankton network had higher connectivity. In this lotic ecosystem, CODMn, Chl a, and pH affected the structure of the bacterioplankton community, while TP was the primary factor influencing the structure of the sediment bacterial community. The combined results of the neutral community model and the phylogenetic null model indicate that Bacterial communities in both habitats were mainly affected by stochastic processes, with ecological processes dominated by ecological drift for bacterioplankton and dispersal limitation for sediment bacteria. These results provide essential insights into future research on microbial ecology, environmental monitoring, and classified management in the Ningxia section of the Yellow River.
Collapse
|
5
|
Chen AL, Xu FQ, Su X, Zhang FP, Tian WC, Chen SJ, Gou F, Xing ZL, Xiang JX, Li J, Zhao TT. Water microecology is affected by seasons but not sediments: A spatiotemporal dynamics survey of bacterial community composition in Lake Changshou-The largest artificial lake in southwest China. MARINE POLLUTION BULLETIN 2023; 186:114459. [PMID: 36529016 DOI: 10.1016/j.marpolbul.2022.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the correlation between microecology of sediments and water as well as their spatial-temporal variations in Changshou Lake. The results demonstrated that microecology in the lake exhibits spatiotemporal heterogeneity, and microbial diversity of sediments was significantly higher than that of water body. Further, it was found that there was statistically insignificant positive correlation between microecology of sediments and that of water body. PCoA and community structure analysis revealed that the predominant phyla which exhibited significant spatial differences in sediments were Proteobacteria, Actinobacteria and Planctomycetes. While, the distribution of dominant bacteria Actinobacteria and Verrucomicrobia in water body showed significant seasonal differences. Microbial networks analysis indicated that there was a cooperative symbiotic relationship between lake microbial communities. Notably, the same bacterial genus had no significant positive correlation in sediment and water, which suggested that bacteria transport between sediment-water interface does not influence the microecological functions of lake water.
Collapse
Affiliation(s)
- Ai-Ling Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fu-Qing Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fu-Pan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wan-Chao Tian
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shang-Jie Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fang Gou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhi-Lin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Jin-Xin Xiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Juan Li
- Chongqing Academy of Chinese Materia medica, Chongqing 400060, China
| | - Tian-Tao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Shu W, Wang P, Zhao J, Ding M, Zhang H, Nie M, Huang G. Sources and migration similarly determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158216. [PMID: 36028031 DOI: 10.1016/j.scitotenv.2022.158216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Rapid land use change has significantly increased nitrate (NO3-) loading to rivers, leading to eutrophication, and posing water security problems. Determining the sources of NO3- to waters and the underlying influential factors is critical for effectively reducing pollution and better managing water resources. Here, we identified the sources and influencing mechanisms of NO3- in a mixed land-use watershed by integrating stable isotopes (δ15N-NO3- and δ18O-NO3-), molecular biology, water chemistry, and landscape metrics measurements. Weak transformation processes of NO3- were identified in the river, as evinced by water chemistry, isotopes, species compositions, and predicted microbial genes related to nitrogen metabolism. NO3- concentrations were primarily influenced by exogenous inputs (i.e., from soil nitrogen (NS), nitrogen fertilizer (NF), and manure & sewage (MS)). The proportions of NO3- sources seasonally varied. In the wet season, the source contributions followed the order of NS (38.6 %) > NF (31.4 %) > atmospheric deposition (ND, 16.2 %) > MS (13.8 %). In the dry season, the contributions were in the order of MS (39.2 %) > NS (29.2 %) > NF (29 %) > ND (2.6 %). Farmland and construction land were the original factors influencing the spatial distribution of NO3- in the wet and dry seasons, respectively, while slope, basin relief (HD), hypsometric integral (HI), and COHESION, HD were the primary indicators associated with NO3- transport in the wet and dry seasons, respectively. Additionally, spatial scale differences were observed for the effects of landscape structure on NO3- concentrations, with the greatest effect at the 1000-m buffer zone scale in the wet season and at the sub-basin scale in the dry season. This study overcomes the limitation of isotopes in identifying nitrate sources by combining multiple approaches and provides new research perspectives for the determination of nitrate sources and migration in other watersheds.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Minjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
7
|
Wu B, Wang P, Devlin AT, She Y, Zhao J, Xia Y, Huang Y, Chen L, Zhang H, Nie M, Ding M. Anthropogenic Intensity-Determined Assembly and Network Stability of Bacterioplankton Communities in the Le'an River. Front Microbiol 2022; 13:806036. [PMID: 35602050 PMCID: PMC9114710 DOI: 10.3389/fmicb.2022.806036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterioplankton are essential components of riverine ecosystems. However, the mechanisms (deterministic or stochastic processes) and co-occurrence networks by which these communities respond to anthropogenic disturbances are not well understood. Here, we integrated niche-neutrality dynamic balancing and co-occurrence network analysis to investigate the dispersal dynamics of bacterioplankton communities along human activity intensity gradients. Results showed that the lower reaches (where intensity of human activity is high) had an increased composition of bacterioplankton communities which induced strong increases in bacterioplankton diversity. Human activity intensity changes influenced bacterioplankton community assembly via regulation of the deterministic-stochastic balance, with deterministic processes more important as human activity increases. Bacterioplankton molecular ecological network stability and robustness were higher on average in the upper reaches (where there is lower intensity of human activity), but a human activity intensity increase of about 10%/10% can reduce co-occurrence network stability of bacterioplankton communities by an average of 0.62%/0.42% in the dry and wet season, respectively. In addition, water chemistry (especially NO3–-N and Cl–) contributed more to explaining community assembly (especially the composition) than geographic distance and land use in the dry season, while the bacterioplankton community (especially the bacterioplankton network) was more influenced by distance (especially the length of rivers and dendritic streams) and land use (especially forest regions) in the wet season. Our research provides a new perspective of community assembly in rivers and important insights into future research on environmental monitoring and classified management of aquatic ecosystems under the influence of human activity.
Collapse
Affiliation(s)
- Bobo Wu
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Adam Thomas Devlin
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Yuanyang She
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Yang Xia
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yi Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Lu Chen
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|