1
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
2
|
Cecerska-Heryć E, Wiśniewska Z, Serwin N, Polikowska A, Goszka M, Engwert W, Michałów J, Pękała M, Budkowska M, Michalczyk A, Dołęgowska B. Can Compounds of Natural Origin Be Important in Chemoprevention? Anticancer Properties of Quercetin, Resveratrol, and Curcumin-A Comprehensive Review. Int J Mol Sci 2024; 25:4505. [PMID: 38674092 PMCID: PMC11050349 DOI: 10.3390/ijms25084505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Zofia Wiśniewska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Weronika Engwert
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Jaśmina Michałów
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| |
Collapse
|
3
|
Bilajac E, Mahmutović L, Glamočlija U, Osmanović A, Hromić-Jahjefendić A, Tambuwala MM, Suljagić M. Curcumin Decreases Viability and Inhibits Proliferation of Imatinib-Sensitive and Imatinib-Resistant Chronic Myeloid Leukemia Cell Lines. Metabolites 2022; 13:58. [PMID: 36676983 PMCID: PMC9863870 DOI: 10.3390/metabo13010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative haematological malignancy characterized by constitutive activation of BCR-ABL1 tyrosine kinase in the majority of patients. BCR-ABL1 expression activates signaling pathways involved in cell proliferation and survival. Current treatment options for CML include tyrosine kinase inhibitors (TKI) with resistance as a major issue. Various treatment options for overcoming resistance are being investigated. Among them, phytochemical curcumin could play an important role. Curcumin has been found to exhibit anti-cancerous effects in various models, including CML, through regulation of multiple molecular signaling pathways contributing to tumorigenesis. We have evaluated curcumin's effects on imatinib-sensitive LAMA84S and K562, as well as imatinib-resistant LAMA84R cell lines. Our results indicate a significant dose-dependent decrease in cell viability and proliferation of imatinib-sensitive and imatinib-resistant cell lines after curcumin treatment. Suppression of key signaling molecules regulating metabolic and proliferative events, such as Akt, P70S6K and NF-kB, was observed. Increased expression of caspase-3 suggests the potential pro-apoptotic effect of curcumin in the imatinib-resistant CML model. Additional in silico molecular docking studies revealed binding modes and affinities of curcumin with different targets and the results are in accordance with in vitro findings. Altogether, these results indicate the potential role of curcumin in the treatment of CML.
Collapse
Affiliation(s)
- Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Una Glamočlija
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina
- Scientific-Research Unit, Bosnalijek JSC, Jukićeva 53, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amar Osmanović
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Mirza Suljagić
- 3DBioLabs, FabLab B&H, University of Sarajevo Campus, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
5
|
Tempranillo Grape Extract in Transfersomes: A Nanoproduct with Antioxidant Activity. NANOMATERIALS 2022; 12:nano12050746. [PMID: 35269233 PMCID: PMC8912025 DOI: 10.3390/nano12050746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Polyphenols are gaining increasing interest due to their beneficial properties to human health. Grape pomace, the by-product of wine production, is a source of these bioactive compounds. An extract from Tempranillo grape pomace was obtained and characterized qualitatively and quantitatively. The major components found were anthocyanins, flavan-3-ols, and flavonols. To improve the bioavailability of these compounds, the extract was formulated in phospholipid vesicles, namely transfersomes. Spherical unilamellar vesicles around 100 nm each were obtained. The antioxidant activity of both the extract and the transfersomes was evaluated by using colorimetric assays (i.e., DPPH, FRAP, and Folin–Ciocalteu). The cells’ viability and the antioxidant activity were assessed in keratinocytes. The results showed that the extract and the transfersomes had no cytotoxic effects and exerted remarkable antioxidant activity, which was more evident in a vesicle formulation. These findings highlighted the potential of the Tempranillo grape pomace extract and the efficacy of the incorporation into phospholipid vesicles.
Collapse
|
6
|
El Sharkasy ME, Aboshabana R, Belal F, Walash M, Tolba MM. Synchronized spectrofluorimetric determination of ponatinib and curcumin as an effective therapeutic combination in laboratory prepared mixtures and human plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120235. [PMID: 34371314 DOI: 10.1016/j.saa.2021.120235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Curcumin is a natural product that is frequently utilized in cancer prevention and treatment. The significant benefit of vegetable-derived nutraceuticals in combination with widespread cytostatic medication such as ponatinib is to reduce toxicity and side effects. In this paper, we focus the study on analytical quantification of ponatinib and curcumin through highly sensitive synchronous spectrofluorometric method. Applying this method at Δλ = 160 nm, each of ponatinib and curcumin could be measured at 303 and 412 nm without interference from each others. The diverse experimental factors impacting the performance of the method were studied and optimized. The method exhibited a reasonable linearity in the ranges of 5.0-60.0 and 10.0-200.0 ng/mL for ponatinib and curcumin, respectively with detection limits of 1.48 and 1.22 ng/mL and quantitation limits of 4.49 and 3.68 ng/mL, respectively. The anticipated method was employed for the assessment and evaluation of the studied drugs in the spiked human plasma samples. The mean % recoveries in plasma samples (n = 6) for each of ponatinib and curcumin were 99.84 ± 1.86 and 100.06 ± 2.72, accordingly. The developed method was validated in conformity with the requirements of International Council of Harmonization (ICH).
Collapse
Affiliation(s)
- Mona E El Sharkasy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Rasha Aboshabana
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - F Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - M Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Manar M Tolba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
7
|
Role of Natural Antioxidant Products in Colorectal Cancer Disease: A Focus on a Natural Compound Derived from Prunus spinosa, Trigno Ecotype. Cells 2021; 10:cells10123326. [PMID: 34943833 PMCID: PMC8699069 DOI: 10.3390/cells10123326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is on the rise in industrialized countries, which is why it is important to find new compounds that are effective, with little or no adverse health effects. CRC arises from some cells of the epithelium which, following a series of genetic or epigenetic mutations, obtain a selective advantage. This work consists of a review on endogenous and exogenous antioxidant products that may have an efficacy in the treatment of CRC and an experimental study, in which the treatment was carried out with a natural compound with antitumor and antiproliferative activity, Prunus spinosa Trigno ecotype, patented by us, on HCT116 colorectal carcinoma cell line. The superoxide content was quantified after the treatments at different concentrations (2, 5, or 10 mg/mL) by means of the DHR123 probe; loss of the mitochondrial membrane potential with the tetramethylrodamine methyl ester (TMRM) cationic probe and reduced glutathione content (GSH) from monochlorobimane (MCB). This study revealed the importance of a careful choice of the concentration of the natural compound to be used in the CRC, due to the presence of a paradoxical effect, both antioxidant and pro-oxidant, depending on the different physiological conditions of the cell.
Collapse
|
8
|
Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res 2021; 36:147-163. [PMID: 34559416 DOI: 10.1002/ptr.7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.
Collapse
Affiliation(s)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Grover M, Behl T, Sachdeva M, Bungao S, Aleya L, Setia D. Focus on Multi-targeted Role of Curcumin: a Boon in Therapeutic Paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18893-18907. [PMID: 33595796 DOI: 10.1007/s11356-021-12809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Curcumin is a polyphenolic compound that exhibited good anticancer potential against different types of cancers through its multi-targeted effect like the termination of cell proliferation, inflammation, angiogenesis, and metastasis, thereby acting as antiproliferative and cytotoxic in nature. The present review surveys the various drug combination tried with curcumin or its synthetic analogues and also the mechanism by which curcumin potentiates the effect of almost every drug. In addition, this article also focuses on aromatherapy which is gaining much popularity in cancer patients. After thoroughly studying several articles on combination therapy of curcumin through authenticated book chapters, websites, research, and review articles available at PubMed, ScienceDirect, etc., it has been observed that multi-targeted curcumin possess enormous anticancer potential and, with whatever drug it is given in combination, has always resulted in enhanced effect with reduced dose as well as side effects. It is also capable enough in overcoming the problem of chemoresistance. Besides this, aromatherapy also proved its potency in reducing cancer-related side effects. Combining all the factors together, we can conclude that combination therapy of drugs with curcumin should be explored extensively. In addition, aromatherapy can be used as an adjuvant or supplementary therapy to reduce the cancer complications in patients.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Simona Bungao
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Alharbi W, Hassan I, Khan RA, Parveen S, Alharbi KH, Bin Sharfan II, Alhazza IM, Ebaid H, Alsalme A. Bioactive Tryptophan-Based Copper Complex with Auxiliary β-Carboline Spectacle Potential on Human Breast Cancer Cells: In Vitro and In Vivo Studies. Molecules 2021; 26:1606. [PMID: 33799355 PMCID: PMC8001361 DOI: 10.3390/molecules26061606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Biocompatible tryptophan-derived copper (1) and zinc (2) complexes with norharmane (β-carboline) were designed, synthesized, characterized, and evaluated for the potential anticancer activity in vitro and in vivo. The in vitro cytotoxicity of both complexes 1 and 2 were assessed against two cancerous cells: (human breast cancer) MCF7 and (liver hepatocellular cancer) HepG2 cells with a non-tumorigenic: (human embryonic kidney) HEK293 cells. The results exhibited a potentially decent selectivity of 1 against MCF7 cells with an IC50 value of 7.8 ± 0.4 μM compared to 2 (less active, IC50 ~ 20 μM). Furthermore, we analyzed the level of glutathione, lipid peroxidation, and visualized ROS generation to get an insight into the mechanistic pathway and witnessed oxidative stress. These in vitro results were ascertained by in vivo experiments, which also supported the free radical-mediated oxidative stress. The comet assay confirmed the oxidative stress that leads to DNA damage. The histopathology of the liver also ascertained the low toxicity of 1.
Collapse
Affiliation(s)
- Walaa Alharbi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| | - Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, 46423 Yanbu, Saudi Arabia;
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia;
| | - Ibtisam I. Bin Sharfan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| |
Collapse
|
11
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
12
|
Rodríguez-García A, García-Vicente R, Morales ML, Ortiz-Ruiz A, Martínez-López J, Linares M. Protein Carbonylation and Lipid Peroxidation in Hematological Malignancies. Antioxidants (Basel) 2020; 9:E1212. [PMID: 33271863 PMCID: PMC7761105 DOI: 10.3390/antiox9121212] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| |
Collapse
|
13
|
Kaweme NM, Zhou S, Changwe GJ, Zhou F. The significant role of redox system in myeloid leukemia: from pathogenesis to therapeutic applications. Biomark Res 2020; 8:63. [PMID: 33292641 PMCID: PMC7661181 DOI: 10.1186/s40364-020-00242-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Excessive generation of reactive oxygen species (ROS) in the presence of a defective antioxidant system can induce cellular damage and disrupt normal physiological functions. Several studies have revealed the unfavorable role of ROS in promoting the growth, proliferation, migration, and survival of leukemia cells. In this review study, we summarize the mechanisms of ROS production and its role in leukemogenesis, counteractive effects of antioxidants, and implicate the current ROS-dependent anticancer therapies in acute myeloid leukemia. BODY: The dysregulation of the redox system is known to play a significant role in the pathogenesis of leukemia. Leukemia cells generate high levels of ROS, which further increases the levels through extra pathways, including mitochondrial deoxyribonucleic mutation, leukemic oncogene activation, increased nicotinamide adenine phosphate hydrogen (NADPH), and cytochrome P450 activities. Aforementioned pathways once activated have shown to promote genomic instability, induce drug resistance to leukemia medical therapy, disease relapse and reduce survival period. The current standard of treatment with chemotherapy employs the pro-oxidant approach to induce apoptosis and promote tumor regression. However, this approach retains several deleterious effects on the subject resulting in degradation of the quality of life. Nevertheless, the addition of an antioxidant as an adjuvant drug to chemotherapy alleviates treatment-related toxicity, increases chemotherapeutic efficacy, and improves survival rates of a patient. CONCLUSION Acute myeloid leukemia remains a daunting challenge to clinicians. The desire to achieve the maximum benefit of chemotherapy but also improve patient outcomes is investigated. ROS generated through several pathways promotes leukemogenesis, drug resistance, and disease relapse. Chemotherapy, the mainstay of treatment, further upregulates ROS levels. Therefore, the addition of an antioxidant to leukemia medical therapy alleviates toxicity and improves patient outcomes.
Collapse
Affiliation(s)
- Natasha Mupeta Kaweme
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Shu Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Geoffrey Joseph Changwe
- School of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan, 250012, P.R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China.
| |
Collapse
|
14
|
Imran M, Iqubal MK, Imtiyaz K, Saleem S, Mittal S, Rizvi MMA, Ali J, Baboota S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm 2020; 587:119705. [DOI: 10.1016/j.ijpharm.2020.119705] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
|
15
|
Iqbal MA, Husain A, Alam O, Khan SA, Ahmad A, Haider MR, Alam MA. Design, synthesis, and biological evaluation of imidazopyridine-linked thiazolidinone as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e2000071. [PMID: 32627909 DOI: 10.1002/ardp.202000071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
In this study, two series of imidazopyridine-linked thiazolidinone rings (5a-h and 6a-h) constituting 16 new compounds were synthesized and tested for their antiproliferative activity against a panel of three human cancer cell lines, that is, MCF-7 (human breast cancer), A549 (human lung cancer), and DU145 (human prostate cancer). Three compounds, 5h, 6f, and 6h, exhibited remarkable results against all three cell lines, but compound 6h was found to be the most active one against the breast cancer cell line. Among all the synthesized compounds, 6h displayed the highest antioxidant results. Furthermore, the potent compounds 5h, 6f, and 6h showed no signs of toxicity at doses ranging from 50 to 500 mg/kg of animal body weight. The biochemical parameters (SGOT and SGPT) of compound 6h nearly matched the control in hepatotoxicity studies. The molecular docking and MM-GBSADG binding studies are in agreement with the in vitro anticancer and antioxidant activity results. The most promising compound 6h was found to have the highest docking score and binding energy, and its absorption, distribution, metabolism, and excretion (ADME) parameters are in the acceptable range. Thus, it can be concluded that 6h, an imidazopyridine derivative endowed with a thiazolidinone ring system, has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Md Azhar Iqbal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah A Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Aftab Ahmad
- Department of Health Information Technology, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
16
|
Varshosaz J, Jandaghian S, Mirian M, Sajjadi SE. Co-delivery of rituximab targeted curcumin and imatinib nanostructured lipid carriers in non-Hodgkin lymphoma cells. J Liposome Res 2020; 31:64-78. [PMID: 32138557 DOI: 10.1080/08982104.2020.1720718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was production of nanostructured lipid carriers (NLCs) of curcumin and imatinib for co-administration in non-Hodgkin lymphoma cells. NLCs were prepared and conjugated to rituximab to target CD20 receptors of lymphoma cell lines. Oleic acid or Labrafac and glyceryl monostearate or lecithin were used for production of NLCs. The antibody coupling efficiency to NLCs and their physical characteristics were studied. The cytotoxicity of NLCs on Jurkat T cells (CD20 receptor negative) and Ramos B cells (CD20 receptor positive) was studied by MTT assay. The cellular uptake was determined by fluorescent microscopy. The results indicated both curcumin and imatinib targeted NLCs had a significant cytotoxic effect much higher than the free drugs and non-targeted NLCs on Ramos cells. In both cell lines, the cytotoxicity of the co-administrated drugs was significantly higher than each drug alone. In Ramos cells the co-administration of curcumin (15 μg/ml)/imatinib (5 μg/ml) decreased the free curcumin IC50 from 8.3 ± 0.9 to 1.9 ± 0.2 μg/ml, and curcumin targeted NLCs from 6.7 ± 0.1 to 1.3 ± 0.2 μg/ml. In this case the IC50 of imatinib was reduced from 11.1 ± 0.7 to 2.3 ± 0.1 μg/ml and imatinib targeted NLCs from 4.3 ± 0.1 to 1.4 ± 0.0 μg/ml. The co-administration of ritoximab conjugated NLCs of curcumin and imatinib may enhance cytotoxicity of imatinib in treatment of non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghian
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Manna I, Das D, Mondal S, Bandyopadhyay M. Potential Pharmacotherapeutic Phytochemicals from Zingiberaceae for Cancer Prevention. PHARMACOTHERAPEUTIC BOTANICALS FOR CANCER CHEMOPREVENTION 2020:221-281. [DOI: 10.1007/978-981-15-5999-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Remigante A, Morabito R, Marino A. Natural Antioxidants Beneficial Effects on Anion Exchange through Band 3 Protein in Human Erythrocytes. Antioxidants (Basel) 2019; 9:antiox9010025. [PMID: 31888111 PMCID: PMC7022719 DOI: 10.3390/antiox9010025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Band 3 protein (B3p) exchanging Cl− and HCO3− through erythrocyte membranes is responsible for acid balance, ion distribution and gas exchange, thus accounting for homeostasis of both erythrocytes and entire organisms. Moreover, since B3p cross links with the cytoskeleton and the proteins underlying the erythrocyte membrane, its function also impacts cell shape and deformability, essential to adaptation of erythrocyte size to capillaries for pulmonary circulation. As growing attention has been directed toward this protein in recent years, the present review was conceived to report the most recent knowledge regarding B3p, with specific regard to its anion exchange capability under in vitro oxidative conditions. Most importantly, the role of natural antioxidants, i.e., curcumin, melatonin and Mg2+, in preventing detrimental oxidant effects on B3p is considered.
Collapse
|
19
|
Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem 2019; 178:687-704. [DOI: 10.1016/j.ejmech.2019.06.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
|
20
|
Trachtenberg A, Muduli S, Sidoryk K, Cybulski M, Danilenko M. Synergistic Cytotoxicity of Methyl 4-Hydroxycinnamate and Carnosic Acid to Acute Myeloid Leukemia Cells via Calcium-Dependent Apoptosis Induction. Front Pharmacol 2019; 10:507. [PMID: 31143124 PMCID: PMC6521573 DOI: 10.3389/fphar.2019.00507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematopoietic disease with poor prognosis for most patients. Conventional chemotherapy has been the standard treatment approach for AML in the past 40 years with limited success. Although, several targeted drugs were recently approved, their long-term impact on survival of patients with AML is yet to be determined. Thus, it is still necessary to develop alternative therapeutic approaches for this disease. We have previously shown a marked synergistic anti-leukemic effect of two polyphenols, curcumin (CUR) and carnosic acid (CA), on AML cells in-vitro and in-vivo. In this study, we identified another phenolic compound, methyl 4-hydroxycinnamate (MHC), which among several tested phytochemicals could uniquely cooperate with CA in killing AML cells, but not normal peripheral blood mononuclear cells. Notably, our data revealed striking phenotypical and mechanistic similarities in the apoptotic effects of MHC+CA and CUR+CA on AML cells. Yet, we show that MHC is a non-fluorescent molecule, which is an important technical advantage over CUR that can interfere in various fluorescence-based assays. Collectively, we demonstrated for the first time the antileukemic activity of MHC in combination with another phenolic compound. This type of synergistically acting combinations may represent prototypes for novel antileukemic therapy.
Collapse
Affiliation(s)
- Aviram Trachtenberg
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Suchismita Muduli
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Katarzyna Sidoryk
- Chemistry Department, Pharmaceutical Research Institute, Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Department, Pharmaceutical Research Institute, Warsaw, Poland
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
21
|
Antioxidants: Scientific Literature Landscape Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8278454. [PMID: 30728893 PMCID: PMC6341248 DOI: 10.1155/2019/8278454] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/29/2018] [Indexed: 01/19/2023]
Abstract
Antioxidants are abundant in natural dietary sources, and the consumption of antioxidants has a lot of potential health benefits. However, there has been no literature analysis on this topic to evaluate its scientific impact in terms of citations. This study is aimed at identifying and analysing the antioxidant publications in the existing scientific literature. In this context, a literature search was performed with the Web of Science database. Full records and cited references of the 299,602 identified manuscripts were imported into VOSviewer for bibliometric analysis. Most of the manuscripts were published since 1991. The publications were mainly related to the categories biochemistry/molecular biology, food science technology, and pharmacology/pharmacy. These topics have been prolific since 1990 and before. Polymer science was prolific before, but its publication share declined in the recent two decades. Brazil, China, India, and South Korea have emerged as upcoming major contributors besides USA. Most prolific journals were Food Chemistry, Journal of Agricultural and Food Chemistry, Free Radical Biology and Medicine, and PLOS One. Clinical conditions with high citations included Alzheimer's disease, cancer, cardiovascular disease, and Parkinson's disease. Chemical terms and structures with high citations included alpha-tocopherol, anthocyanin, ascorbate, beta-carotene, carotenoid, curcumin, cysteine, flavonoid, flavonol, hydrogen peroxide, kaempferol, N-acetylcysteine, nitric oxide, phenolic acid, uric acid, vitamin C, vitamin E, selenium, and resveratrol. Citation patterns temporal analysis revealed a transition of the scientific interest from research focused on antioxidant vitamins and minerals into stronger attention focus on antioxidant phytochemicals (plant secondary metabolites).
Collapse
|
22
|
Jacob J, Amalraj A, Raj KKJ, Divya C, Kunnumakkara AB, Gopi S. A novel bioavailable hydrogenated curcuminoids formulation (CuroWhite™) improves symptoms and diagnostic indicators in rheumatoid arthritis patients - A randomized, double blind and placebo controlled study. J Tradit Complement Med 2018; 9:346-352. [PMID: 31453131 PMCID: PMC6702143 DOI: 10.1016/j.jtcme.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that cause chronic pain, disability and joint destruction. The present placebo controlled randomized study aimed to evaluate the efficacy of a novel hydrogenated curcuminoid formulation-CuroWhite™, in rheumatoid arthritis (RA) patients. Twenty four RA patients were randomized in 1:1:1 ratio to receive 250 mg, 500 mg CuroWhite or placebo as one capsule a day, over a period of three months. Improvement in the ACR response, changes in disease activity assessed using the DAS 28 score, change in physical function assessed on change in ESR, CRP, RF values were evaluated before and after the study. Results suggested that patients who received CuroWhite both low and high doses reported statistically significant changes in their clinical symptoms towards end of the study when compared with placebo. There were significant changes in DAS28 (50–64%) VAS (63–72%) ESR (88–89%), CRP (31–45%) RF (80–84%) values and ACR response for CuroWhite groups in comparison with placebo. Thus, CuroWhite acts as the analgesic and anti-inflammatory product for management of RA by the reduction of the inflammatory action which was confirmed by improvement in ESR, CRP, VAS, RF, DAS-28 and ACR responses. CuroWhite was significantly effective against RA with highly safe without serious side effects and well tolerated.
Collapse
Affiliation(s)
- Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | - K K Jithin Raj
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | | | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| |
Collapse
|
23
|
Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 2018; 36:1563-1585. [PMID: 29729870 DOI: 10.1016/j.biotechadv.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
The diversity of natural compounds is essential for their mechanism of action. The source, structures and structure activity relationship of natural compounds contributed to the development of new classes of chemotherapy agents for over 40 years. The availability of combinatorial chemistry and high-throughput screening has fueled the challenge to identify novel compounds that mimic nature's chemistry and to predict their macromolecular targets. Combining conventional and targeted therapies helped to successfully overcome drug resistance and prolong disease-free survival. Here, we aim to provide an overview of preclinical investigated natural compounds alone and in combination to further improve personalization of cancer treatment.
Collapse
|
24
|
Rafiq S, Raza MH, Younas M, Naeem F, Adeeb R, Iqbal J, Anwar P, Sajid U, Manzoor HM. Molecular Targets of Curcumin and Future Therapeutic Role in Leukemia. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jbm.2018.64003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Jafarpour SM, Safaei M, Mohseni M, Salimian M, Aliasgharzadeh A, Farhood B. The Radioprotective Effects of Curcumin and Trehalose Against Genetic Damage Caused By I-131. Indian J Nucl Med 2018; 33:99-104. [PMID: 29643668 PMCID: PMC5883450 DOI: 10.4103/ijnm.ijnm_158_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Thyroid cancer has been growing rapidly during the last decades. Radioiodine-131 (I-131) as an appropriate therapy modality is currently using in the treatment of cancer and hyperthyroidism diseases. This radiotracer is considered as a cause of oxidative DNA damage in nontarget cells and tissues. The aim of this study was to investigate the effects of curcumin and trehalose on the level of DNA double-strand breaks (DSBs) caused by I-131 in human lymphocytes. Materials and Methods: First, 6-mL blood samples were taken from each of the five volunteers. After 1 h of preincubation with the antioxidants, a total of 20 μCi I-131/2 mL (blood + NaCl) was added to each sample, and then, the samples were reincubated for 1 h. Lymphocytes were separated and the mean DSB levels were measured for each sample through γ-H2AX assay to evaluate the effects of antioxidants. Results: After 1-h incubation with I-131, the DSBs increased by 102.9% compared to the control group (0.343 vs. 0.169 DSB/cell; P = 0.00). Furthermore, compared to the control + I-131 group, curcumin and trehalose reduced the DSBs by 42% and 38%, respectively. There was a significant decrement (P = 0.00) in the levels of DSBs of the curcumin + I-131 and trehalose + I-131 subgroups compared to the control + I-131 subgroup. Furthermore, there was no significant relationship between the radioprotective effect of curcumin and trehalose (P = 0.95). Conclusion: The use of curcumin and trehalose as antioxidant can reduce the numbers of DSBs caused by I-131. Meanwhile, the radioprotective effect of curcumin was more than trehalose.
Collapse
Affiliation(s)
- Seyed Masoud Jafarpour
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Safaei
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Mohseni
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Salimian
- Department of Medical Laboratory, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Akbar Aliasgharzadeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Frenkel M, Sapire K. Complementary and Integrative Medicine in Hematologic Malignancies: Questions and Challenges. Curr Oncol Rep 2017; 19:79. [PMID: 29032389 DOI: 10.1007/s11912-017-0635-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hematologic malignancies represent 9.7% of all cancers, making them the fourth most common type of cancer in the United States. The aggressive and complex treatments administered in hematologic malignancies result in a high burden of psychological needs. Complementary and integrative medicine (CIM) is becoming one of the options that patients use to address their distress during and after cancer treatments. It is not clear whether appropriate CIM can relieve distress in patients affected by these malignancies. This review covers the potential benefits of CIM as relates to nutrition, nutritional supplements, exercise, circadian rhythm, methods for reducing distress during bone marrow aspiration, massage therapy, and acupuncture, in treating patients with hematological malignancies. This review may provide a framework to enhance patient-doctor dialogue regarding CIM use in hematologic malignancies.
Collapse
Affiliation(s)
- Moshe Frenkel
- Department of Family Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,Integrative Medicine Program, Institute of Oncology, Meir Medical Center, Kfar Saba, Israel. .,, Hashoftim 1 B, 30900, Zichron Yaacov, Israel.
| | - Kenneth Sapire
- Department of Anesthesia and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Liu Y, Yu S, Liu L, Yue X, Zhang W, Yang Q, Wang L, Wang Y, Zhang D, Wang J. Inhibition of the double-edged effect of curcumin on Maillard reaction in a milk model system by a nanocapsule strategy. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Saralkar P, Dash AK. Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and In Vitro Evaluation Against DU145 Prostate Cancer Cell Line. AAPS PharmSciTech 2017; 18:2814-2823. [PMID: 28397161 DOI: 10.1208/s12249-017-0772-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 01/09/2023] Open
Abstract
Curcumin and resveratrol are naturally occurring polyphenolic compounds having anti-cancer potential. However, their poor aqueous solubility and bioavailability limit their clinical use. Entrapment of hydrophobic drugs into hydrophilic nanoparticles such as calcium alginate presents a means to deliver these drugs to their target site. Curcumin and resveratrol-loaded calcium alginate nanoparticles were prepared by emulsification and cross-linking process. The nanoparticles were characterized for particle size, zeta potential, moisture content, physical state of the drugs, physical stability, and entrapment efficiency. An UPLC method was developed and validated for the simultaneous analysis of curcumin and resveratrol. Alginate nanoformulation was tested for in vitro efficacy on DU145 prostate cancer cells. The particle size of the nanosuspension and freeze-dried nanoparticles was found to be 12.53 ± 1.06 and 60.23 ± 15 nm, respectively. Both DSC and powder XRD studies indicated that curcumin as well as resveratrol were present in a non-crystalline state, in the nanoparticles. The entrapment efficiency for curcumin and resveratrol was found to be 49.3 ± 4.3 and 70.99 ± 6.1%, respectively. Resveratrol showed a higher percentage of release than curcumin (87.6 ± 7.9 versus 16.3 ± 3.1%) in 24 h. Curcumin was found to be taken up by the cells from solution as well as the nanoparticles. Resveratrol had a poor cellular uptake. The drug-loaded nanoparticles exhibit cytotoxic effects on DU145 cells. At high concentration, drug solution exhibited greater toxicity than nanoparticles. The alginate nanoformulation was found to be safe for intravenous administration.
Collapse
|
29
|
|
30
|
Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 2016; 31:55-66. [PMID: 27453478 DOI: 10.1016/j.arr.2016.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/19/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Current ageing research is aimed not only at the promotion of longevity, but also at improving health span through the discovery and development of new therapeutic strategies by investigating molecular and cellular pathways involved in cellular senescence. Understanding the mechanism of action of polyphenolic compounds targeting mTOR (mechanistic target of rapamycin) and related pathways opens up new directions to revolutionize ways to slow down the onset and development of age-dependent degeneration. Herein, we will discuss the mechanisms by which polyphenols can delay the molecular pathogenesis of ageing via manipulation or more specifically inhibition of mTOR-signaling pathways. We will also discuss the implications of polyphenols in targeting mTOR and its related pathways on health life span extension and longevity..
Collapse
|
31
|
Zhu GH, Dai HP, Shen Q, Ji O, Zhang Q, Zhai YL. Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI-1 cells. PHARMACEUTICAL BIOLOGY 2016; 54:1303-1311. [PMID: 26134921 DOI: 10.3109/13880209.2015.1060508] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Curcumin is a polyphenolic compound extracted from rhizomes of the tropical plant Curcuma longa L. (Zingiberaceae) and it has antitumor, antioxidative, and anti-inflammatory effects. However, its effects on leukemia cell proliferation and invasion are not clear. OBJECTIVE This study investigates the effects of curcumin on acute monocytic leukemia SHI-1 cells at the molecular level. MATERIALS AND METHODS The effects of SHI-1 cells treated with 6.25-25 μM curcumin for 12-48 h were measured by MTT assay, flow cytometry, and Matrigel transwell assay; the underlying molecular mechanisms were assessed by quantitative PCR, Western blotting, and gelatin zymography. RESULTS Treatment of SHI-1 cells with curcumin inhibited cell proliferation in a dose- and time-dependent manner, and the IC50 values at 12, 24, and 48 h were 32.40, 14.13, and 9.67 μM. Curcumin inhibited SHI-1 cell proliferation by arresting the cells in the S-phase, increasing the number of Annexin V-FITC(+)/PI(-) cells and promoting the loss of △Ψm. The results of PCR and Western blotting showed that curcumin increased the FasL mRNA level; inhibited Bcl-2, NF-κB, and ERK expression; and activated P38 MAPK, JNK, and caspase-3. Additionally, curcumin partially suppressed SHI-1 cell invasion and attenuated the mRNA transcription and secretion of MMP-2 and MMP-9. DISCUSSION AND CONCLUSION This study demonstrates that curcumin not only induces SHI-1 cell apoptosis, possibly via both intrinsic and extrinsic pathways triggered by JNK, P38 MAPK and ERK signaling, but also partially suppresses SHI-1 cell invasion, likely by reducing the levels of transcription and secretion of MMP-2 and MMP-9.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Curcumin/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Inhibitory Concentration 50
- Leukemia, Monocytic, Acute/drug therapy
- Leukemia, Monocytic, Acute/enzymology
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/metabolism
- Neoplasm Invasiveness
- S Phase Cell Cycle Checkpoints/drug effects
- Signal Transduction/drug effects
- Time Factors
Collapse
Affiliation(s)
- Guo-Hua Zhu
- a First Clinical College, Nanjing University of Chinese Medicine , Nanjing , China
| | - Hai-Ping Dai
- b Leukemia Research Unit, Jiangsu Institute of Hematology, 1st Affiliated Hospital of Soochow University , Suzhou , China , and
| | - Qun Shen
- a First Clinical College, Nanjing University of Chinese Medicine , Nanjing , China
- c Department of Hematology , 1st Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , China
| | - Ou Ji
- a First Clinical College, Nanjing University of Chinese Medicine , Nanjing , China
| | - Qi Zhang
- a First Clinical College, Nanjing University of Chinese Medicine , Nanjing , China
| | - Yun-Liang Zhai
- a First Clinical College, Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
32
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
33
|
Sulaiman GM. Molecular structure and anti-proliferative effect of galangin in HCT-116 cells: In vitro study. Food Sci Biotechnol 2016; 25:247-252. [PMID: 30263264 PMCID: PMC6049387 DOI: 10.1007/s10068-016-0036-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/06/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Galangin is a naturally occurring plant flavonoid with potential anticancer activity. In present work, the Becke three-parameter hybrid exchange functional method and the Lee-Yang-Parr correction functional methods were used to investigate the structural properties of galangin. The structure-activity relationship analysis has been performed to determine its antioxidant pharmacophore by using density functional theory method and quantum chemical calculations. The free radical scavenging activities of galangin were analyzed with the use of 2, 2-diphenyl-1-picrylhydrazyl and compared with Vitamin C as a control. Galangin decreased the cell proliferation rate in HCT-116 cells and showed concentration- and time-dependent response. Galangin significantly increase the inhibitory effect on HCT-116 clonogenicity and promotes cell cycle arrest at the G2/M or G1 phase, as confirmed by flow cytometry analysis.
Collapse
|
34
|
Yousuf I, Arjmand F, Tabassum S, Toupet L, Khan RA, Siddiqui MA. Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: in vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells. Dalton Trans 2016; 44:10330-42. [PMID: 25970097 DOI: 10.1039/c5dt00770d] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new chromone-appended Cu(ii) drug entity () was designed and synthesized as a potential anticancer chemotherapeutic agent. The structural elucidation was carried out thoroughly by elemental analysis, FT-IR, EPR, ESI-MS and single crystal X-ray crystallography. Complex resulted from the in situ methoxylation reaction of the 3-formylchromone ligand and its subsequent complexation with the copper nitrate salt in a 2 : 1 ratio, respectively. crystallized in the monoclinic P21/c space group possessing the lattice parameters, a = 8.75 Å, b = 5.07 Å, c = 26.22 Å, α = γ = 90°, β = 96.3° per unit cell. Furthermore, in vitro interaction studies of with ct-DNA and tRNA were carried out which suggested more avid binding propensity towards the RNA target via intercalative mode, which was reflected from its Kb, K and Ksv values. The gel electrophoretic mobility assay was carried out on the pBR322 plasmid DNA substrate, to ascertain the cleaving ability and the mechanistic pathway in the presence of additives, and the results revealed the efficient cleaving ability of via the oxidative pathway. In vitro cell growth inhibition via the MTT assay was carried out to evaluate the cytotoxicity of complex and IC50 values were found to be in the range of 5-10 μg mL(-1) in HepG2 and MCF-7 cancer cell lines, which were found to be much lower than the IC50 values of previously reported similar Cu(ii) complexes. Additionally, in the presence of , reactive oxygen species (ROS) and thiobarbituric acid reactive substance (TBARS) levels in the tested cancer cell lines increased significantly, coupled with reduced glutathione (GSH) levels. Thus, our results suggested that ROS plays an important role in cell apoptosis induced by the Cu(ii) complex and validates its potential to act as a robust anticancer drug entity.
Collapse
Affiliation(s)
- Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | |
Collapse
|
35
|
Morabito R, Romano O, La Spada G, Marino A. H2O2-Induced Oxidative Stress Affects SO4= Transport in Human Erythrocytes. PLoS One 2016; 11:e0146485. [PMID: 26745155 PMCID: PMC4712827 DOI: 10.1371/journal.pone.0146485] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and -SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in -SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or -SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.
Collapse
Affiliation(s)
- Rossana Morabito
- Department of Human and Social Sciences, University of Messina, Messina, Italy
| | | | - Giuseppa La Spada
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|
36
|
Navarro-Aviñó JP, Navarro JJF, Castro VV, Ripoll II, Sahuquillo MJM. Tackling pollution by organic farming is capable of increasing fortified foods. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:536-546. [PMID: 26374929 DOI: 10.1080/15226514.2015.1086309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The global pollution stage is poisoning the biosphere and causing global temperatures to rise, necessitating a drastic change in the way man is dealing with nature. One change that may produce many beneficial effects on the biosphere and human health is the use of specific organic farming to produce food in a more integrated way in nature and to increase the capacity of man's own response. Despite many experts' opinion another way to deal with environmental contamination is possible: organic farming, which can increase man's ability to fortify foods. After more than 20 years working under this discipline, Bodegas Dagon is able to achieve the highest stilbenes concentrations (as resveratrol). Versus 14.3 mg/l, "Bodegas Dagón" wines contain resveratrol (HPLC and UV-spectroscopy) up to 1611.73 ± 72.66 mg/l, standing as world's potentially healthiest wine reported to date.
Collapse
Affiliation(s)
- J P Navarro-Aviñó
- a ABBA Gaia S.L. C/Albert Einstein, CEEI , Paterna ( Valencia ), España
| | | | - V Vargas Castro
- a ABBA Gaia S.L. C/Albert Einstein, CEEI , Paterna ( Valencia ), España
| | - I Ilzarbe Ripoll
- a ABBA Gaia S.L. C/Albert Einstein, CEEI , Paterna ( Valencia ), España
| | | |
Collapse
|
37
|
Naksuriya O, Okonogi S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov Ther 2015; 9:136-41. [PMID: 25994066 DOI: 10.5582/ddt.2015.01013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in comparison with three important natural antioxidants; gallic acid, ascorbic acid, and xanthone on free radical scavenging action and their combination effects on this activity. The results indicated that the activities of these compounds were dose-dependent. The 50% effective concentration (EC50) of curcumin was found to be 11 μg/mL. Curcumin showed significantly higher antioxidant activity than ascorbic acid and xanthone but less than gallic acid. Interestingly, curcumin revealed synergistic antioxidant effect when combined with gallic acid whereas the antagonistic effect occurred in curcumin combination with ascorbic acid or xanthone. These results suggest that curcumin-gallic acid combination is the potential antioxidant mixture to be used in place of the individual substance whereas using of curcumin in combination with ascorbic acid or xanthone should be avoid.
Collapse
Affiliation(s)
- Ornchuma Naksuriya
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
| | | |
Collapse
|
38
|
Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. BIOMED RESEARCH INTERNATIONAL 2015; 2015:968981. [PMID: 26075279 PMCID: PMC4449904 DOI: 10.1155/2015/968981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.
Collapse
|
39
|
Kim W, Kim HY, Woo J, Rhim HJ, Kang BR, Lee YD, Kim S, Kim JY, Choi EJ, Kim KS, Kim DJ, Kim Y. Real-Time Imaging Reveals Glioblastoma Suppression Effects of Curcumin in Mouse Brains. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Woong Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| | - Hye Yun Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Department of Biochemistry and Biomedical Sciences; Seoul National University College of Medicine; Seoul 110-799 Republic of Korea
| | - Jiwan Woo
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Department of Life Sciences; Korea University; Seoul 136-701 Republic of Korea
| | - Hoo Jung Rhim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Yonsei University Wonju College of Medicine; Gangwon-do 220-701 Republic of Korea
| | - Bo Ram Kang
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| | - Yong-Deok Lee
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Sehoon Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center; Korea Institute of Radiological & Medical Sciences (KIRAMS); Seoul 139-706 Republic of Korea
| | - Eun-Ju Choi
- Department of Life Sciences; Korea University; Seoul 136-701 Republic of Korea
| | - Key-Sun Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Dong Jin Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - YoungSoo Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| |
Collapse
|
40
|
Abourehab MAS, Khaled KA, Sarhan HAA, Ahmed OAA. Evaluation of combined famotidine with quercetin for the treatment of peptic ulcer: in vivo animal study. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2159-69. [PMID: 25926722 PMCID: PMC4403742 DOI: 10.2147/dddt.s81109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this work was to prepare a combined drug dosage form of famotidine (FAM) and quercetin (QRT) to augment treatment of gastric ulcer. FAM was prepared as freeze-dried floating alginate beads using ion gelation method and then coated with Eudragit RL100 to sustain FAM release. QRT was prepared as solid dispersion with polyvinyl pyrrolidone K30 to improve its solubility. Photo images and scanning electron microscope images of the prepared beads were carried out to detect floating behavior and to reveal surface and core shape of the prepared beads. Anti-ulcerogenic effect and histopathological examination of gastric tissues were carried out to investigate the effect of the combined drug formulation compared with commercial FAM tablets and FAM beads. Gastric glutathione (GSH), superoxide dismutase, catalase, tissue myeloperoxidase, and lipid peroxidation enzyme activities and levels in rat stomach tissues were also determined. Results revealed that spherical beads were formed with an average diameter of 1.64±0.33 mm. They floated immediately with no lag time before floating, and remained buoyant throughout the test period. Treatment with a combination of FAM beads plus QRT showed the absence of any signs of inflammation or hemorrhage, and significantly prevented the indomethacin-induced decrease in GSH levels (P<0.05) with regain of normal GSH gastric tissue levels. Also, there was a significant difference in the decrease of malondialdehyde level compared to FAM commercial tablets or beads alone (P<0.05). The combined formula significantly improved the myeloperoxidase level compared to both the disease control group and commercial FAM tablet-treated group (P<0.05). Formulation of FAM as floating beads in combination with solid dispersion of QRT improved the anti-ulcer activity compared to commercially available tablets, which reveals a promising application for treatment of peptic ulcer.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt ; Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hatem A A Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Caddeo C, Manconi M, Cardia MC, Díez-Sales O, Fadda AM, Sinico C. Investigating the interactions of resveratrol with phospholipid vesicle bilayer and the skin: NMR studies and confocal imaging. Int J Pharm 2015; 484:138-45. [PMID: 25708006 DOI: 10.1016/j.ijpharm.2015.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/24/2022]
Abstract
In this work, phospholipid vesicle-based nanoformulations were developed to deliver antioxidant resveratrol (RSV) to the skin. Penetration enhancer-containing vesicles (PEVs) were prepared adding Oramix™ CG110 or Lauroglycol™ FCC to phosphatidylcholine to favor RSV diffusion through the skin, which was investigated using Franz cells. Vesicles were approximately 100 nm in size, negatively charged and fairly round in shape, as shown via transmission electron microscopy. Nuclear magnetic resonance studies were performed to investigate the RSV/vesicle interactions at the molecular scale, which revealed that RSV was deeply embedded in the bilayer, as shown by the restricted mobility of the drug. Moreover, PEVs improved drug local accumulation 1.7- to 2.1-fold, as compared to the control liposomes. Confocal imaging displayed broadened intercellular spaces in the viable epidermis of PEVs treated skin and high degree of hydration, which are presumably due to the occlusive film formed on the skin surface by the vesicles. These phenomena may be responsible for the higher RSV accumulation achieved when administering PEVs, as compared to control liposomes. Finally, the toxicity of the vesicular formulations was evaluated in vitro against 3T3 fibroblasts, showing no alteration on cell viability after 24h incubation with RSV loaded vesicles. The results from this study suggest that the proposed formulations may be a potential therapeutic alternative to treat skin disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Carla Caddeo
- Deptment of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Deptment of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Cristina Cardia
- Deptment of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - Octavio Díez-Sales
- Deptment of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; Instiuto of Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia-Universidad de Valencia, Spain
| | - Anna Maria Fadda
- Deptment of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - Chiara Sinico
- Deptment of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy.
| |
Collapse
|
42
|
Liu Y, Liu Y, Chen H, Yao X, Xiao Y, Zeng X, Zheng Q, Wei Y, Song C, Zhang Y, Zhu P, Wang J, Zheng X. Synthetic Resveratrol Derivatives and Their Biological Activities: A Review. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojmc.2015.54006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014; 19:20839-63. [PMID: 25514225 PMCID: PMC6271749 DOI: 10.3390/molecules191220839] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
44
|
Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY. Mechanisms by Which Pleiotropic Amphiphilic n-3 PUFA Reduce Colon Cancer Risk. CURRENT COLORECTAL CANCER REPORTS 2014; 10:442-452. [PMID: 25400530 DOI: 10.1007/s11888-014-0241-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the major causes of cancer-related mortality in both men and women worldwide. Genetic susceptibility and diet are primary determinants of cancer risk and tumor behavior. Experimental, epidemiological, and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFA) in preventing chronic inflammation and colon cancer. From a mechanistic perspective, n-3 PUFA are pleiotropic and multifaceted with respect to their molecular mechanisms of action. For example, this class of dietary lipid uniquely alters membrane structure/ cytoskeletal function, impacting membrane receptor function and downstream signaling cascades, including gene expression profiles and cell phenotype. In addition, n-3 PUFA can synergize with other potential anti-tumor agents, such as fermentable fiber and curcumin. With the rising prevalence of diet-induced obesity, there is also an urgent need to elucidate the link between chronic inflammation in adipose tissue and colon cancer risk in obesity. In this review, we will summarize recent developments linking n-3 PUFA intake, membrane alterations, epigenetic modulation, and effects on obesity-associated colon cancer risk.
Collapse
Affiliation(s)
- Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Center for Translational Environmental Health Research, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA. Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Vanessa DeClercq
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Molecular & Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Natividad Roberto Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
45
|
Sviripa VM, Zhang W, Balia AG, Tsodikov OV, Nickell JR, Gizard F, Yu T, Lee EY, Dwoskin LP, Liu C, Watt DS. 2',6'-Dihalostyrylanilines, pyridines, and pyrimidines for the inhibition of the catalytic subunit of methionine S-adenosyltransferase-2. J Med Chem 2014; 57:6083-91. [PMID: 24950374 PMCID: PMC4111374 DOI: 10.1021/jm5004864] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Inhibition
of the catalytic subunit of the heterodimeric methionine
S-adenosyl transferase-2 (MAT2A) with fluorinated N,N-dialkylaminostilbenes (FIDAS agents) offers a
potential avenue for the treatment of liver and colorectal cancers
where upregulation of this enzyme occurs. A study of structure–activity
relationships led to the identification of the most active compounds
as those with (1) either a 2,6-difluorostyryl or 2-chloro-6-fluorostyryl
subunit, (2) either an N-methylamino or N,N-dimethylamino group attached in a para orientation relative to the 2,6-dihalostyryl subunit, and (3) either
an N-methylaniline or a 2-(N,N-dimethylamino)pyridine ring. These modifications led to
FIDAS agents that were active in the low nanomolar range, that formed
water-soluble hydrochloride salts, and that possessed the desired
property of not inhibiting the human hERG potassium ion channel at
concentrations at which the FIDAS agents inhibit MAT2A. The active
FIDAS agents may inhibit cancer cells through alterations of methylation
reactions essential for cancer cell survival and growth.
Collapse
Affiliation(s)
- Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, ‡Department of Pharmaceutical Sciences, College of Pharmacy, §Center for Pharmaceutical Research and Innovation, and ∥Markey Cancer Center, University of Kentucky , Lexington, Kentucky 40506-0509, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shafaghati N, Hedayati M, Hosseinimehr SJ. Protective effects of curcumin against genotoxicity induced by 131-iodine in human cultured lymphocyte cells. Pharmacogn Mag 2014; 10:106-10. [PMID: 24914274 PMCID: PMC4048555 DOI: 10.4103/0973-1296.131020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/15/2013] [Accepted: 04/17/2014] [Indexed: 01/10/2023] Open
Abstract
Background: 131-radioiodine has been widely used as an effective radionuclide for treatment of patients with thyroid diseases. The purpose of the present study is to investigate the radioprotective effects of curcumin as a natural product that protects against the genotoxic effects of 131I in human cultured lymphocytes. Materials and Methods: Whole blood samples from human volunteers were incubated with curcumin at doses of 5, 10, and 50 μg/mL. After 1-hour incubation, the lymphocytes were incubated with 131I (100 μCi/1.5 ml) for 2 hours. The lymphocyte cultures were then mitogenically stimulated to allow for evaluation of the number of micronuclei in cytokinesis-blocked binucleated cells. Results: Incubation of lymphocytes with 131I at dose 100 μCi/1.5 mL induced genotoxicity shown by increase in micronuclei frequency in human lymphocytes. Curcumin at 5, 10, and 50 μg/mL doses significantly reduced the micronuclei frequency. Maximal protective effects and greatest decrease in micronuclei frequency were observed when whole blood was incubated with 50 μg/mL dose of curcumin with 52%. Conclusion: This study has important implications for patients undergoing 131I therapy. Our results indicate a protective role for curcumin against the genetic damage and side effects induced by 131I administration.
Collapse
Affiliation(s)
- Nayereh Shafaghati
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Hedayati
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
47
|
Sobolewski C, Muller F, Cerella C, Dicato M, Diederich M. Celecoxib prevents curcumin-induced apoptosis in a hematopoietic cancer cell model. Mol Carcinog 2014; 54:999-1013. [PMID: 24798089 DOI: 10.1002/mc.22169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/26/2022]
Abstract
Molecules targeting pro-inflammatory pathways have demonstrated beneficial effects in cancer treatment. More recently, combination of natural and synthetic anti-inflammatory drugs was suggested as an appealing strategy to inhibit tumor growth. Herein, we show that curcumin, a polyphenol from Curcuma longa and celecoxib induce apoptosis in hematopoietic cancer cell lines (Hel, Jurkat, K562, Raji, and U937). Further investigations on the most sensitive cell line, U937, indicated that these effects were tightly associated with an accumulation of the cells in S and G2/M for curcumin and in G0/G1 phase of cell cycle for celecoxib, respectively. The effect of celecoxib on cell cycle is associated with an induction of p27 and the down-regulation of cyclin D1. However, in the case of combination experiments, the pretreatment of U937 cells with celecoxib at non-apoptogenic concentrations counteracted curcumin-induced apoptosis. We found that this effect correlated with the prevention of the accumulation in S and G2/M phase of cell cycle induced by curcumin. Similar results have been obtained when celecoxib and curcumin were co-administrated at the same time. Overall our data suggest that this natural and synthetic drug combination is detrimental for cell death induction.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Rastogi N, Gara RK, Trivedi R, Singh A, Dixit P, Maurya R, Duggal S, Bhatt MLB, Singh S, Mishra DP. (6)-Gingerolinduced myeloid leukemia cell death is initiated by reactive oxygen species and activation of miR-27b expression. Free Radic Biol Med 2014; 68:288-301. [PMID: 24378438 DOI: 10.1016/j.freeradbiomed.2013.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.
Collapse
Affiliation(s)
- Namrata Rastogi
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Rishi Kumar Gara
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Rachana Trivedi
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Akanksha Singh
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Preety Dixit
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Shivali Duggal
- Department of Radiotherapy, CSM Medical University, Lucknow, Uttar Pradesh 226003, India
| | - M L B Bhatt
- Department of Radiotherapy, CSM Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sarika Singh
- Toxicology Division, Central Drug Research Institute, Lucknow, Uttar Pradesh 226001, India
| | - Durga Prasad Mishra
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India.
| |
Collapse
|
49
|
Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 2014; 356:251-62. [PMID: 24530513 DOI: 10.1016/j.canlet.2014.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/02/2014] [Accepted: 02/09/2014] [Indexed: 12/15/2022]
Abstract
Cells reprogram their metabolism very early during carcinogenesis; this event is critical for the establishment of other cancer hallmarks. Many oncogenes and tumor suppressor genes control metabolism by interplaying with the existing nutrient-sensing intracellular pathways. Mammalian target of rapamycin, mTOR, is emerging as a collector and sorter of a metabolic network controlling upstream and downstream modulation of these same genes. Natural compounds represent a source of anti-cancer molecules with chemopreventive and therapeutic properties. This review describes selected pathways and genes orchestrating the metabolic reprogramming and discusses the potential of natural compounds to target oncogenic metabolic aberrations.
Collapse
|
50
|
Li PZ, Liu ZQ. Asymmetrical mono-carbonyl ferrocenylidene curcumin and their dihydropyrazole derivatives: Which possesses the highest activity to protect DNA or scavenge radical? Med Chem Res 2014. [DOI: 10.1007/s00044-014-0924-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|