1
|
González-Quero M, Aguilar-Garrido A, Paniagua-López M, García-Huertas C, Sierra-Aragón M, Blasco B. Physiological Response of Lettuce ( Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3222. [PMID: 39599431 PMCID: PMC11598719 DOI: 10.3390/plants13223222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study focuses on the physiological response of lettuce grown on Technosols designed for the remediation of soils polluted by potentially harmful elements (PHEs: As, Cd, Cu, Fe, Pb, and Zn). Lettuce plants were grown in five treatments: recovered (RS) and polluted soil (PS) as controls, and three Technosols (TO, TS, and TV) consisting of 60% PS mixed with 2% iron sludge, 20% marble sludge, and 18% organic wastes (TO: composted olive waste, TS: composted sewage sludge, and TV: vermicompost of garden waste). The main soil properties and PHE solubility were measured, together with physiological parameters related to phytotoxicity in lettuce such as growth, photosynthetic capacity, oxidative stress, and antioxidant defence. All Technosols improved unfavourable conditions of PS (i.e., neutralised acidity and enhanced OC content), leading to a significant decrease in Cd, Cu, and Zn mobility. Nevertheless, TV was the most effective as the reduction in PHEs mobility was higher. Furthermore, lettuce grown on TV and TO showed higher growth (+90% and +41%) than PS, while no increase in TS. However, lower oxidative stress and impact on photosynthetic rate occurred in all Technosols compared to PS (+344% TV, +157% TO, and +194% TS). This physiological response of lettuce proves that PHE phytotoxicity is reduced by Technosols. Thus, this ecotechnology constitutes a potential solution for soil remediation, with effectiveness of Technosols depending largely on its components.
Collapse
Affiliation(s)
- Mateo González-Quero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Antonio Aguilar-Garrido
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Mario Paniagua-López
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Carmen García-Huertas
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Manuel Sierra-Aragón
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| |
Collapse
|
2
|
Caldeira JB, Correia AA, Branco R, Morais PV. The effect of biopolymer stabilisation on biostimulated or bioaugmented mine residue for potential technosol production. Sci Rep 2024; 14:25583. [PMID: 39462015 PMCID: PMC11513976 DOI: 10.1038/s41598-024-75840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants. This work aims to assess the use of bioleached and stabilised residues from a tungsten mine for technosol production. The first objective was to evaluate mine tailings for their bioleaching potential by biostimulation or bioaugmentation with strain Diaphorobacter polyhydroxybutyrativorans B2A2W2. The second was to evaluate the effect of Portland cement or biopolymers such as Carboxymethyl Cellulose (CMC) or Xanthan Gum (XG) on the stabilisation of bioleached residues. The impact of biopolymers on residues' characteristics, such as metal leaching, number of cultivable microorganisms, compression strength and ecotoxicity was evaluated using flow systems. Over time, bioleached metallic elements decreased, except for iron (Fe). Biostimulated and stabilised residues exhibited similar trends; both CMC and cement showed low leaching rates and viable microorganisms in the same order (106 CFU × ml-1). However, bioaugmented residue stabilised with XG showed 106 CFU × ml-1 viable microorganisms and increased 2.2-fold Fe leaching than BA_Control. CMC addition to bioaugmented residue reduced 5.9-fold Fe leaching and increased 100-fold viable microorganisms. By utilising both biological and engineering approaches to characterise the technosol, this study contributes to advancing knowledge of technosol production. The residues biostimulated and stabilised with CMC produced a material useful for bio-applications, with low toxicity and metal leaching, useful for bio-applications. XG was the best stabiliser for geotechnical engineering applications, with improved compression strength. In conclusion, the study demonstrates the usefulness of biopolymer treatment for residues and emphasises the importance of selecting the appropriate biopolymer for the intended function of technosols.
Collapse
Affiliation(s)
- Joana B Caldeira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| | - António A Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Civil Engineering, Universidade de Coimbra, R. Luís Reis Santos, 3030-788, Coimbra, Portugal
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| | - Paula V Morais
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
3
|
Azevedo-Lopes T, Queiroz HM, Ruiz F, Asensio V, Ferreira AD, Cherubin MR, Ferreira TO. From waste to soil: Technosols made with construction and demolition waste as a nature-based solution for land reclamation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:153-165. [PMID: 38905905 DOI: 10.1016/j.wasman.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Population growth has driven an increased demand for solid construction materials, leading to higher amounts of construction and demolition waste (C&DW). Efficient strategies to manage this waste include reduction, reuse, and recycling. Technosols-soils engineered from recycled waste-can potentially help with environmental challenges. However, there is a critical need to explore the potential of Technosols constructed with C&DW for land reclamation, through the growth of native vegetation. The objective of this study was to investigate this potential by studying two Brazilian native tree species (Guazuma ulmifolia and Piptadenia gonoacantha). Technosols were created using C&DW, with and without organic compost and a liquid biofertilizer. A soil health index (SHI) was applied to evaluate the soil quality regarding physical, chemical, and biological indicators of Technosols compared to a control soil (Ferralsol). The results showed that P. gonoacantha plants presented the same height and total biomass in all treatments, while G. ulmifolia plants exhibited greater height and total biomass when grown in Technosols. The enhanced plant development in the Technosols was primarily associated with higher cation exchangeable capacity and nutrients concentration in plant tissues. Technosols with added compost provided higher fertility and total organic carbon. Additionally, Technosols presented higher SHI (∼0.68) compared to control (∼0.38) for both studied species. Our experiment reveals that construction and demolition waste (C&DW) have significant potential to form healthy Technosols capable of supporting the growth of native Brazilian trees. This approach offers a promising alternative for addressing C&DW disposal challenges while serving as a nature-based solution for land reclamation.
Collapse
Affiliation(s)
- Thayana Azevedo-Lopes
- University of São Paulo-Luiz de Queiroz College of Agriculture (USP-ESALQ), Soil Science Department, Av. Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil
| | - Hermano Melo Queiroz
- Department of Geography, University of São Paulo, Av. Prof. Lineu Prestes, 338, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
| | - Francisco Ruiz
- University of São Paulo-Luiz de Queiroz College of Agriculture (USP-ESALQ), Soil Science Department, Av. Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil
| | - Verónica Asensio
- University of São Paulo-Luiz de Queiroz College of Agriculture (USP-ESALQ), Soil Science Department, Av. Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil; Edafotec SL, Rúa Colón 26, 4° Of. 2, 36201, Vigo, Spain
| | - Amanda Duim Ferreira
- University of São Paulo-Luiz de Queiroz College of Agriculture (USP-ESALQ), Soil Science Department, Av. Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil
| | - Maurício Roberto Cherubin
- University of São Paulo-Luiz de Queiroz College of Agriculture (USP-ESALQ), Soil Science Department, Av. Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil
| | - Tiago Osório Ferreira
- University of São Paulo-Luiz de Queiroz College of Agriculture (USP-ESALQ), Soil Science Department, Av. Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
4
|
Aguilar-Garrido A, Romero-Freire A, Paniagua-López M, Martínez-Garzón FJ, Martín-Peinado FJ, Sierra-Aragón M. Technosols Derived from Mining, Urban, and Agro-Industrial Waste for the Remediation of Metal(loid)-Polluted Soils: A Microcosm Assay. TOXICS 2023; 11:854. [PMID: 37888704 PMCID: PMC10610840 DOI: 10.3390/toxics11100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
This study evaluated the effectiveness of six Technosols designed for the remediation of polluted soils (PS) by metal(loid)s at physicochemical, biological, and ecotoxicological levels and at a microcosm scale. Technosols T1-T6 were prepared by combining PS with a mix of organic and inorganic wastes from mining, urban, and agro-industrial activities. After two months of surface application of Technosols on polluted soils, we analysed the soil properties, metal(loid) concentration in total, soluble and bioavailable fractions, soil enzymatic activities, and the growth responses of Trifolium campestre and Lactuca sativa in both the Technosols and the underlying polluted soils. All Technosols improved the unfavourable conditions of polluted soils by neutralising acidity, increasing the OC, reducing the mobility of most metal(loid)s, and stimulating both the soil enzymatic activities and growths of T. campestre and L. sativa. The origin of organic waste used in the Technosols strongly conditioned the changes induced in the polluted soils; in this sense, the Technosols composed of pruning and gardening vermicompost (T3 and T6) showed greater reductions in toxicity and plant growth than the other Technosols composed with different organic wastes. Thus, these Technosols constitute a potential solution for the remediation of persistent polluted soils that should be applied in large-scale and long-term interventions to reinforce their feasibility as a cost-effective ecotechnology.
Collapse
Affiliation(s)
- Antonio Aguilar-Garrido
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (F.J.M.-G.); (F.J.M.-P.); (M.S.-A.)
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (F.J.M.-G.); (F.J.M.-P.); (M.S.-A.)
| | | | | | | | | |
Collapse
|
5
|
Aguilar-Garrido A, Reyes-Martín MP, Vidigal P, Abreu MM. A Green Solution for the Rehabilitation of Marginal Lands: The Case of Lablab purpureus (L.) Sweet Grown in Technosols. PLANTS (BASEL, SWITZERLAND) 2023; 12:2682. [PMID: 37514296 PMCID: PMC10385650 DOI: 10.3390/plants12142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Reclamation of abandoned mining areas can be a potentially viable solution to tackle three major problems: waste mismanagement, environmental contamination, and growing food demand. This study aims to evaluate the rehabilitation of mining areas into agricultural production areas using integrated biotechnology and combining Technosols with a multipurpose (forage, food, ornamental and medicinal) drought-resistant legume, the Lablab purpureus (L.) Sweet. Two Technosols were prepared by combining gossan waste (GW) from an abandoned mining area with a mix of low-cost organic and inorganic materials. Before and after plant growth, several parameters were analysed, such as soil physicochemical characteristics, nutritional status, bioavailable concentrations of potentially hazardous elements (PHE), soil enzymatic activities, and development and accumulation of PHE in Lablab, among others. Both Technosols improved physicochemical conditions, nutritional status and microbiological activity, and reduced the bioavailability of most PHE (except As) of GW. Lablab thrived in both Technosols and showed PHE accumulation mainly in the roots, with PHE concentrations in the shoots that are safe for cattle and sheep consumption. Thus, this is a potential plant that, in conjunction with Technosols, constitutes a potential integrated biotechnology approach for the conversion of marginal lands, such as abandoned mining areas, into food-production areas.
Collapse
Affiliation(s)
- Antonio Aguilar-Garrido
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - Marino Pedro Reyes-Martín
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - Patrícia Vidigal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Manuela Abreu
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
6
|
da Silva DR, Schaefer CEGR, Kuki KN, Santos MFS, Heringer G, da Silva LC. Why is Brachiaria decumbens Stapf. a common species in the mining tailings of the Fundão dam in Minas Gerais, Brazil? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79168-79183. [PMID: 35708810 DOI: 10.1007/s11356-022-21345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Currently, more than five years after the Fundão dam failure in Mariana, Minas Gerais, Brazil, Brachiaria decumbens Stapf. is the main grass in pasturelands affected by the mining tailings. The aim of this study was to investigate the reason for this fact as well as to determine the ecophysiological effects of mining tailings on B. decumbens and to test whether mixing the tailings with unaffected local soil enhances the affected soil properties. For the experiment, two different soils were collected, one unaffected soil without mining tailings (Ref) and the mining tailings (Tec), and we also created a mixture with 50 % of each soil type (Ref/Tec). We cultivated B. decumbens in the three soil treatments in a greenhouse for 110 days and evaluated soil physical-chemical properties and plant ecophysiology. Our results show that the tailings (Tec) compromised the normal ecophysiological state of B. decumbens. The species survived these adverse conditions due to its great efficiency in acquiring some elements. The soil management tested by this work mitigated the stress caused by tailings and can represent an alternative for the environmental recovery of the affected soils.
Collapse
Affiliation(s)
- Daniel Rodrigues da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Kacilda Naomi Kuki
- Departamento de Agronomia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michel Filiphy Silva Santos
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo Heringer
- Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, CEP 37200-900, Brazil
| | - Luzimar Campos da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
7
|
Martínez-Sánchez MJ, Pérez-Sirvent C, Martínez-Lopez S, García-Lorenzo ML, Agudo I, Martínez-Martínez LB, Hernández-Pérez C, Bech J. Uptake of potentially toxic elements by edible plants in experimental mining Technosols: preliminary assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1649-1665. [PMID: 34676509 PMCID: PMC9033688 DOI: 10.1007/s10653-021-01091-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/03/2021] [Indexed: 05/19/2023]
Abstract
A study was carried out to evaluate the absorption of potentially toxic elements from mining Technosols by three types of vegetable plants (broccoli (Brassica oleracea var. italica), lettuce (Lactuca sativa) and onion (Allium cepa)), the different parts of which are intended for human and farm animal consumption (leaves, roots, edible parts). The preliminary results obtained highlight the importance of the design of the mining Technosols used for agricultural purposes, obtained from soils and sediments of mining origin and amended with residues of high calcium carbonate concentrations (limestone filler and construction and demolition wastes). The experiment was carried out in a greenhouse, and the total metal(loid)s concentration (As, Pb, Cd, Cu, Fe, Mn and Zn) of the soil, rhizosphere, aqueous leachates and plant samples was monitored, the translocation and bioconcentration factors (TF and BCF, respectively) being calculated. The characterization of the soils included a mobilization study in media simulating different environmental conditions that can affect these soils and predicting the differences in behavior of each Technosol. The results obtained showed that the levels of potentially toxic elements present in the cultivated species are within the range of values mentioned in the literature when they were cultivated in soils with calcareous amendments. However, when the plants were grown in contaminated soils, the potentially toxic elements levels varied greatly according to the species, being higher in onions than in lettuce. Experiments with the use of lime filler or construction and demolition wastes for soil remediation result in crops that, in principle, do not present health risks and are similar in development to those grown on non-contaminated soil.
Collapse
Affiliation(s)
- María José Martínez-Sánchez
- Department of Agricultural Chemistry, Geology and Pedology, International Excellence Campus "Mare Nostrum", University of Murcia, Murcia, Spain
| | - Carmen Pérez-Sirvent
- Department of Agricultural Chemistry, Geology and Pedology, International Excellence Campus "Mare Nostrum", University of Murcia, Murcia, Spain.
| | - Salvadora Martínez-Lopez
- Department of Agricultural Chemistry, Geology and Pedology, International Excellence Campus "Mare Nostrum", University of Murcia, Murcia, Spain
| | - Mari Luz García-Lorenzo
- Department of Petrology and Geochemistry, Faculty of Geology, Moncloa Campus of International Excellence, Complutense University of Madrid, Madrid, Spain
| | - Ines Agudo
- Department of Agricultural Chemistry, Geology and Pedology, International Excellence Campus "Mare Nostrum", University of Murcia, Murcia, Spain
| | - Lucia Belen Martínez-Martínez
- Department of Agricultural Chemistry, Geology and Pedology, International Excellence Campus "Mare Nostrum", University of Murcia, Murcia, Spain
| | - Carmen Hernández-Pérez
- Department of Agricultural Chemistry, Geology and Pedology, International Excellence Campus "Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jaume Bech
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anthropogenic sources such as urban and agricultural runoff, fossil fuel combustion, domestic and industrial wastewater effluents, and atmospheric deposition generate large volumes of nutrient-rich organic and inorganic waste. In their original state under subsurface conditions, they can be inert and thermodynamically stable, although when some of their components are exposed to surface conditions, they undergo great physicochemical and mineralogical transformations, thereby mobilizing their constituents, which often end up contaminating the environment. These residues can be used in the production of technosols as agricultural inputs and the recovery of degraded areas. Technosol is defined as artificial soil made from organic and inorganic waste, capable of performing environmental and productive functions in a similar way to natural ones. This study presents results of international research on the use of technosol to increase soil fertility levels and recover degraded areas in some countries. The conclusions of the various studies served to expand the field of applicability of this line of research on technosols in contaminated spaces. The review indicated very promising results that support the sustainability of our ecosystem, and the improvement achieved with this procedure in soils is comparable to the hybridization and selection of plants that agriculture has performed for centuries to obtain better harvests. Thus, the use of a technosol presupposes a much faster recovery without the need for any other type of intervention.
Collapse
|
9
|
Campanharo ÍF, Martins SV, Villa PM, Kruschewsky GC, Dias AA, Nabeta F. Forest restoration methods, seasonality, and penetration resistance does not influence aboveground biomass stock on mining tailings in Mariana, Brazil. AN ACAD BRAS CIENC 2021; 93:e20201209. [PMID: 33886703 DOI: 10.1590/0001-3765202120201209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
The restoration methods applied on the areas affected by the Fundão tailings dam collapse have a high priority in Mariana region. We evaluated the effect of different restoration methods and site preparation techniques, depth and seasonality on penetration resistance of tailings, and how these predictors affect tree aboveground biomass in areas affected by the Fundão dam collapse in Mariana, Brazil. No significant differences in penetration resistance and aboveground biomass between treatments were observed, but significant differences were observed between seasonal periods. The main univariate model explained the significant effects of depth and seasonality, mainly by a negatively wet effect on penetration resistance. According to the best models (univariate and multivariate) were those that had depth as a predictor. This study showed how penetration resistance can be an indicator to select the best period for restoration process in areas affected by the collapse of the Fundão dam, but no limit to the aboveground biomass recovery on tailing.
Collapse
Affiliation(s)
- Ítalo F Campanharo
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal de Viçosa, Departamento de Engenharia Florestal, Laboratório de Restauração Florestal, Campus Universitário, Avenida Peter Henry Rolfs, 36570-900 Viçosa, MG, Brazil
| | - Sebastião V Martins
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal de Viçosa, Departamento de Engenharia Florestal, Laboratório de Restauração Florestal, Campus Universitário, Avenida Peter Henry Rolfs, 36570-900 Viçosa, MG, Brazil
| | - Pedro M Villa
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal de Viçosa, Departamento de Engenharia Florestal, Laboratório de Restauração Florestal, Campus Universitário, Avenida Peter Henry Rolfs, 36570-900 Viçosa, MG, Brazil
| | - Gabriel C Kruschewsky
- Fundação Renova, Avenida Getúlio Vargas, 671, Funcionários, 30112-020 Belo Horizonte, MG, Brazil
| | - Andreia A Dias
- Fundação Renova, Avenida Getúlio Vargas, 671, Funcionários, 30112-020 Belo Horizonte, MG, Brazil
| | - Fabio Nabeta
- Fundação Renova, Avenida Getúlio Vargas, 671, Funcionários, 30112-020 Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Ruiz F, Cherubin MR, Ferreira TO. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111344. [PMID: 32932070 DOI: 10.1016/j.jenvman.2020.111344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Mine reclamation has long relied on reusing topsoil to mitigate mining impacts but recently constructed soils (i.e., Technosols) have emerged as novel technologies for restoring post mining landscapes. However, their success depends on their ability to sustain soil functions. To assess the efficiency of a limestone mine reclamation, we measured the soil quality (SQ) of a three- (SC3) and seven-year-old (SC7) Technosol under sugarcane, and one 20-year-old (P20) Technosol under pasture, constructed with limestone spoil in southeastern Brazil. Soil chemical, physical, and biological attributes were evaluated and compared with those of an adjacent natural soil (NS; Rhodic Lixisol). We also tested the Soil Management Assessment Framework (SMAF) for assessing the SQ of the studied soils. SMAF was suitable to detect SQ changes over the years of reclamation. After three and seven years under sugarcane cultivation, the Technosols showed similar SQ indexes (= 0.70 and 0.67) to that of the native soil (SQ = 0.69), whereas after 20 years under pasture the SQ (= 0.88) of P20 was superior to that of NS. Overall, the Technosols recovered most of the ecosystem services expected for healthy soils, especially in P20, where carbon stocks were 2.7 times higher than in NS (82.1 vs 30.35 Mg C ha-1). We highlight the importance of using soil quality assessment tools, such as SMAF, in mine reclamation. In summary, Technosols from limestone wastes could restore basic soil functions under tropical environmental conditions within only 20 years.
Collapse
Affiliation(s)
- Francisco Ruiz
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture / University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Maurício Roberto Cherubin
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture / University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Tiago Osório Ferreira
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture / University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|