1
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Yan J, Li Y, Ding L, Hou R, Xing C, Jiang C, Miao Z, Zhuang C. Fragment-Based Discovery of Azocyclic Alkyl Naphthalenesulfonamides as Keap1-Nrf2 Inhibitors for Acute Lung Injury Treatment. J Med Chem 2023. [PMID: 37257073 DOI: 10.1021/acs.jmedchem.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway is a promising strategy to alleviate acute lung injury (ALI). A naphthalensulfonamide NXPZ-2, targeting Keap1-Nrf2 interaction to release Nrf2, was confirmed to exhibit significant anti-inflammatory activities, however, accompanying nonideal solubility and PK profiles. To further improve the properties, twenty-nine novel naphthalenesulfonamide derivatives were designed by a fragment-based strategy. Among them, compound 10u with a (R)-azetidine group displayed the highest PPI inhibitory activity (KD2 = 0.22 μM). The hydrochloric acid form of 10u exhibited a 9-fold improvement on water solubility (S = 484 μg/mL, pH = 7.0) compared to NXPZ-2 (S = 55 μg/mL, pH = 7.0). It could significantly reduce LPS-induced lung oxidative damages and inflammations in vitro and in vivo. Furthermore, a satisfactory pharmacokinetic property was revealed. In conclusion, the novel azetidine-containing naphthalenesulfonamide represents a promising drug candidate for Keap1-targeting ALI treatment.
Collapse
Affiliation(s)
- Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Li Ding
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruilin Hou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
3
|
Xu X, Huang X, Zheng Y, Wang X, Xie J, Liu S, Guo K. Synthesis, Structural Elucidation, and Anti-Inflammatory Activity of a Water-Soluble Derivative of Arctiin. Molecules 2023; 28:molecules28041789. [PMID: 36838775 PMCID: PMC9961579 DOI: 10.3390/molecules28041789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The poor oral bioavailability of arctiin caused by its low water solubility is the biggest obstacle in developing it as a drug. In this work, a new water-soluble glucuronide derivative of arctiin (arctigenin-4'-O-glucuronide) was synthesized through 2,2,6,6-tetramethylpiperidine 1-oxyl mediated oxidation reaction. Subsequently, its anti-inflammatory effect was evaluated by mice acute lung injury model in vivo. The results showed that the glucuronide derivative of arctiin not only had better water solubility but also displayed improved anti-inflammatory activity in vivo, thus serving as an innovative compound in the drug development of arctiin.
Collapse
Affiliation(s)
- Xia Xu
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Xiaofeng Huang
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Yuedan Zheng
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
| | - Jing Xie
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Sha Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu 610066, China
- Correspondence: (S.L.); (K.G.)
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610200, China
- Correspondence: (S.L.); (K.G.)
| |
Collapse
|
4
|
Pharmaceutical and Safety Profile Evaluation of Novel Selenocompounds with Noteworthy Anticancer Activity. Pharmaceutics 2022; 14:pharmaceutics14020367. [PMID: 35214099 PMCID: PMC8875489 DOI: 10.3390/pharmaceutics14020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Prior studies have reported the potent and selective cytotoxic, pro-apoptotic, and chemopreventive activities of a cyclic selenoanhydride and of a series of selenoesters. Some of these selenium derivatives demonstrated multidrug resistance (MDR)-reversing activity in different resistant cancer cell lines. Thus, the aim of this study was to evaluate the pharmaceutical and safety profiles of these selected selenocompounds using alternative methods in silico and in vitro. One of the main tasks of this work was to determine both the physicochemical properties and metabolic stability of these selenoesters. The obtained results proved that these tested selenocompounds could become potential candidates for novel and safe anticancer drugs with good ADMET parameters. The most favorable selenocompounds turned out to be the phthalic selenoanhydride (EDA-A6), two ketone-containing selenoesters with a 4-chlorophenyl moiety (EDA-71 and EDA-73), and a symmetrical selenodiester with a pyridine ring and two selenium atoms (EDA-119).
Collapse
|
5
|
Wang S, Zhao Y, Zhang Z, Zhang Y, Li L. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Kaczor A, Witek K, Podlewska S, Sinou V, Czekajewska J, Żesławska E, Doroz-Płonka A, Lubelska A, Latacz G, Nitek W, Bischoff M, Alibert S, Pagès JM, Jacob C, Karczewska E, Bolla JM, Handzlik J. Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. Int J Mol Sci 2021; 22:ijms22042062. [PMID: 33669790 PMCID: PMC7922564 DOI: 10.3390/ijms22042062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/21/2023] Open
Abstract
In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
| | - Karolina Witek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
- Department of Pharmaceutical Microbiology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (J.C.); (E.K.)
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13005 Marseille, France; (V.S.); (S.A.); (J.-M.P.); (J.-M.B.)
- Institute for Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg/Saar, Germany;
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany;
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, ul. Smętna 12, 31-343 Krakow, Poland
| | - Veronique Sinou
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13005 Marseille, France; (V.S.); (S.A.); (J.-M.P.); (J.-M.B.)
| | - Joanna Czekajewska
- Department of Pharmaceutical Microbiology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (J.C.); (E.K.)
| | - Ewa Żesławska
- Pedagogical University of Cracow, Institute of Biology, ul. Podchorążych 2, 30-084 Krakow, Poland;
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland;
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg/Saar, Germany;
| | - Sandrine Alibert
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13005 Marseille, France; (V.S.); (S.A.); (J.-M.P.); (J.-M.B.)
| | - Jean-Marie Pagès
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13005 Marseille, France; (V.S.); (S.A.); (J.-M.P.); (J.-M.B.)
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany;
| | - Elżbieta Karczewska
- Department of Pharmaceutical Microbiology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (J.C.); (E.K.)
| | - Jean-Michel Bolla
- UMR_MD1, U-1261, Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13005 Marseille, France; (V.S.); (S.A.); (J.-M.P.); (J.-M.B.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.W.); (S.P.); (A.D.-P.); (A.L.); (G.L.)
- Correspondence: ; Tel.: +48 12 620-55-80
| |
Collapse
|
7
|
Influence of shellac on the improvement of solubility and supersaturation of loratadine amorphous solid dispersion using a new grade of HPMC. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Suresh RR, Jain S, Chen Z, Tosh DK, Ma Y, Podszun MC, Rotman Y, Salvemini D, Jacobson KA. Design and in vivo activity of A 3 adenosine receptor agonist prodrugs. Purinergic Signal 2020; 16:367-377. [PMID: 32720036 PMCID: PMC7524976 DOI: 10.1007/s11302-020-09715-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Prodrugs (MRS7422, MRS7476) of highly selective A3 adenosine receptor (AR) agonists Cl-IB-MECA and MRS5698, respectively, were synthesized by succinylation of the 2' and 3' hydroxyl groups, and the parent, active drug was shown to be readily liberated upon incubation with liver esterases. The prodrug MRS7476 had greatly increased aqueous solubility compared with parent MRS5698 and was fully efficacious and with a longer duration than MRS7422 in reversing mouse neuropathic pain (chronic constriction injury model, 3 μmol/kg, p.o.), a known A3AR effect. MRS7476 (5 mg/kg, p.o., twice daily) was found to protect against non-alcoholic steatohepatitis (NASH) in the STAM mouse model, indicated by the NAFLD activity score. Hepatocyte ballooning, IL-10 production, and liver histology were significantly normalized in the MRS7476-treated mice, but not liver fibrosis (no change in ACTA2 levels) or inflammation. Hepatic expression of ADORA3 in human NAFLD patients was 1.9-fold lower compared to normal controls. Adora3 expression determined by qPCR in primary mouse liver was associated with the stellate cells, and its mouse full body A3AR knockout worsened liver markers of inflammation and steatosis. Thus, we have introduced a reversible prodrug strategy that enables water solubility and in vivo activity of masked A3AR agonists in models of two disease conditions.
Collapse
Affiliation(s)
- R. Rama Suresh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| | - Shanu Jain
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO USA
| | - Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD USA
| | - Maren C. Podszun
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD USA
| | - Yaron Rotman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO USA
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| |
Collapse
|
9
|
Załuski M, Stanuch K, Karcz T, Hinz S, Latacz G, Szymańska E, Schabikowski J, Doroż-Płonka A, Handzlik J, Drabczyńska A, Müller CE, Kieć-Kononowicz K. Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties. MEDCHEMCOMM 2018; 9:951-962. [PMID: 30108984 PMCID: PMC6071793 DOI: 10.1039/c8md00070k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022]
Abstract
A library of 27 novel amide derivatives of annelated xanthines was designed and synthesized. The new compounds represent 1,3-dipropyl- and 1,3-dibutyl-pyrimido[2,1-f]purinedione-9-ethylphenoxy derivatives including a CH2CONH linker between the (CH2)2-amino group and the phenoxy moiety. A synthetic strategy to obtain the final products was developed involving solvent-free microwave irradiation. The new compounds were evaluated for their adenosine receptor (AR) affinities. The most potent derivatives contained a terminal tertiary amino function. Compounds with nanomolar AR affinities and at the same time high water-solubility were obtained (A1 (Ki = 24-605 nM), A2A (Ki = 242-1250 nM), A2B (Ki = 66-911 nM) and A3 (Ki = 155-1000 nM)). 2-(4-(2-(1,3-Dibutyl-2,4-dioxo-1,2,3,4,7,8-hexahydropyrimido[2,1-f]purin-9(6H)-yl)ethyl)phenoxy)-N-(3-(diethylamino)propyl)acetamide (27) and the corresponding N-(2-(pyrrolidin-1-yl)ethyl)acetamide (36) were found to be the most potent antagonists of the present series. While 27 showed CYP inhibition and moderate metabolic stability, 36 was found to possess suitable properties for in vivo applications. In an attempt to explain the affinity data for the synthesized compounds, molecular modeling and docking studies were performed using homology models of A1 and A2A adenosine receptors. The potent compound 36 was used as an example for discussion of the possible ligand-protein interactions. Moreover, the compounds showed high water-solubility indicating that the approach of introducing a basic side chain was successful for the class of generally poorly soluble AR antagonists.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Katarzyna Stanuch
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Tadeusz Karcz
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sonja Hinz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Agata Doroż-Płonka
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Anna Drabczyńska
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Christa E Müller
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| |
Collapse
|
10
|
Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300. Bioorg Med Chem 2017; 25:3623-3630. [DOI: 10.1016/j.bmc.2017.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
|
11
|
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, Anvari E, Ghalamfarsa G, Mohammadi H, Jadidi-Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 2017; 233:2032-2057. [DOI: 10.1002/jcp.25873] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mohammad H. Kazemi
- Student Research Committee, Department of Immunology, School of Medicine; Iran University of Medical Sciences (IUMS); Tehran Iran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sahar Raoofi Mohseni
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK); Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
- Department of Immunology, School of Medicine; Bushehr University of Medical Sciences; Bushehr Iran
| | - Enayat Anvari
- Faculty of Medicine, Department of Physiology; Ilam University of Medical Sciences; Ilam Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
12
|
Szymańska E, Drabczyńska A, Karcz T, Müller CE, Köse M, Karolak-Wojciechowska J, Fruziński A, Schabikowski J, Doroz-Płonka A, Handzlik J, Kieć-Kononowicz K. Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors. Bioorg Med Chem 2016; 24:4347-4362. [PMID: 27485602 DOI: 10.1016/j.bmc.2016.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 12/20/2022]
Abstract
A new series of 32 pyrimido- and 5 tetrahydropyrazino[2,1-f]purinediones was obtained and evaluated for their adenosine receptors (ARs) affinities. The 1,3-dibutyl derivative of 9-(4-(2-(dimethylamino)ethoxy)phenyl)-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione was found to be the most potent A1 AR antagonist of the present series, showing selectivity over the other AR subtypes. The structure-activity for the obtained purinediones was established. Docking experiments of the investigated library to homology models of the human and rat A1 and A2A ARs allowed to compare the expected binding modes for selected compounds. The detailed analysis of binding cavities within individual AR subtypes indicated small but significant structural variations that may underlie the observed differences in binding affinities of purinediones at particular subtypes and species.
Collapse
Affiliation(s)
- Ewa Szymańska
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | - Andrzej Fruziński
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| |
Collapse
|
13
|
The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules 2015; 21:42. [PMID: 26729077 PMCID: PMC6273601 DOI: 10.3390/molecules21010042] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/04/2022] Open
Abstract
Prodrug design is a widely known molecular modification strategy that aims to optimize the physicochemical and pharmacological properties of drugs to improve their solubility and pharmacokinetic features and decrease their toxicity. A lack of solubility is one of the main obstacles to drug development. This review aims to describe recent advances in the improvement of solubility via the prodrug approach. The main chemical carriers and examples of successful strategies will be discussed, highlighting the advances of this field in the last ten years.
Collapse
|
14
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
15
|
Yuan G, Gedeon NG, Jankins TC, Jones GB. Novel approaches for targeting the adenosine A2Areceptor. Expert Opin Drug Discov 2014; 10:63-80. [DOI: 10.1517/17460441.2015.971006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE. 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorg Med Chem 2013; 21:7435-52. [PMID: 24139167 DOI: 10.1016/j.bmc.2013.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stössel A, Schlenk M, Hinz S, Küppers P, Heer J, Gütschow M, Müller CE. Dual targeting of adenosine A(2A) receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J Med Chem 2013; 56:4580-96. [PMID: 23631427 DOI: 10.1021/jm400336x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blockade of A2A adenosine receptors (A2AARs) and inhibition of monoamine oxidase B (MAO-B) in the brain are considered attractive strategies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD). In the present study, benzothiazinones, e.g., 2-(3-chlorophenoxy)-N-(4-oxo-4H-3,1-benzothiazin-2-yl)acetamide (13), were identified as a novel class of potent MAO-B inhibitors (IC50 human MAO-B: 1.63 nM). Benzothiazinones with large substituents in the 2-position, e.g., methoxycinnamoylamino, phenylbutyrylamino, or chlorobenzylpiperazinylbenzamido residues (14, 17, 27, and 28), showed high affinity and selectivity for A2AARs (Ki human A2AAR: 39.5-69.5 nM). By optimizing benzothiazinones for both targets, the first potent, dual-acting A2AAR/MAO-B inhibitors with a nonxanthine structure were developed. The best derivative was N-(4-oxo-4H-3,1-benzothiazin-2-yl)-4-phenylbutanamide (17, Ki human A2A, 39.5 nM; IC50 human MAO-B, 34.9 nM; selective versus other AR subtypes and MAO-A), which inhibited A2AAR-induced cAMP accumulation and showed competitive, reversible MAO-B inhibition. The new compounds may be useful tools for validating the A2AAR/MAO-B dual target approach in PD.
Collapse
Affiliation(s)
- Anne Stössel
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Rivara S, Piersanti G, Bartoccini F, Diamantini G, Pala D, Riccioni T, Stasi MA, Cabri W, Borsini F, Mor M, Tarzia G, Minetti P. Synthesis of (E)-8-(3-Chlorostyryl)caffeine Analogues Leading to 9-Deazaxanthine Derivatives as Dual A2A Antagonists/MAO-B Inhibitors. J Med Chem 2013; 56:1247-61. [DOI: 10.1021/jm301686s] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Silvia Rivara
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Giuseppe Diamantini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Daniele Pala
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Teresa Riccioni
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Maria Antonietta Stasi
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Walter Cabri
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Franco Borsini
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Marco Mor
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giorgio Tarzia
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Patrizia Minetti
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| |
Collapse
|
19
|
The novel adenosine A(2A) antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions. Pharmacol Biochem Behav 2012; 102:477-87. [PMID: 22705392 DOI: 10.1016/j.pbb.2012.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 11/21/2022]
Abstract
Adenosine A(2A) and dopamine D2 receptors interact to regulate diverse aspects of ventral and dorsal striatal functions related to motivational and motor processes, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of depression, parkinsonism and other disorders. The present experiments were performed to characterize the effects of MSX-4, which is an amino acid ester prodrug of the potent and selective adenosine A(2A) receptor antagonist MSX-2, by assessing its ability to reverse pharmacologically induced motivational and motor impairments. In the first group of studies, MSX-4 reversed the effects of the D2 antagonist eticlopride on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. MSX-4 was less potent after intraperitoneal administration than the comparison compound, MSX-3, though both were equally efficacious. With this task, MSX-4 was orally active in the same dose range as MSX-3. MSX-4 also reversed the locomotor suppression induced by eticlopride in the open field, but did not induce anxiogenic effects as measured by the relative amount of interior activity. Behaviorally active doses of MSX-4 also attenuated the increase in c-Fos and pDARPP-32(Thr34) expression in nucleus accumbens core that was induced by injections of eticlopride. In addition, MSX-4 suppressed the oral tremor induced by the anticholinesterase galantamine, which is consistent with an antiparkinsonian profile. These actions of MSX-4 indicate that this compound could have potential utility as a treatment for parkinsonism, as well as some of the motivational symptoms of depression and other disorders.
Collapse
|
20
|
Gütschow M, Schlenk M, Gäb J, Paskaleva M, Alnouri MW, Scolari S, Iqbal J, Müller CE. Benzothiazinones: A Novel Class of Adenosine Receptor Antagonists Structurally Unrelated to Xanthine and Adenine Derivatives. J Med Chem 2012; 55:3331-41. [DOI: 10.1021/jm300029s] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Gütschow
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Miriam Schlenk
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Jürgen Gäb
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Minka Paskaleva
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Mohamad Wessam Alnouri
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Silvia Scolari
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Jamshed Iqbal
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | - Christa E. Müller
- PharmaCenter
Bonn, University of Bonn, Pharmaceutical
Institute, Pharmaceutical Chemistry I, Bonn, Germany
| |
Collapse
|
21
|
Water-Soluble Prodrug of Antimicrotubule Agent Plinabulin: Effective Strategy with Click Chemistry. Chemistry 2011; 17:12587-90. [DOI: 10.1002/chem.201102293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 11/07/2022]
|
22
|
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 2011; 132:280-99. [PMID: 21810444 DOI: 10.1016/j.pharmthera.2011.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.
Collapse
Affiliation(s)
- Marie Therese Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson's Disease, IRCCS National Institute of Neurology "C. Mondino", Pavia, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1290-308. [PMID: 21185259 PMCID: PMC3437328 DOI: 10.1016/j.bbamem.2010.12.017] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 01/16/2023]
Abstract
Medicinal chemical approaches have been applied to all four of the adenosine receptor (AR) subtypes (A(1), A(2A), A(2B), and A(3)) to create selective agonists and antagonists for each. The most recent class of selective AR ligands to be reported is the class of A(2B)AR agonists. The availability of these selective ligands has facilitated research on therapeutic applications of modulating the ARs and in some cases has provided clinical candidates. Prodrug approaches have been developed which improve the bioavailability of the drugs, reduce side-effects, and/or may lead to site-selective effects. The A(2A) agonist regadenoson (Lexiscan®), a diagnostic drug for myocardial perfusion imaging, is the first selective AR agonist to be approved. Other selective agonists and antagonists are or were undergoing clinical trials for a broad range of indications, including capadenoson and tecadenoson (A(1) agonists) for atrial fibrillation, or paroxysmal supraventricular tachycardia, respectively, apadenoson and binodenoson (A(2A) agonists) for myocardial perfusion imaging, preladenant (A(2A) antagonist) for the treatment of Parkinson's disease, and CF101 and CF102 (A(3) agonists) for inflammatory diseases and cancer, respectively.
Collapse
|
24
|
Abstract
The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogues were subsequently synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes.
Collapse
Affiliation(s)
- Christa Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany, Phone +49-228-73-2301, Fax +49-228-73-2567
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892, United States of America, Phone +1-301-496-9024, Fax +1-301-480-8422
| |
Collapse
|
25
|
Lee J, Kim SJ, Choi H, Kim YH, Lim IT, Yang HM, Lee CS, Kang HR, Ahn SK, Moon SK, Kim DH, Lee S, Choi NS, Lee KJ. Identification of CKD-516: A Potent Tubulin Polymerization Inhibitor with Marked Antitumor Activity against Murine and Human Solid Tumors. J Med Chem 2010; 53:6337-54. [DOI: 10.1021/jm1002414] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaekwang Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Soo Jin Kim
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Hojin Choi
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Young Hoon Kim
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - In Taek Lim
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Hyun-mo Yang
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Chang Sik Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Hee Ryong Kang
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Soon Kil Ahn
- Division of Life Science, University of Incheon, Incheon 406-772, Korea
| | - Seung Kee Moon
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Dal-Hyun Kim
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Sungsook Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Nam Song Choi
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| | - Kyung Joo Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, PO Box 74, Chonan, Korea
| |
Collapse
|
26
|
Lee J, Bae S, Lee SH, Choi H, Kim YH, Kim SJ, Park GT, Moon SK, Kim DH, Lee S, Ahn SK, Choi NS, Lee KJ. Discovery of a potent tubulin polymerization inhibitor: synthesis and evaluation of water-soluble prodrugs of benzophenone analog. Bioorg Med Chem Lett 2010; 20:6327-30. [PMID: 20850313 DOI: 10.1016/j.bmcl.2010.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/25/2022]
Abstract
Prodrugs have proven to be very useful in enhancing aqueous solubility of sparingly water-soluble drugs, thereby increasing in vivo efficacy without a need of special excipients. In vitro and in vivo evaluations of a number of amino acid prodrugs of 1, a previously identified potent tubulin polymerization inhibitor and cytotoxic against various cancer cell lines led to the discovery of 3·HCl (l-valine attached) which is highly efficacious in mouse xenografts bearing human cancer. Pharmacokinetic analysis in rats revealed that compound 1 was released immediately upon administration of 3·HCl intravenously, with rapid clearance of 3·HCl indicating the effective cleavage of prodrug. Compound 3·HCl (CKD-516) has now been progressed to phase 1 clinical trial.
Collapse
Affiliation(s)
- Jaekwang Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals Inc., PO Box 74, Chonan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Scheiff AB, Yerande SG, El-Tayeb A, Li W, Inamdar GS, Vasu KK, Sudarsanam V, Müller CE. 2-Amino-5-benzoyl-4-phenylthiazoles: Development of potent and selective adenosine A1 receptor antagonists. Bioorg Med Chem 2010; 18:2195-2203. [DOI: 10.1016/j.bmc.2010.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/21/2022]
|
28
|
Müller CE. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 2010; 6:2071-83. [PMID: 19937841 DOI: 10.1002/cbdv.200900114] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low water solubility and low bioavailability are frequent problems in drug development, particularly in the area of central nervous system (CNS) drugs. This short review describes selected prodrug approaches which have been developed to enhance the bioavailability of drugs, especially that of poorly soluble drugs. Some of the most successful drugs on the market are prodrugs. With a better understanding of active-transport processes at cell membranes in the gut as well as at the blood-brain barrier, the importance of prodrug approaches will further increase in the future. Prodrug approaches will already be considered in the early phase of drug discovery.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn.
| |
Collapse
|
29
|
Abstract
The development of potent and selective agonists and antagonists of adenosine receptors (ARs) has been a target of medicinal chemistry research for several decades, and recently the US Food and Drug Administration has approved Lexiscan, an adenosine derivative substituted at the 2 position, for use as a pharmacologic stress agent in radionuclide myocardial perfusion imaging. Currently, some other adenosine A(2A) receptor (A(2A)AR) agonists and antagonists are undergoing preclinical testing and clinical trials. While agonists are potent antiinflammatory agents also showing hypotensive effects, antagonists are being developed for the treatment of Parkinson's disease.However, since there are still major problems in this field, including side effects, low brain penetration (for the targeting of CNS diseases), short half-life, or lack of in vivo effects, the design and development of new AR ligands is a hot research topic.This review presents an update on the medicinal chemistry of A(2A)AR agonists and antagonists, and stresses the strong need for more selective ligands at the human A(2A)AR subtype, in particular in the case of agonists.
Collapse
Affiliation(s)
- Gloria Cristalli
- Dipartimento di Scienze Chimiche, Università di Camerino, 62032 Camerino (MC), Italy.
| | | | | |
Collapse
|