1
|
Cuylear DL, Fu ML, Chau JC, Kharbikar B, Kazakia GJ, Jheon A, Habelitz S, Kapila SD, Desai TA. Calcium phosphate nanoclusters modify periodontium remodeling and minimize orthodontic relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605671. [PMID: 39131336 PMCID: PMC11312518 DOI: 10.1101/2024.07.29.605671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Orthodontic relapse is one of the most prevalent concerns of orthodontic therapy. Relapse results in patients' teeth reverting towards their pretreatment positions, which increases the susceptibility to functional problems, dental disease, and substantially increases the financial burden for retreatment. This phenomenon is thought to be induced by rapid remodeling of the periodontal ligament (PDL) in the early stages and poor bone quality in the later stages. Current therapies, including fixed or removable retainers and fiberotomies, have limitations with patient compliance and invasiveness. Approaches using biocompatible biomaterials, such as calcium phosphate polymer-induced liquid precursors (PILP), is an ideal translational approach for minimizing orthodontic relapse. Here, post-orthodontic relapse is reduced after a single injection of high concentration PILP (HC-PILP) nanoclusters by altering PDL remodeling in the early stage of relapse and improving trabecular bone quality in the later phase. HC-PILP nanoclusters are achieved by using high molecular weight poly aspartic acid (PASP, 14 kDa) and poly acrylic acid (PAA, 450 kDa), which resulted in a stable solution of high calcium and phosphate concentrations without premature precipitation. In vitro results show that HC-PILP nanoclusters prevented collagen type-I mineralization, which is essential for the tooth-periodontal ligament (PDL)-bone interphase. In vivo experiments show that the PILP nanoclusters minimize relapse and improve the trabecular bone quality in the late stages of relapse. Interestingly, PILP nanoclusters also altered the remodeling of the PDL collagen during the early stages of relapse. Further in vitro experiments showed that PILP nanoclusters alter the fibrillogenesis of collagen type-I by impacting the protein secondary structure. These findings propose a novel approach for treating orthodontic relapse and provide additional insight into the PILP nanocluster's structure and properties on collagenous structure repair.
Collapse
Affiliation(s)
- Darnell L. Cuylear
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Moyu L. Fu
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Justin C. Chau
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bhushan Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Andrew Jheon
- Department of Orthodontics and Dentofacial Orthopedics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco (UCSF), CA, United States
| | - Sunil D. Kapila
- Section of Orthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tejal A. Desai
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, CA, United States
- School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Das S, De S, Centomo P, Aswal VK, Meneghini C, Das B, Ray S. Structural Rearrangement Followed by Entrapment of Subnanometer Building Blocks of Iron Oxyhydroxide in Aqueous Iron Chloride Solutions. Inorg Chem 2024; 63:7255-7265. [PMID: 38587285 DOI: 10.1021/acs.inorgchem.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Iron oxyhydroxide, a natural nanophase of iron found in the environment, plays a crucial role in regulating surface and groundwater composition. Recent research proposes that within the nonclassical prenucleation cluster growth model, subnanometer-sized clusters (olation clusters/Fe13 δ-Keggin oxolation clusters) might act as the prenucleation clusters (PNCs) of ferrihydrite or iron oxyhydroxide solid phase. However, these clusters are difficult to characterize as they are only observable momentarily in low-pH, high-Fe concentration solutions before agglomerating into extended solids, keeping the controversy over the true nature of the PNCs alive. In this study, we introduce large quantities of zinc acetate salt (ZA) into iron chloride solutions at the olation-oxolation boundary (3.6 mM Fe3+ at pH ∼2.6). Remarkably, this manipulation is found to alter the structural arrangement of these subnanometer clusters before blocking them in isolation for hours, even at pH 6, where extended iron oxyhydroxide phases typically precipitate. On the other hand, controlled addition of ZA allows partial unblocking, leading to anisotropic agglomeration into cylindrical rod-like structures. Experimental techniques such as synchrotron-based small-angle X-ray scattering, X-ray absorption spectroscopy, high-resolution transmission electron microscopy (TEM), and cryo-TEM, along with density functional theory (DFT) calculations, reveal the nature of the structural rearrangement and the crucial role of Zn2+ ions in cluster stabilization.
Collapse
Affiliation(s)
- Sanjit Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sharmistha De
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Paolo Centomo
- Dipartimento di Scienze Chimiche Via Marzolo, Università degli Studi di Padova, 1, Padova 35131, Italy
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Carlo Meneghini
- Dipartimento di Scienze, Universitá Roma Tre, Via della Vasca Navale, Roma 84 I-00146, Italy
| | - Bidisa Das
- Research Institute for Sustainable Energy (RISE), TCG-CREST, Sector V, Kolkata 700091, India
| | - Sugata Ray
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Qi D, Lukić MJ, Lu H, Gebauer D, Bonn M. Role of Water during the Early Stages of Iron Oxyhydroxide Formation by a Bacterial Iron Nucleator. J Phys Chem Lett 2024; 15:1048-1055. [PMID: 38253017 DOI: 10.1021/acs.jpclett.3c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the nucleation of iron oxides and the underlying hydrolysis of aqueous iron species is still challenging, and molecular-level insights into the orchestrated response of water, especially at the hydrolysis interface, are lacking. We follow iron(III) hydrolysis in the presence of a synthetic bacterial iron nucleator, which is a magnetosome membrane specific peptide, by using a constant pH titration technique. Three distinct hydrolysis regimes were identified. Interface-selective sum frequency generation (SFG) spectroscopy was used to probe the interfacial reaction and water in direct contact with the peptide. SFG data reveal that iron(III) species react quickly with interfacial peptides while continuously enhancing water alignment into the later stages of hydrolysis. The gradually aligning water molecules are associated with initially promoted (regimes I and II) and later suppressed (regime III) hydrolysis after the saturation of water alignment has occurred until regime II. These interfacial insights are crucial for understanding the early stage of iron oxide biomineralization.
Collapse
Affiliation(s)
- Daizong Qi
- Department of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Building No. 7, Jiaxing Intelligent Industry & Innovation Park, Jiaxing, Zhejiang 314001, P. R. China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Miodrag J Lukić
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Hao Lu
- Department of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Building No. 7, Jiaxing Intelligent Industry & Innovation Park, Jiaxing, Zhejiang 314001, P. R. China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Gindele MB, Vinod-Kumar S, Rochau J, Boemke D, Groß E, Redrouthu VS, Gebauer D, Mathies G. Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity. Nat Commun 2024; 15:80. [PMID: 38167336 PMCID: PMC10761707 DOI: 10.1038/s41467-023-44381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
CaCO3 is the most abundant biomineral and a major constituent of incrustations arising from water hardness. Polycarboxylates play key roles in controlling mineralization. Herein, we present an analytical and spectroscopic study of polycarboxylate-stabilized amorphous CaCO3 (ACC) and its formation via a dense liquid precursor phase (DLP). Polycarboxylates facilitate pronounced, kinetic bicarbonate entrapment in the DLP. Since bicarbonate is destabilized in the solid state, DLP dehydration towards solid ACC necessitates the formation of locally calcium deficient sites, thereby inhibiting nucleation. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy of poly-aspartate-stabilized ACC reveals the presence of two distinct environments. The first contains immobile calcium and carbonate ions and structural water molecules, undergoing restricted, anisotropic motion. In the second environment, water molecules undergo slow, but isotropic motion. Indeed, conductive atomic force microscopy (C-AFM) reveals that ACC conducts electrical current, strongly suggesting that the mobile environment pervades the bulk of ACC, with dissolved hydroxide ions constituting the charge carriers. We propose that the distinct environments arise from colloidally stabilized interfaces of DLP nanodroplets, consistent with the pre-nucleation cluster (PNC) pathway.
Collapse
Affiliation(s)
- Maxim B Gindele
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Johannes Rochau
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Daniel Boemke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Eduard Groß
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | | | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany.
| |
Collapse
|
6
|
Rabadjieva D, Gergulova R, Ruseva K, Bonchev A, Shestakova P, Simeonov M, Vasileva R, Tatchev D, Titorenkova R, Vassileva E. Polycarboxy/Sulfo Betaine-Calcium Phosphate Hybrid Materials with a Remineralization Potential. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6640. [PMID: 37895622 PMCID: PMC10608424 DOI: 10.3390/ma16206640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Biomacromolecules control mineral formation during the biomineralization process, but the effects of the organic components' functionality on the type of mineral phase is still unclear. The biomimetic precipitation of calcium phosphates in a physiological medium containing either polycarboxybetaine (PCB) or polysulfobetaine (PSB) was investigated in this study. Amorphous calcium phosphate (ACP) or a mixture of octacalcium phosphate (OCP) and dicalcium phosphate dihydrate (DCPD) in different ratios were identified depending on the sequence of initial solution mixing and on the type of the negative functional group of the polymer used. The more acidic character of the sulfo group in PSB than the carboxy one in PCB determines the dominance of the acidic solid phases, namely, an acidic amorphous phase or DCPD. In the presence of PCB, the formation of ACP with acicular particles arranged in bundles with the same orientation was observed. A preliminary study on the remineralization potential of the hybrid material with the participation of PSB and a mixture of OCP and DCPD did not show an increase in enamel density, contrary to the materials based on PCB and ACP. Moreover, the latter showed the creation of a newly formed crystal layer similar to that of the underlying enamel. This defines PCB/ACP as a promising material for enamel remineralization.
Collapse
Affiliation(s)
- Diana Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria;
| | - Rumiana Gergulova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria;
| | - Konstans Ruseva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria; (K.R.); (M.S.); (E.V.)
| | - Alexander Bonchev
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria; (A.B.); (R.V.)
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, BAS, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria;
| | - Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria; (K.R.); (M.S.); (E.V.)
| | - Radosveta Vasileva
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria; (A.B.); (R.V.)
| | - Dragomir Tatchev
- Rostislaw Kaischew Institute of Physical Chemistry (IPC), Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria;
| | - Rositsa Titorenkova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria;
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria; (K.R.); (M.S.); (E.V.)
| |
Collapse
|
7
|
Trukhina M, Popov K, Oshchepkov M, Tkachenko S, Vorob’eva A, Guseva O. Enhancement of Polyacrylate Antiscalant Activity during Gypsum Deposit Formation with the Pretreatment of Aqueous Solutions with Spruce Wood Shavings. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6516. [PMID: 37834653 PMCID: PMC10573910 DOI: 10.3390/ma16196516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Considerable efforts are made worldwide to reduce inorganic scale in reverse osmosis plants, boilers and heat exchangers, evaporators, industrial water systems, geothermal power plants and oilfield applications. These include the development of new environmentally friendly antiscalants and the improvement of conventional ones. The present report is dedicated to the unconventional application of spruce wood shavings in combination with polyacrylate (PAA-F1) in a model case of gypsum scale formation. The electrical conductivity of freshly prepared gypsum solutions with a saturation SI = 2.3 and a concentration of 0.05 mol·dm-3 was analyzed over time at 25°C. It is demonstrated that the small amounts of wood shavings (0.1% by mass) alone, after being in contact with CaCl2 and Na2SO4 stock solutions for 15 min, increase the induction time tind by 25 min relative to the blank experiment (tindblank). In the presence of PAA-F1 (0.1 mg·dm-3), the difference Δtind = tind - tindblank constitutes 110 min, whereas the sequential treatment of the stock solutions with the shavings followed by PAA-F1 injection gives Δtind = 205 min. The observed synergism is associated with the selective removal of colloidal Fe(OH)3solid and Al(OH)3solid nanoimpurities from the stock solutions via their sorption to the well-developed surface of wood. Wood shavings therefore represent a very promising and environmentally friendly material that can significantly improve the effectiveness of conventional antiscalants.
Collapse
Affiliation(s)
- Maria Trukhina
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya Str. 42, b1, 107258 Moscow, Russia; (M.T.); (M.O.); (A.V.); (O.G.)
| | - Konstantin Popov
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya Str. 42, b1, 107258 Moscow, Russia; (M.T.); (M.O.); (A.V.); (O.G.)
| | - Maxim Oshchepkov
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya Str. 42, b1, 107258 Moscow, Russia; (M.T.); (M.O.); (A.V.); (O.G.)
- Department of Chemical and Pharmaceutical Technologies and Biomedical Pharmaceuticals, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia;
| | - Sergey Tkachenko
- Department of Chemical and Pharmaceutical Technologies and Biomedical Pharmaceuticals, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia;
| | - Alina Vorob’eva
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya Str. 42, b1, 107258 Moscow, Russia; (M.T.); (M.O.); (A.V.); (O.G.)
- Department of Chemical and Pharmaceutical Technologies and Biomedical Pharmaceuticals, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia;
| | - Olga Guseva
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya Str. 42, b1, 107258 Moscow, Russia; (M.T.); (M.O.); (A.V.); (O.G.)
| |
Collapse
|
8
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
9
|
Sheng H, Li Y, Feng J, Liu Y. Regulation of thermodynamics and kinetics of silica nucleation during the silicification process in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107674. [PMID: 37018864 DOI: 10.1016/j.plaphy.2023.107674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
The formation mechanism of SiO2 aggregates is controversial because two contrasting hypotheses are often proposed to explain plant silicification. In this review, we summarize the physicochemical fundamentals of amorphous silica nucleation and discuss how plants regulate the process of silicification by influencing the thermodynamics and kinetics of silica nucleation. At silicification positions, plants overcome the thermodynamic barrier by establishing the supersaturation of the H4SiO4 solution and reducing the interfacial free energy. Among the thermodynamic-drivers, the establishment of supersaturation of H4SiO4 solution mainly depends on the expression of Si transporters for H4SiO4 supply, evapotranspiration for concentrating Si, and the other solutes in H4SiO4 solution for influencing the dissolution equilibrium of SiO2; while the interfacial free energy was reduced seemingly by the overexpression Na+/H+ antiporter SOS1 in high NaCl-stressed rice. Moreover, some kinetic-drivers, such as silicification-related proteins (Slp1 and PRP1) and new cell wall components, are actively expressed or synthesized by plants to interact with silicic acid, thereby reducing the kinetic barrier. According to classical nucleation theory, when the thermodynamic barrier is overcome, the super-saturated silicic acid solution (such as H4SiO4 in xylem sap) does not necessarily have to precipitate, just has the potential ability to precipitation. Thus, based on the mediators of SiO2 deposition at the thermodynamic-driven stage, it is difficult to evaluate whether the process of plant silicification is active or passive. We conclude that the characteristics of kinetic-drivers determine the mechanism of plant silicification.
Collapse
Affiliation(s)
- Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China.
| | - Ying Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China
| | - Jingqiu Feng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China.
| | - Yuan Liu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China.
| |
Collapse
|
10
|
Sowoidnich T, Damidot D, Ludwig HM, Germroth J, Rosenberg R, Cölfen H. The nucleation of C-S-H via prenucleation clusters. J Chem Phys 2023; 158:114309. [PMID: 36948802 DOI: 10.1063/5.0141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
The nucleation and growth of calcium-silicate-hydrate (C-S-H) is of fundamental importance for the strength development and durability of the concrete. However, the nucleation process of C-S-H is still not fully understood. The present work investigates how C-S-H nucleates by analyzing the aqueous phase of hydrating tricalcium silicate (C3S) by applying inductively coupled plasma-optical emission spectroscopy as well as analytical ultracentrifugation. The results show that the C-S-H formation follows non-classical nucleation pathways associated with the formation of prenucleation clusters (PNCs) of two types. Those PNCs are detected with high accuracy and reproducibility and are two species of the 10 in total, from which the ions (with associated water molecules) are the majority of the species. The evaluation of the density and molar mass of the species shows that the PNCs are much larger than ions, but the nucleation of C-S-H starts with the formation of liquid precursor C-S-H (droplets) with low density and high water content. The growth of these C-S-H droplets is associated with a release of water molecules and a reduction in size. The study gives experimental data on the size, density, molecular mass, and shape and outlines possible aggregation processes of the detected species.
Collapse
Affiliation(s)
- T Sowoidnich
- Bauhaus-Universität Weimar, F.A. Finger-Institute for Building Materials Science, Coudraystr. 11, 99423 Weimar, Germany
| | - D Damidot
- IMT Nord Europe, Institut Mines-Télécom, University Lille, Centre for Materials and Processes Centre, F-59000 Lille, France
| | - H-M Ludwig
- Bauhaus-Universität Weimar, F.A. Finger-Institute for Building Materials Science, Coudraystr. 11, 99423 Weimar, Germany
| | - J Germroth
- University of Konstanz, Physical Chemistry, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - R Rosenberg
- University of Konstanz, Physical Chemistry, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - H Cölfen
- University of Konstanz, Physical Chemistry, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
11
|
Fakhreeva AV, Nosov VV, Voloshin AI, Dokichev VA. Polysaccharides as Effective and Environmentally Friendly Inhibitors of Scale Deposition from Aqueous Solutions in Technological Processes. Polymers (Basel) 2023; 15:polym15061478. [PMID: 36987258 PMCID: PMC10059850 DOI: 10.3390/polym15061478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In this paper, we consider natural and modified polysaccharides for use as active ingredients in scale deposition inhibitors to prevent the formation of scale in oil production equipment, heat exchange equipment, and water supply systems. Modified and functionalized polysaccharides with a strong ability to inhibit the formation of deposits of typical scale, such as carbonates and sulfates of alkaline earth elements found in technological processes, are described. This review discusses the mechanisms of the inhibition of crystallization using polysaccharides, and the various methodological aspects of evaluating their effectiveness are considered. This review also provides information on the technological application of scale deposition inhibitors based on polysaccharides. Special attention is paid to the environmental aspect of the use of polysaccharides in industry as scale deposition inhibitors.
Collapse
Affiliation(s)
- Alsu Venerovna Fakhreeva
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, Ufa 450054, Russia
| | | | - Alexander Iosifovich Voloshin
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, Ufa 450054, Russia
- RN–BashNIPIneft LLC, Ufa 450103, Russia
- Correspondence: ; Tel.: +7-917-470-6695
| | - Vladimir Anatolyevich Dokichev
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, Ufa 450054, Russia
- RN–BashNIPIneft LLC, Ufa 450103, Russia
| |
Collapse
|
12
|
Bonchev A, Simeonov M, Shestakova P, Vasileva R, Titorenkova R, Apostolov A, Dyulgerova E, Vassileva E. Bioinspired Remineralization of Artificial Caries Lesions Using PDMAEMA/Carbomer/Calcium Phosphates Hybrid Microgels. Gels 2022; 8:gels8100681. [PMID: 36286182 PMCID: PMC9601719 DOI: 10.3390/gels8100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Dental caries remains one of the most prevalent bacterium-caused chronic diseases affecting both adults and children worldwide. The development of new materials for enhancing its remineralization is one of the most promising approaches in the field of advanced dental materials as well as one of the main challenges in non-invasive dentistry. The aim of the present study is to develop novel hybrid materials based on (PDMAEMA)/Carbomer 940 microgels with in situ deposited calcium phosphates (CaP) and to reveal their potential as a remineralization system for artificial caries lesions. To this purpose, novel PDMAEMA/Carbomer 940 microgels were obtained and their core–shell structure was revealed by transmission electron microscopy (TEM). They were successfully used as a matrix for in situ calcium phosphate deposition, thus giving rise to novel hybrid microgels. The calcium phosphate phases formed during the deposition process were studied by X-ray diffraction and infrared spectroscopy, however, due to their highly amorphous nature, the nuclear magnetic resonance (NMR) was the method that was able to provide reliable information about the formed inorganic phases. The novel hybrid microgels were used for remineralization of artificial caries lesions in order to prove their ability to initiate their remineralization. The remineralization process was followed by scanning electron microscopy (SEM), X-ray diffraction, infrared and Raman spectroscopies and all these methods confirmed the successful enamel rod remineralization upon the novel hybrid microgel application. Thus, the study confirmed that novel hybrid microgels, which could ensure a constant supply of calcium and phosphate ions, are a viable solution for early caries treatment.
Collapse
Affiliation(s)
- Alexander Bonchev
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Radosveta Vasileva
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Rositsa Titorenkova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Elena Dyulgerova
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
13
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small-Molecular-Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022; 61:e202208475. [PMID: 35785466 PMCID: PMC9796263 DOI: 10.1002/anie.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Small-molecular-weight (MW) additives can strongly impact amorphous calcium carbonate (ACC), playing an elusive role in biogenic, geologic, and industrial calcification. Here, we present molecular mechanisms by which these additives regulate stability and composition of both CaCO3 solutions and solid ACC. Potent antiscalants inhibit ACC precipitation by interacting with prenucleation clusters (PNCs); they specifically trigger and integrate into PNCs or feed PNC growth actively. Only PNC-interacting additives are traceable in ACC, considerably stabilizing it against crystallization. The selective incorporation of potent additives in PNCs is a reliable chemical label that provides conclusive chemical evidence that ACC is a molecular PNC-derived precipitate. Our results reveal additive-cluster interactions beyond established mechanistic conceptions. They reassess the role of small-MW molecules in crystallization and biomineralization while breaking grounds for new sustainable antiscalants.
Collapse
Affiliation(s)
- Patrick Duchstein
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Simon Leupold
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Shifi Kababya
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Maria R. Cicconi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Dominique de Ligny
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS)Forschungszentrum Jülich GmbHOutstation at FRM IILichtenbergstrasse 185747GarchingGermany
| | - David Eike
- The Procter & Gamble CompanyMason Business Center8700 Mason-Montgomery RoadMasonOH 45040USA
| | - Asher Schmidt
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Dirk Zahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Stephan E. Wolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| |
Collapse
|
14
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
15
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
16
|
Ramnarain V, Georges T, Ortiz Peña N, Ihiawakrim D, Longuinho M, Bulou H, Gervais C, Sanchez C, Azaïs T, Ersen O. Monitoring of CaCO 3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR. J Am Chem Soc 2022; 144:15236-15251. [PMID: 35971919 DOI: 10.1021/jacs.2c05731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most significant biominerals in nature. Living organisms are able to control its biomineralization by means of an organic matrix to tailor a myriad of hybrid functional materials. The soluble organic components are often proteins rich in acidic amino-acids such as l-aspartic acid. While several studies have demonstrated the influence of amino acids on the crystallization of calcium carbonate, nanoscopic insight of their impact on CaCO3 mineralization, in particular at the early stages, is still lacking. Herein, we implement liquid phase-transmission electron microscopy (LP-TEM) in order to visualize in real-time and at the nanoscale the prenucleation stages of CaCO3 formation. We observe that l-aspartic acid favors the formation of individual and aggregated prenucleation clusters which are found stable for several minutes before the transformation into amorphous nanoparticles. Combination with hyperpolarized solid state nuclear magnetic resonance (DNP NMR) and density functional theory (DFT) calculations allow shedding light on the underlying mechanism at the prenucleation stage. The promoting nature of l-aspartic acid with respect to prenucleation clusters is explained by specific interactions with both Ca2+ and carbonates and the stabilization of the Ca2+-CO32-/HCO3- ion pairs favoring the formation and stabilization of the CaCO3 transient precursors. The study of prenucleation stages of mineral formation by the combination of in situ LP-TEM, advanced analytical techniques (including hyperpolarized solid-state NMR), and numerical modeling allows the real-time monitoring of prenucleation species formation and evolution and the comprehension of their relative stability.
Collapse
Affiliation(s)
- Vinavadini Ramnarain
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Tristan Georges
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Nathaly Ortiz Peña
- Laboratoire Matériaux et Phénomènes Quantiques, 75025 Paris, Cedex 13, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Mariana Longuinho
- CBPF, Rua Dr. Xavier Sigaud, 150 Urca I, CEP 22290-180, Rio de Janeiro, Brasil.,UFRJ, Av Pedro Calmon, 550 Edificio da Reitoria, Iha de do Fundao, CEP 21941-901 Rio de Janeiro, Brasil
| | - Hervé Bulou
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Christel Gervais
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Clément Sanchez
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France.,USIAS, Université de Strasbourg, 67000 Strasbourg, France
| | - Thierry Azaïs
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
17
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small‐Molecular‐Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Simon Leupold
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Shifi Kababya
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Maria R. Cicconi
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Dominique de Ligny
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Lehrstuhl für Glas und Keramik GERMANY
| | - Vitaliy Pipich
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH Garching GERMANY
| | | | - Asher Schmidt
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Dirk Zahn
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry Department GERMANY
| | - Stephan E. Wolf
- Friedrich-Alexander University Erlangen-Nürnberg – Institute of Glass and Ceramics Department of Materials Science and Engineering Martensstrasse 5 91058 Erlangen GERMANY
| |
Collapse
|
18
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
19
|
Danilovtseva EN, Palshin VA, Strelova MS, Lopatina IN, Kaneva EV, Zakharova NV, Annenkov VV. Functional polymers for modeling the formation of biogenic calcium carbonate and the design of new materials. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena N. Danilovtseva
- Limnological Institute Siberian Branch of Russian Academy of Sciences Irkutsk Russian Federation
| | - Viktor A. Palshin
- Limnological Institute Siberian Branch of Russian Academy of Sciences Irkutsk Russian Federation
| | - Mariya S. Strelova
- Limnological Institute Siberian Branch of Russian Academy of Sciences Irkutsk Russian Federation
| | - Irina N. Lopatina
- Limnological Institute Siberian Branch of Russian Academy of Sciences Irkutsk Russian Federation
| | - Ekaterina V. Kaneva
- Vinogradov Institute of Geochemistry Siberian Branch of Russian Academy of Sciences Irkutsk Russian Federation
| | - Nataliya V. Zakharova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russian Federation
| | - Vadim V. Annenkov
- Limnological Institute Siberian Branch of Russian Academy of Sciences Irkutsk Russian Federation
| |
Collapse
|
20
|
King M, Avaro JT, Peter C, Hauser K, Gebauer D. Solvent-mediated isotope effects strongly influence the early stages of calcium carbonate formation: exploring D 2O vs. H 2O in a combined computational and experimental approach. Faraday Discuss 2022; 235:36-55. [PMID: 35388817 DOI: 10.1039/d1fd00078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In experimental studies, heavy water (D2O) is employed, e.g., so as to shift the spectroscopic solvent background, but any potential effects of this solvent exchange on reaction pathways are often neglected. While the important role of light water (H2O) during the early stages of calcium carbonate formation has been realized, studies into the actual effects of aqueous solvent exchanges are scarce. Here, we present a combined computational and experimental approach to start to fill this gap. We extended a suitable force field for molecular dynamics (MD) simulations. Experimentally, we utilised advanced titration assays and time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. We find distinct effects in various mixtures of the two aqueous solvents, and in pure H2O or D2O. Disagreements between the computational results and experimental data regarding the stabilities of ion associates might be due to the unexplored role of HDO, or an unprobed complex phase behaviour of the solvent mixtures in the simulations. Altogether, however, our data suggest that calcium carbonate formation might proceed "more classically" in D2O. Also, there are indications for the formation of new structures in amorphous and crystalline calcium carbonates. There is huge potential towards further improving the understanding of mineralization mechanisms by studying solvent-mediated isotope effects, also beyond calcium carbonate. Last, it must be appreciated that H2O and D2O have significant, distinct effects on mineralization mechanisms, and that care has to be taken when experimental data from D2O studies are used, e.g., for the development of H2O-based computer models.
Collapse
Affiliation(s)
- Michael King
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jonathan T Avaro
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.,Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University of Hannover, Callinstr. 9, 30167 Hannover, Germany.
| |
Collapse
|
21
|
Longuinho M, Ramnarain V, Ortiz Peña N, Ihiawakrim D, Soria-Martínez R, Farina M, Ersen O, Rossi AL. The influence of L-aspartic acid on calcium carbonate nucleation and growth revealed by in situ liquid phase TEM. CrystEngComm 2022. [DOI: 10.1039/d2ce00117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ transmission electron microscopy has permitted the study of nanomaterials in liquid environments with high spatial and temporal resolutions, allowing chemical reaction visualization in real time. The aim of...
Collapse
|
22
|
Song N, Li J, Li B, Pan E, Gao J, Ma Y. In vitro crystallization of calcium carbonate mediated by proteins extracted from P. placenta shells. CrystEngComm 2022. [DOI: 10.1039/d2ce00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ASM extracted from the shells of P. placenta can stabilize ACC and inhibit secondary nucleation for 10 hours, and an explosive secondary nucleation and quick crystal growth from 50 nm to 10 μm can be finished on the shell surface in one hour.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
23
|
Lemke T, Edte M, Gebauer D, Peter C. Three Reasons Why Aspartic Acid and Glutamic Acid Sequences Have a Surprisingly Different Influence on Mineralization. J Phys Chem B 2021; 125:10335-10343. [PMID: 34473925 DOI: 10.1021/acs.jpcb.1c04467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of polymers rich in aspartic acid (Asp) and glutamic acid (Glu) is the key to gaining precise control over mineralization processes. Despite their chemical similarity, experiments revealed a surprisingly different influence of Asp and Glu sequences. We conducted molecular dynamics simulations of Asp and Glu peptides in the presence of calcium and chloride ions to elucidate the underlying phenomena. In line with experimental differences, in our simulations, we indeed find strong differences in the way the peptides interact with ions in solution. The investigated Asp pentapeptide tends to pull a lot of ions into its vicinity, and many structures with clusters of calcium and chloride ions on the surface of the peptide can be observed. Under the same conditions, comparatively fewer ions can be found in proximity of the investigated Glu pentapeptide, and the structures are characterized by single calcium ions bound to multiple carboxylate groups. Based on our simulation data, we identified three reasons contributing to these differences, leading to a new level of understanding additive-ion interactions.
Collapse
Affiliation(s)
- Tobias Lemke
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Moritz Edte
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Christine Peter
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| |
Collapse
|
24
|
Ruiz-Agudo E, Ruiz-Agudo C, Di Lorenzo F, Alvarez-Lloret P, Ibañez-Velasco A, Rodriguez-Navarro C. Citrate Stabilizes Hydroxylapatite Precursors: Implications for Bone Mineralization. ACS Biomater Sci Eng 2021; 7:2346-2357. [PMID: 33973778 PMCID: PMC8479724 DOI: 10.1021/acsbiomaterials.1c00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Mineralization of hydroxylapatite (HAp), the main inorganic phase in bone, follows nonclassical crystallization routes involving metastable precursors and is strongly influenced by organic macromolecules. However, the effect of small organic molecules such as citrate on the formation of HAp is not well constrained. Using potentiometric titration experiments and titration calorimetry, in combination with a multianalytical approach, we show that citrate stabilizes prenucleation species as well as a liquid-like calcium phosphate precursor formed before any solid phase nucleates in the system. The stabilization of a liquid-like precursor phase could facilitate infiltration into the cavities of the collagen fibrils during bone mineralization, explaining the enhancement of collagen-mediated mineralization by citrate reported in previous studies. Hence, citrate can influence bone mineralization way before any solid phase (amorphous or crystalline) is formed. We also show that HAp formation after amorphous calcium phosphate (ACP) in the absence and presence of citrate results in nanoplates of about 5-12 nm thick, elongated along the c axis. Such nanoplates are made up of HAp nanocrystallites with a preferred c axis orientation and with interspersed ACP. The nanoplatelet morphology, size, and preferred crystallographic orientation, remarkably similar to those of bone HAp nanocrystals, appear to be an intrinsic feature of HAp formed from an amorphous precursor. Our results challenge current models for HAp mineralization in bone and the role of citrate, offering new clues to help answer the long-standing question as to why natural evolution favored HAp as the mineral phase in bone.
Collapse
Affiliation(s)
- Encarnacion Ruiz-Agudo
- Department
of Mineralogy and Petrology, University
of Granada, Fuentenueva s/n, Granada 18071, Spain
| | - Cristina Ruiz-Agudo
- Physical
Chemistry, Department of Chemistry, University
of Konstanz, Universitätsstraße
10, Konstanz 78457, Germany
| | - Fulvio Di Lorenzo
- Department
of Mineralogy and Petrology, University
of Granada, Fuentenueva s/n, Granada 18071, Spain
- Institute
of Geological Sciences, University of Bern, Baltzerstrasse 3, Bern CH-3012, Switzerland
| | - Pedro Alvarez-Lloret
- Department
of Geology, University of Oviedo, C/Jesús Arias de Velasco
s/n, Oviedo 33005, Spain
| | - Aurelia Ibañez-Velasco
- Department
of Mineralogy and Petrology, University
of Granada, Fuentenueva s/n, Granada 18071, Spain
| | - Carlos Rodriguez-Navarro
- Department
of Mineralogy and Petrology, University
of Granada, Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
25
|
Ma YX, Hoff SE, Huang XQ, Liu J, Wan QQ, Song Q, Gu JT, Heinz H, Tay FR, Niu LN. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen. Acta Biomater 2021; 120:213-223. [PMID: 32711082 DOI: 10.1016/j.actbio.2020.07.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022]
Abstract
Involvement of thermodynamically-stable prenucleation clusters (PNCs) in the biomineralization of collagen has been speculated since their existence was reported in mineralization systems. It has been hypothesized that intrafibrillar mineralization proceeds via nucleation of inhibitor-stabilized intermediates produced by liquid-liquid separation (aka. polymer-induced liquid precursors; PILPs). Here, the contribution of PNCs and PILPs to calcium phosphate intrafibrillar mineralization of collagen was examined in a model with a semipermeable membrane that excludes nucleation inhibitor-stabilized PILPs from reaching the collagen fibrils, using cryogenic electron microscopy of reconstituted fibrils and conventional transmission electron microscopy of collagen sponges. Molecular dynamics simulation with the Interface force field (IFF) was used to confirm the existence of PILPs with amorphous calcium phosphate and elucidate details of the dynamics. Furthermore, intrafibrillar mineralization of single collagen fibrils was experimentally observed with unstabilized PNCs when anionic/cationic polyelectrolytes were used to establish Donnan equilibrium across the semipermeable membrane. Molecular dynamics simulation verified PNC formation within the collagen intrafibrillar gap zones at the atomic scale and explained the role of external PILPs. The PILPs decrease the interfibrillar water content and increase the interfibrillar ionic concentration. Nevertheless, intrafibrillar mineralization of collagen sponges with PNCs alone was inefficacious, being constrained by competition from extrafibrillar mineral precipitation. STATEMENT OF SIGNIFICANCE: Compared with conventional PILP-based intrafibrillar mineralization, mineralization of collagen fibrils using unstabilized PNCs is constrained by competition from extrafibrillar mineral deposition. The narrow window of opportunity for PNCs to produce intrafibrillar mineralization provides a plausible explanation for the feasibility of nucleation inhibitor-free intrafibrillar apatite assembly during reconstitution of type I collagen.
Collapse
Affiliation(s)
- Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Samuel Edmund Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Xue-Qing Huang
- Department of Prosthodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qun Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Hena, China.
| |
Collapse
|
26
|
Kargozarfard Z, Haghtalab A, Ayatollahi S, Badizad MH. Molecular Dynamics Simulation of Calcium Sulfate Nucleation in Homogeneous and Heterogeneous Crystallization Conditions: An Application in Water Flooding. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zahra Kargozarfard
- Department of Chemical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran 1411713116, Iran
| | - Ali Haghtalab
- Department of Chemical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran 1411713116, Iran
| | - Shahab Ayatollahi
- Sharif Upstream Petroleum Research Institute, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran
| | - Mohammad Hasan Badizad
- Sharif Upstream Petroleum Research Institute, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran
| |
Collapse
|
27
|
Lukić MJ, Wiedenbeck E, Reiner H, Gebauer D. Chemical trigger toward phase separation in the aqueous Al(III) system revealed. SCIENCE ADVANCES 2020; 6:eaba6878. [PMID: 32537510 PMCID: PMC7269665 DOI: 10.1126/sciadv.aba6878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 06/01/2023]
Abstract
Although Al(III) hydrolysis, condensation, and nucleation play pivotal roles in the synthesis of Al-based compounds and determine their chemical behavior, we still lack experimental evidence regarding the chemistry of nucleation from solution. Here, by combining advanced titration assays, high-resolution transmission electron microscopy (HR-TEM), and 27Al-nuclear magnetic resonance spectroscopy, we show that highly dynamic solute prenucleation clusters (PNCs) are fundamental precursors of nanosolid formation. Chemical changes from olation to oxolation bridging within PNCs rely on the formation of tetrahedral AlO4 in solution and trigger phase separation at low driving force (supersaturation). This does not include the formation of Keggin-Al13 ions, at least during the earliest stages. The PNC pathway of the formation of Al(III) (oxy)(hydr)oxides offers new possibilities toward the development of strategies for controlling the entire crystallization process.
Collapse
Affiliation(s)
- Miodrag J. Lukić
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinst. 9, 30167 Hannover, Germany
| | - Eduard Wiedenbeck
- University of Konstanz, Department of Chemistry, Physical Chemistry, Konstanz, Germany
| | - Holger Reiner
- University of Konstanz, Department of Chemistry, Physical Chemistry, Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinst. 9, 30167 Hannover, Germany
| |
Collapse
|
28
|
Lukić MJ, Gebauer D, Rose A. Nonclassical nucleation towards separation and recycling science: Iron and aluminium (Oxy)(hydr)oxides. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
|
30
|
Abstract
Nucleation and growth are of uttermost importance for crystallization since they determine the structure, shape, and properties of a crystal [...]
Collapse
|
31
|
Ruiz-Agudo C, McDonogh D, Avaro JT, Schupp DJ, Gebauer D. Capturing an amorphous BaSO 4 intermediate precursor to barite. CrystEngComm 2020. [DOI: 10.1039/c9ce01555h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the work presented here, free-barium activity was monitored during the barium sulfate crystallization and we identified for the first time (in the absence of additives) a metastable BaSO4 amorphous phase that precedes barite formation.
Collapse
Affiliation(s)
| | - David McDonogh
- Institute of Inorganic Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| | | | | | - Denis Gebauer
- Institute of Inorganic Chemistry
- Leibniz University of Hannover
- 30167 Hannover
- Germany
| |
Collapse
|
32
|
Affiliation(s)
- Huachuan Du
- Soft Materials LaboratoryInstitute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Schweiz
| | - Esther Amstad
- Soft Materials LaboratoryInstitute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Schweiz
| |
Collapse
|
33
|
Du H, Amstad E. Water: How Does It Influence the CaCO 3 Formation? Angew Chem Int Ed Engl 2019; 59:1798-1816. [PMID: 31081984 DOI: 10.1002/anie.201903662] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/11/2022]
Abstract
Nature produces biomineral-based materials with a fascinating set of properties using only a limited number of elements. This set of properties is obtained by closely controlling the structure and local composition of the biominerals. We are far from achieving the same degree of control over the properties of synthetic biomineral-based composites. One reason for this inferior control is our incomplete understanding of the influence of the synthesis conditions and additives on the structure and composition of the forming biominerals. In this Review, we provide an overview of the current understanding of the influence of synthesis conditions and additives during different formation stages of CaCO3 , one of the most abundant biominerals, on the structure, composition, and properties of the resulting CaCO3 crystals. In addition, we summarize currently known means to tune these parameters. Throughout the Review, we put special emphasis on the role of water in mediating the formation of CaCO3 and thereby influencing its structure and properties, an often overlooked aspect that is of high relevance.
Collapse
Affiliation(s)
- Huachuan Du
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wässriger Lösung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eduard Wiedenbeck
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Michael Kovermann
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Denis Gebauer
- Leibniz University of Hannover, Institut für Anorganische Chemie Callinstraße 9 30167 Hannover Deutschland
| | - Helmut Cölfen
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
35
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Liquid Metastable Precursors of Ibuprofen as Aqueous Nucleation Intermediates. Angew Chem Int Ed Engl 2019; 58:19103-19109. [PMID: 31556970 PMCID: PMC6972611 DOI: 10.1002/anie.201910986] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 01/25/2023]
Abstract
The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid–liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid–liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.
Collapse
Affiliation(s)
- Eduard Wiedenbeck
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Denis Gebauer
- Leibniz University of Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
36
|
Różycka M, Coronado I, Brach K, Olesiak‐Bańska J, Samoć M, Zarębski M, Dobrucki J, Ptak M, Weber E, Polishchuk I, Pokroy B, Stolarski J, Ożyhar A. Lattice Shrinkage by Incorporation of Recombinant Starmaker-Like Protein within Bioinspired Calcium Carbonate Crystals. Chemistry 2019; 25:12740-12750. [PMID: 31241793 PMCID: PMC6790713 DOI: 10.1002/chem.201902157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/16/2022]
Abstract
The biological mediation of mineral formation (biomineralization) is realized through diverse organic macromolecules that guide this process in a spatial and temporal manner. Although the role of these molecules in biomineralization is being gradually revealed, the molecular basis of their regulatory function is still poorly understood. In this study, the incorporation and distribution of the model intrinsically disordered starmaker-like (Stm-l) protein, which is active in fish otoliths biomineralization, within calcium carbonate crystals, is revealed. Stm-l promotes crystal nucleation and anisotropic tailoring of crystal morphology. Intracrystalline incorporation of Stm-l protein unexpectedly results in shrinkage (and not expansion, as commonly described in biomineral and bioinspired crystals) of the crystal lattice volume, which is described herein, for the first time, for bioinspired mineralization. A ring pattern was observed in crystals grown for 48 h; this was composed of a protein-enriched region flanked by protein-depleted regions. It can be explained as a result of the Ostwald-like ripening process and intrinsic properties of Stm-l, and bears some analogy to the daily growth layers of the otolith.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of BiochemistryFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Ismael Coronado
- Institute of PaleobiologyPolish Academy of SciencesWarsaw00-818Poland
| | - Katarzyna Brach
- Advanced Materials Engineering and Modelling GroupFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Joanna Olesiak‐Bańska
- Advanced Materials Engineering and Modelling GroupFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling GroupFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| | - Mirosław Zarębski
- Department of Cell BiophysicsFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakow30-387Poland
| | - Jerzy Dobrucki
- Department of Cell BiophysicsFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakow30-387Poland
| | - Maciej Ptak
- Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclaw50-422Poland
| | - Eva Weber
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology InstituteTechnion Israel Institute of TechnologyHaifa32000Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology InstituteTechnion Israel Institute of TechnologyHaifa32000Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russell Berrie Nanotechnology InstituteTechnion Israel Institute of TechnologyHaifa32000Israel
| | | | - Andrzej Ożyhar
- Department of BiochemistryFaculty of ChemistryWroclaw University of Science and TechnologyWroclaw50-370Poland
| |
Collapse
|
37
|
Gebauer D, Wolf SE. Designing Solid Materials from Their Solute State: A Shift in Paradigms toward a Holistic Approach in Functional Materials Chemistry. J Am Chem Soc 2019; 141:4490-4504. [DOI: 10.1021/jacs.8b13231] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Denis Gebauer
- Department of Chemistry, Physical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephan E. Wolf
- Department of Materials Science and Engineering, Institute of Glass and Ceramics and Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
38
|
Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. MINERALS 2019. [DOI: 10.3390/min9020068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomineralization is a process in which organic matter and inorganic matter combine with each other under the regulation of living organisms. Because of the biomineralization-induced super survivability and retentivity, biomineralization has attracted special attention from biologists, archaeologists, chemists, and materials scientists for its tracer and transformation effect in rock evolution study and nanomaterials synthesis. However, controlling the biomineralization process in vitro as precisely as intricate biology systems still remains a challenge. In this review, the regulating roles of temperature, pH, and organics in biominerals forming process were reviewed. The artificially introducing and utilization of biomineralization, the bio-inspired synthesis of nanomaterials, in biomedical fields was further discussed, mainly in five potential fields: drug and cell-therapy engineering, cancer/tumor target engineering, bone tissue engineering, and other advanced biomedical engineering. This review might help other interdisciplinary researchers to bionic-manufacture biominerals in molecular-level for developing more applications of biomineralization.
Collapse
|
39
|
Jenewein C, Ruiz-Agudo C, Wasman S, Gower L, Cölfen H. Development of a novel CaCO 3 PILP based cementation method for quartz sand. CrystEngComm 2019. [DOI: 10.1039/c8ce02158a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development and investigation of a cementation method for soil grade quartz sand by utilizing aqueous Polymer Induced Liquid Precursor (PILP) solutions.
Collapse
Affiliation(s)
- Christian Jenewein
- Physical Chemistry
- Department of Chemistry
- University of Konstanz
- D-78457 Konstanz
- Germany
| | - Cristina Ruiz-Agudo
- Physical Chemistry
- Department of Chemistry
- University of Konstanz
- D-78457 Konstanz
- Germany
| | - Scott Wasman
- Engineering School of Sustainable Infrastructure and Environment
- University of Florida Gainesville
- USA
| | - Laurie Gower
- Materials Science & Engineering
- University of Florida Gainesville
- USA
| | - Helmut Cölfen
- Physical Chemistry
- Department of Chemistry
- University of Konstanz
- D-78457 Konstanz
- Germany
| |
Collapse
|