1
|
Nabil A, Abdel-Motaal M, Hassan A, Elshemy MM, Asem M, Elwan M, Ebara M, Abdelmageed M, Shiha G, Azzazy HME. Anti-hepatocellular carcinoma activities of novel hydrazone derivatives via downregulation of interleukin-6. RSC Adv 2024; 14:37960-37974. [PMID: 39610815 PMCID: PMC11603412 DOI: 10.1039/d4ra05854b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity worldwide. Sorafenib is a first-line drug for the treatment of HCC, however, it is reported to cause serious adverse effects and may lead to resistance in many patients. In this study, 20 hydrazone derivatives incorporating triazoles, pyrazolone, pyrrole, pyrrolidine, imidazoline, quinazoline, and oxadiazine moieties were designed, synthesized, and characterized. In addition to molecular docking and in silico ADME study, the cytotoxic activity of the synthesized compounds was evaluated against the human hepatocellular cancer cell line (HepG2) and liver mesenchymal stem cells as a normal cell line. The antitumor activities of the derivatives against sorafenib were compared. Of the 20 synthesized compounds, compound 16 demonstrated potential as a potent anti-HCC drug candidate through downregulation of interleukin 6 which reduces inflammation and tumorigenesis with a strong binding interaction and bioavailability.
Collapse
Affiliation(s)
- Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan +201000618349
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University Beni-Suef Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Qassim Buraydah 51452 Saudi Arabia +966569909737
| | - Ayman Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
| | | | - Medhat Asem
- Department of Civil Engineering, College of Engineering and Information Technology, Onaizah Colleges Qassim Saudi Arabia
| | - Mariam Elwan
- Egyptian Ministry of Health El Mansoura Dakahlia Egypt
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan +201000618349
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba Ibaraki 305-8577 Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science 6-3-1 Niijuku Katsushika-ku Tokyo 125-8585 Japan
| | - Mohammed Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Buraydah Colleges Qassim Saudi Arabia
- Hot Laboratory Center, Atomic Energy Authority Cairo Egypt
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University Egypt
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt +201000565727
| |
Collapse
|
2
|
El-Helw EAE, Asran M, Azab ME, Helal MH, Alzahrani AYA, Ramadan SK. Synthesis and in silico studies of certain benzo[f]quinoline-based heterocycles as antitumor agents. Sci Rep 2024; 14:15522. [PMID: 38969677 PMCID: PMC11226639 DOI: 10.1038/s41598-024-64785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
A series of benzoquinoline-employing heterocycles was synthesized by treating 3-chlorobenzo[f]quinoline-2-carbaldehyde with N-phenyl-3-methylpyrazolone, 4-aminoacetophenone, 1,2-diaminoethane, and 2-cyanoethanohydrazide. Also, pyridine, chromene, α,β-unsaturated nitrile, thiosemicarbazone, and 1,2-bis-aryl hydrazine derivatives were prepared from the cyanoethanohydrazone obtained. The DFT calculations and experiment outcomes were consistent. In vitro screening of their antiproliferative efficacy was examined against HCT116 and MCF7 cancer cell lines. The pyrazolone 2 and cyanoethanohydrazone 5 derivatives exhibited the most potency, which was demonstrated by their molecular docking towards the CDK-5 enzyme. The binding energies of compounds 2 and 5 were - 6.6320 kcal/mol (with RMSD of 0.9477 Å) and - 6.5696 kcal/mol (with RMSD of 1.4889 Å), respectively, which were near to that of co-crystallized ligand (EFP). This implies a notably strong binding affinity towards the CDK-5 enzyme. Thus, pyrazolone derivative 2 would be considered a promising candidate for further optimization to develop new chemotherapeutic agents. In addition, the ADME (absorption, distribution, metabolism, and excretion) analyses displayed its desirable drug-likeness and oral bioavailability properties.
Collapse
Affiliation(s)
- Eman A E El-Helw
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud Asran
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Mohammad E Azab
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Maher H Helal
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Abdullah Y A Alzahrani
- Chemistry Department, Faculty of Science and Arts, King Khalid University, Mohail Assir, Abha, Saudi Arabia
| | - Sayed K Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
3
|
Zahran SS, Ragab FA, Soliman AM, El-Gazzar MG, Mahmoud WR, Ghorab MM. Utility of sulfachloropyridazine in the synthesis of novel anticancer agents as antiangiogenic and apoptotic inducers. Bioorg Chem 2024; 148:107411. [PMID: 38733747 DOI: 10.1016/j.bioorg.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
In a search for new anticancer agents with better activity and selectivity, the present work described the synthesis of several new series of sulfachloropyridazine hybrids with thiocarbamates 3a-e, thioureids 4a-h, 5a-e and 4-substituted sulfachloropyridazines 6a, b, 7a, b and 8. The synthesized compounds were screened in vitro against a panel of 60 cancer cell lines in one dose assay. The most potent derivatives 3a, 3c, 4c, 4d, 5e, 7a and 7b were tested for their antiangiogenic activity by measuring their ability to inhibit VEGFR-2. The most potent compounds in VEGFR-2 inhibitory assay were further evaluated for their ability to inhibit PDGFR. In addition, the ability of 4c compound to inhibit cell migration on HUVEC cells and cell cycle effect on UO-31 cells has been studied. The pro-apoptotic effect of compound 4c was studied by the evaluation of caspase-3, Bax and BCl-2. Alternatively, the IC50 of compounds 3a, 3c, 4c, 5e, 7a and 7b against certain human cancer cell lines were determined. Re-evaluation in combination with γ-radiation was carried out for compounds 4c, 5e and 7b to study the possible synergistic effect on cytotoxicity. Docking studies of the most active compounds were performed to give insights into the binding mode within VEGFR-2 active site.
Collapse
Affiliation(s)
- Sally S Zahran
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Fatma A Ragab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| |
Collapse
|
4
|
Singh A, Singh K, Kaur K, Singh A, Sharma A, Kaur K, Kaur J, Kaur G, Kaur U, Kaur H, Singh P, Bedi PMS. Coumarin as an Elite Scaffold in Anti-Breast Cancer Drug Development: Design Strategies, Mechanistic Insights, and Structure-Activity Relationships. Biomedicines 2024; 12:1192. [PMID: 38927399 PMCID: PMC11200728 DOI: 10.3390/biomedicines12061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common cancer among women. Currently, it poses a significant threat to the healthcare system due to the emerging resistance and toxicity of available drug candidates in clinical practice, thus generating an urgent need for the development of new potent and safer anti-breast cancer drug candidates. Coumarin (chromone-2-one) is an elite ring system widely distributed among natural products and possesses a broad range of pharmacological properties. The unique distribution and pharmacological efficacy of coumarins attract natural product hunters, resulting in the identification of numerous natural coumarins from different natural sources in the last three decades, especially those with anti-breast cancer properties. Inspired by this, numerous synthetic derivatives based on coumarins have been developed by medicinal chemists all around the globe, showing promising anti-breast cancer efficacy. This review is primarily focused on the development of coumarin-inspired anti-breast cancer agents in the last three decades, especially highlighting design strategies, mechanistic insights, and their structure-activity relationship. Natural coumarins having anti-breast cancer efficacy are also briefly highlighted. This review will act as a guideline for researchers and medicinal chemists in designing optimum coumarin-based potent and safer anti-breast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | | | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA;
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Jaskirat Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Gurleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan 140413, Mohali, India;
| | - Harsimran Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Prabhsimran Singh
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
5
|
Santa Maria de la Parra L, Romo AIB, Rodríguez-López J, Nascimento OR, Echeverría GA, Piro OE, León IE. Promising Dual Anticancer and Antimetastatic Action by a Cu(II) Complex Derived from Acylhydrazone on Human Osteosarcoma Models. Inorg Chem 2024; 63:4925-4938. [PMID: 38442008 DOI: 10.1021/acs.inorgchem.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 μM) and spheroids (IC50 3D: 16.3 ± 3.1 μM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 μM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 μM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 μM, indicating both anticancer and antimetastatic effects.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, Argentina
| | - Adolfo I B Romo
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign 61801, Illinois, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign 61801, Illinois, United States
| | - Otaciro R Nascimento
- Departamento de Física Interdiciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, CP 369 , CEP 13560-970 São Carlos, SP, Brazil
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
6
|
Wang Y, Guo S, Yu L, Zhang W, Wang Z, Chi YR, Wu J. Hydrazone derivatives in agrochemical discovery and development. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Dehbid M, Tahmasvand R, Tasharofi M, Shojaie F, Aghamaali M, Almasirad A, Salimi M. Synthesis of oxamide-hydrazone hybrid derivatives as potential anticancer agents. Res Pharm Sci 2022; 18:24-38. [PMID: 36846733 PMCID: PMC9951783 DOI: 10.4103/1735-5362.363593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Considering various studies implying anticancer activity of the hydrazone and oxamide derivatives through different mechanisms such as kinases and calpain inhibition, herein, we report the synthesis, characterization, and evaluation of the antiproliferative effect of a series of hydrazones bearing oxamide moiety compounds (7a-7n) against a panel of cancer cell lines to explore a novel and promising anticancer agent (7k). Experimental approach Chemical structures of the synthesized compounds were confirmed by FTIR, 1H-NMR, 13C-NMR, and mass spectra. The antiproliferative activity and cell cycle progression of the target compound were investigated using the MTT assay and flow cytometry. Findings/Results Compound 7k with 2-hydroxybenzylidene structure was found to have a significant in vitro anti-proliferative influence on MDA-MB-231 (human adenocarcinoma breast cancer) and 4T1 (mouse mammary tumor) cells as the model of triple-negative breast cancer, with the IC50-72h values of 7.73 ± 1.05 and 1.82 ± 1.14 μM, respectively. Following 72-h incubation with compound 7k, it caused MDA-MB-231 cell death through G1/S cell cycle arrest at high concentrations (12 and 16 μM). Conclusion and implications Conclusively, this study for the first time reports the anti-proliferative efficacy of compound 7k possessing 2-hydroxyphenyl moiety, which may serve as a potent candidate in triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Mina Dehbid
- Department of Biology, Faculty of Science, University of Guilan, Rasht, I.R. Iran
| | - Raheleh Tahmasvand
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Marzieh Tasharofi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. Iran
| | - Fatemeh Shojaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. Iran
| | | | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. Iran,Corresponding authors: A. Almasirad, Tel: +98-2122640051, Fax: +98-22602059
M. Salimi, Tel: +98-2164112264, Fax: +98-2164112834
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, I.R. Iran,Corresponding authors: A. Almasirad, Tel: +98-2122640051, Fax: +98-22602059
M. Salimi, Tel: +98-2164112264, Fax: +98-2164112834
| |
Collapse
|
8
|
Belyaeva ER, Myasoedova YV, Ishmuratova NM, Ishmuratov GY. Synthesis and Biological Activity of N-Acylhydrazones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Molecular modeling of new thiazolyl-thiophene based compounds as antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Design, synthesis, in vivo and in silico evaluation of novel benzothiazole-hydrazone derivatives as new antiepileptic agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Zhang HX, Guo RL, Zhang XL, Wang MY, Zhao BY, Gao YR, Jia Q, Wang YQ. Synthesis of Acyl Hydrazides via a Radical Chemistry of Azocarboxylic tert-Butyl Esters. J Org Chem 2022; 87:6573-6587. [PMID: 35522737 DOI: 10.1021/acs.joc.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new chemistry of azo compounds, that is, addition of free radicals generated in situ to access various acyl hydrazides, has been developed. The protocol provides a novel strategy for the synthesis of valuable acyl hydrazides. The transformation features mild reaction conditions, good tolerance of functional groups, and a broad substrate scope. In view of the importance of acyl hydrazides in functional materials and medicinal chemistry, this approach would find broad applications.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Ya-Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
12
|
Gunavathi S, Venkateswaramoorthi R, Arulvani K, Bharanidharan S. Synthesis and characterisation of formohydrazide derivatives as potential antimicrobial agents: molecular docking and DFT studies. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2053219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Gunavathi
- Department of Chemistry, PGP College of Arts and Science, Namakkal, India
| | | | - K. Arulvani
- Department of Chemistry, PGP College of Arts and Science, Namakkal, India
| | - S. Bharanidharan
- Department of Physics, Agni College of Technology, Chennai, India
| |
Collapse
|
13
|
Mayurachayakul P, Niamnont N, Chaiseeda K, Chantarasriwong O. Catalyst‐ and Solvent‐Free Synthesis of N‐Acylhydrazones via Solid‐State Melt Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nakorn Niamnont
- King Mongkut's University of Technology Thonburi Chemistry 10140 THAILAND
| | | | - Oraphin Chantarasriwong
- King Mongkut's University of Technology Thonburi Chemistry 126 Pracha Uthit Rd.Bang Mod 10140 Thung Khru THAILAND
| |
Collapse
|
14
|
Antioxidant Properties, Neuroprotective Effects and in Vitro Safety Evaluation of New Pyrrole Derivatives. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Paruch K, Biernasiuk A, Khylyuk D, Paduch R, Wujec M, Popiołek Ł. Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives. Int J Mol Sci 2022; 23:2823. [PMID: 35269966 PMCID: PMC8911400 DOI: 10.3390/ijms23052823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95-15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.
Collapse
Affiliation(s)
- Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Dmytro Khylyuk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland; (D.K.); (M.W.); (Ł.P.)
| |
Collapse
|
16
|
Myasoedova YV, Belyaeva ER, Garifullina LR, Prosvirnina DA, Ishmuratov GY. First Synthesis of Betulin 20-Acylhydrazones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kakadiya M, Pasha Y, Noolvi M, Patel A. Synthesis of Substituted -N-(5-((7-Methyl-2-Oxo-2H-Chromen-4-yl)-
Methyl)-1,3,4-Thiadiazol-2-yl)-Benzamide Derivatives Using TBTU as
Coupling Agent and their Evaluation for Anti Tubercular Activity. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210602160849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tuberculosis remains a highly infectious disease across the world. In the identification of
new antitubercular agents, coumarin clubbed thiadiazole amides have been synthesized and evaluated
for in vitro antitubercular activity. Owing to the growing concern of chemicals and their impact on the
environment, greener and faster reaction conditions needed to be incorporated. Therefore, we used
TBTU as a coupling reagent for efficient and facile synthesis of substituted-N-(5-((7-methyl-2-oxo-2Hchromes-
4-yl)-methyl)-1,3, 4-thiadiazol-2-yl)-benzamide 4a-j with good yields up to 95% in mild reaction
conditions. All the synthesized compounds were evaluated in vitro for anti-tubercular activity
against the H37Rv strain of M. tuberculosis. Compounds 4c, 4d, and 4f were found active at 12.5
μg/mL against M. tb H37Rv. Electron withdrawing substituents present on aromatic side chains showed
promising anti-tubercular activity.
Collapse
Affiliation(s)
- Monika Kakadiya
- Faculty of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Yunus Pasha
- Shri Adichunchanagiri College of Pharmacy Adichunchanagiri
University, B G Nagara Karnataka 571448, India
| | | | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat
Campus, Dist. Anand, Gujarat, India
| |
Collapse
|
18
|
Kurtanović N, Tomašević N, Matić S, Mitrović MM, Kostić DA, Sabatino M, Antonini L, Ragno R, Mladenović M. Human estrogen receptor α antagonists, part 2: Synthesis driven by rational design, in vitro antiproliferative, and in vivo anticancer evaluation of innovative coumarin-related antiestrogens as breast cancer suppressants. Eur J Med Chem 2022; 227:113869. [PMID: 34710747 DOI: 10.1016/j.ejmech.2021.113869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.
Collapse
Affiliation(s)
- Nezrina Kurtanović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia
| | - Sanja Matić
- University of Kragujevac, Institute for Informational Technologies, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Marina M Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela A Kostić
- University of Niš, Department of Chemistry, Faculty of Sciences and Mathematics, Višegradska 33, 18000, Niš, Serbia
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, P.O. Box 60, Serbia.
| |
Collapse
|
19
|
Elrayess R, Darwish KM, Nafie MS, El-Sayyed GS, Said MM, Yassen ASA. Quinoline–hydrazone hybrids as dual mutant EGFR inhibitors with promising metallic nanoparticle loading: rationalized design, synthesis, biological investigation and computational studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj02962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel quinoline–hydrazone hybrid induced apoptosis in MCF-7 cells through dual mutant EGFR inhibition with promising metallic nanoparticle loading.
Collapse
Affiliation(s)
- Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled M. Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Gharieb S. El-Sayyed
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa S. A. Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
20
|
Mahmoud HK, Abdelhady HA, Elaasser MM, Hassain DZH, Gomha SM. Microwave-Assisted One-Pot Three Component Synthesis of Some Thiazolyl(Hydrazonoethyl)Thiazoles as Potential Anti-Breast Cancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Huda K. Mahmoud
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A. Abdelhady
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Mahmoud M. Elaasser
- Regional center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Doaa Z. H. Hassain
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Al-Madinah, Al-Munawwarah, Saudi Arabia
| |
Collapse
|
21
|
Levchenko AG, Dahno PG, Chikava AR, Dotsenko VV, Aksenov NA, Aksenova IV. Methylene Components Exchange in the Reaction of Cyanoacetohydrazide with 2-Amino-4-arylbuta-1,3-diene-1,1,3-tricarbonitriles. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Laxmikeshav K, Kumari P, Shankaraiah N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med Res Rev 2021; 42:513-575. [PMID: 34453452 DOI: 10.1002/med.21852] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
This review article proposes a comprehensive report of the design strategies engaged in the development of various sulfur-bearing cytotoxic agents. The outcomes of various studies depict that the sulfur heterocyclic framework is a fundamental structure in diverse synthetic analogs representing a myriad scope of therapeutic activities. A number of five-, six- and seven-membered sulfur-containing heterocyclic scaffolds, such as thiazoles, thiadiazoles, thiazolidinediones, thiophenes, thiopyrans, benzothiazoles, benzothiophenes, thienopyrimidines, simple and modified phenothiazines, and thiazepines have been discussed. The subsequent studies of the derivatives unveiled their cytotoxic effects through multiple mechanisms (viz. inhibition of tyrosine kinases, topoisomerase I and II, tubulin, COX, DNA synthesis, and PI3K/Akt and Raf/MEK/ERK signaling pathways), and several others. Thus, our concise illustration explains the design strategy and anticancer potential of these five- and six-membered sulfur-containing heterocyclic molecules along with a brief outline on seven-membered sulfur heterocycles. The thorough assessment of antiproliferative activities with the reference drug allows a proficient assessment of the structure-activity relationships (SARs) of the diversely synthesized molecules of the series.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
23
|
Pawar S, Kumar K, Gupta MK, Rawal RK. Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents. Anticancer Agents Med Chem 2021; 21:1379-1402. [PMID: 32723259 DOI: 10.2174/1871520620666200728133017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is second leading disease after cardiovascular disease. Presently, Chemotherapy, Radiotherapy and use of chemicals are some treatments available these days. Thiazole and its hybrid compounds extensively used scaffolds in drug designing and development of novel anticancer agents due to their wide pharmacological profiles. Fused thiazole scaffold containing drugs are available in market as a promising group of anticancer agents. METHODS The detailed study has been done using different database that focused on potent thiazole hybrid compounds with anticancer activity. The literature included in this review is focused on novel fused thiazole derivatives exhibiting anticancer potency in last decade. RESULTS Literature suggested that thiazoles and its fused and linked congener serve excellent pharmacological profile as an anticancer agent. Various synthetic strategies for fused thiazole are also summarized in this article. Novel thiazole and its fused congener showed anticancer activity against various cancer cell lines. INTERPRETATION Thiazole is a promising scaffold reported in literature with broad range of biological activities. This article covers the thiazole compounds fused with other carbocyclic/heterocycle including benzene, imidazole, pyridine, pyrimidine, quinoline, phenothiazine, thiopyrano, steroids, pyrrole etc. with anticancer activity from last decades. Several inhibitors for breast cancer, colon cancer, melanoma cancer, ovarian cancer, tubulin cancer etc. were reported in this review. Thus, this review will definitely aid to develop a lead for the new selective anticancer agents in future.
Collapse
Affiliation(s)
- Swati Pawar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| | - Kapil Kumar
- School of Pharmacy and Technology Management, SVKM's NMIMS, Hyderabad, Telangana-509301, India
| | - Manish K Gupta
- SGT College of Pharmacy, SGT University, Gurugram-Badli Road, Gurugram-122505, Haryana, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| |
Collapse
|
24
|
Myasoedova YV, Garifullina LR, Raskil’dina GZ, Zlotskii SS, Ishmuratov GY. Single-Pot Ozonolytic Synthesis of Acylhydrazones from 1,1-Dichloro-2-ethenyl-2-methylcyclopropane. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Tolan DA, Kashar TI, Yoshizawa K, El‐Nahas AM. Synthesis, spectral characterization, density functional theory studies, and biological screening of some transition metal complexes of a novel hydrazide–hydrazone ligand of isonicotinic acid. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dina A. Tolan
- Department of Chemistry College of Science and Humanities Prince Sattam bin Abdulaziz University Al‐Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science Menoufia University Shebin El‐Kom 13829 Egypt
| | - Tahani I. Kashar
- Chemistry Department, Faculty of Science Menoufia University Shebin El‐Kom 13829 Egypt
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819‐0395 Japan
| | - Ahmed M. El‐Nahas
- Chemistry Department, Faculty of Science Menoufia University Shebin El‐Kom 13829 Egypt
| |
Collapse
|
26
|
Horchani M, Della Sala G, Caso A, D’Aria F, Esposito G, Laurenzana I, Giancola C, Costantino V, Jannet HB, Romdhane A. Molecular Docking and Biophysical Studies for Antiproliferative Assessment of Synthetic Pyrazolo-Pyrimidinones Tethered with Hydrazide-Hydrazones. Int J Mol Sci 2021; 22:2742. [PMID: 33800505 PMCID: PMC7962976 DOI: 10.3390/ijms22052742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a-h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.
Collapse
Affiliation(s)
- Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia; (M.H.); (A.R.)
| | - Gerardo Della Sala
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80125 Naples, Italy;
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Alessia Caso
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.C.); (G.E.)
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (C.G.)
| | - Germana Esposito
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.C.); (G.E.)
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (C.G.)
| | - Valeria Costantino
- The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.C.); (G.E.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia; (M.H.); (A.R.)
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia; (M.H.); (A.R.)
| |
Collapse
|
27
|
Gomha SM, Abdelhady HA, Hassain DZH, Abdelmonsef AH, El-Naggar M, Elaasser MM, Mahmoud HK. Thiazole-Based Thiosemicarbazones: Synthesis, Cytotoxicity Evaluation and Molecular Docking Study. Drug Des Devel Ther 2021; 15:659-677. [PMID: 33633443 PMCID: PMC7900779 DOI: 10.2147/dddt.s291579] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Hybrid drug design has developed as a prime method for the development of novel anticancer therapies that can theoretically solve much of the pharmacokinetic disadvantages of traditional anticancer drugs. Thus a number of studies have indicated that thiazole-thiophene hybrids and their bis derivatives have important anticancer activity. Mammalian Rab7b protein is a member of the Rab GTPase protein family that controls the trafficking from endosomes to the TGN. Alteration in the Rab7b expression is implicated in differentiation of malignant cells, causing cancer. METHODS 1-(4-Methyl-2-(2-(1-(thiophen-2-yl) ethylidene) hydrazinyl) thiazol-5-yl) ethanone was used as building block for synthesis of novel series of 5-(1-(2-(thiazol-2-yl) hydrazono) ethyl) thiazole derivatives. The bioactivities of the synthesized compounds were evaluated with respect to their antitumor activities against MCF-7 tumor cells using MTT assay. Computer-aided docking protocol was performed to study the possible molecular interactions between the newly synthetic thiazole compounds and the active binding site of the target protein Rab7b. Moreover, the in silico prediction of adsorption, distribution, metabolism, excretion (ADME) and toxicity (T) properties of synthesized compounds were carried out using admetSAR tool. RESULTS The results obtained showed that derivatives 9 and 11b have promising activity (IC50 = 14.6 ± 0.8 and 28.3 ± 1.5 µM, respectively) compared to Cisplatin (IC50 = 13.6 ± 0.9 µM). The molecular docking analysis reveals that the synthesized compounds are predicted to be fit into the binding site of the target Rab7b. In summary, the synthetic thiazole compounds 1-17 could be used as potent inhibitors as anticancer drugs. CONCLUSION Promising anticancer activity of compounds 9 and 11 compared with cisplatin reference drug suggests that these ligands may contribute as lead compounds in search of new anticancer agents to combat chemo-resistance.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A Abdelhady
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Doaa Z H Hassain
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | | | - Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, 11371, Egypt
| | - Huda K Mahmoud
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
28
|
Al-Khattaf FS, Mani A, Atef Hatamleh A, Akbar I. Antimicrobial and cytotoxic activities of isoniazid connected menthone derivatives and their investigation of clinical pathogens causing infectious disease. J Infect Public Health 2021; 14:533-542. [PMID: 33744741 DOI: 10.1016/j.jiph.2020.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND This work is development of new molecules of isoniazid derivatives as dealing with potential of antimicrobial activity against clinical pathogens causing infectious disease. Antimicrobial of novel Mannich base derivatives can be achieved via one-pot synthesis in green chemistry approach. This method offers efficient, mild reaction conditions and high yields. In this study, totally 12 compounds (1a-l) was prepared and screened for cytotoxic and antimicrobial activities. MATERIALS AND METHODS Newly synthesised compounds were conformed via FT- IR, 1H, and 13C NMR (Nuclear Magnetic Resonance), and mass spectra analysis. All compounds were checked antibacterial activity against gram-positive bacteria of Enterococcus faecalis, Staphylococcus aureus and gram-negative bacteria of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. All compounds were checked against antifungal activity against Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Aspergillus niger, and Microsporum audouinii. All compounds were screened for cytotoxic activity against the MCF-7 (Michigan Cancer Foundation-7) cancer cell line. RESULT The compound 1g was highly (MIC: 0.25 μg/mL) active against gram-negative bacterial of P. aeruginosa, whereas other compounds 1e and 1h were more active (MIC: 2 μg/mL) in K. pneumoniae and also 1g (MIC: 2 μg/mL) was more active in E. faecalis than standard ciprofloxacin. Antifungal screening, the compound 1b was highly active (MIC: 0.25 μg/mL) against C. albicance,1g (MIC: 2 μg/mL) and 1h (MIC: 4 μg/mL) was significant of active against A. fumigatus, and the compound 1c (MIC: 4 μg/mL) was extremely active in M. audouinii than clotrimazole. Compound 1g (GI50 = 0.01 μM) exhibited high activity against the MCF-7 cell line, while 1b (GI50 = 0.02 μM) was equipotent active compared with standard doxorubicin. CONCLUSION A novel set of isoniazid derivatives (1a-l) and 1h were synthesized and screened for antimicrobial and cytotoxic activities. We found some highly active molecules, which are evidencing to be a potential treatment of bacterial and fungal infection candidates.
Collapse
Affiliation(s)
- Fatimah S Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunadevi Mani
- Research Department of Chemistry, Nehru Memorial College (Affiliated with the Bharathidasan University), Puthanampatti-621007, Tiruchirappalli District, Tamil Nadu, India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated with the Bharathidasan University), Puthanampatti-621007, Tiruchirappalli District, Tamil Nadu, India.
| |
Collapse
|
29
|
Reddy DS, Kongot M, Kumar A. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity. Tuberculosis (Edinb) 2021; 127:102050. [PMID: 33540334 DOI: 10.1016/j.tube.2020.102050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is a highly contagious airborne disease with nearly 25% of the world's population infected with it. Challenges such as multi drug resistant TB (MDR-TB), extensive drug resistant TB (XDR-TB) and in rare cases totally drug resistant TB (TDR-TB) emphasizes the critical and urgent need in developing novel TB drugs. Moreover, the prolonged and multi drug treatment regime suffers a major drawback due to high toxicity and vulnerability in TB patients. This calls for intensified research efforts in identifying novel molecular scaffolds which can combat these issues with minimal side effects. In this pursuit, researchers have screened many bio-active molecules among which coumarin have been identified as promising candidates for TB drug discovery and development. Coumarins are naturally occurring compounds known for their low toxicity and varied biological activity. The biological spectrum of coumarin has intrigued medicinal researchers to investigate coumarin scaffolds for their relevance as anti-TB drugs. In this review we focus on the recent developments of coumarin and its critical aspects of structural design required to exhibit anti-tubercular (anti-TB) activity. The information provided will help medicinal chemists to design and identify newer molecular analogs for TB treatment and also broadens the scope of exploring future generation potent yet safer coumarin based anti-TB agents.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India.
| |
Collapse
|
30
|
Novel Derivatives of 4-Methyl-1,2,3-Thiadiazole-5-Carboxylic Acid Hydrazide: Synthesis, Lipophilicity, and In Vitro Antimicrobial Activity Screening. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.
Collapse
|
31
|
Synthesis, Crystal Structure, Spectroscopic Characterization, DFT Calculations and Cytotoxicity Assays of a New Cu(II) Complex with an Acylhydrazone Ligand Derived from Thiophene. INORGANICS 2021. [DOI: 10.3390/inorganics9020009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A new Cu(II) complex is synthetized by the reaction of copper nitrate and a N-acylhydrazone ligand obtained from the condensation of o-vanillin and 2-thiophecarbohydrazide (H2L). The solid-state structure of [Cu(HL)(H2O)](NO3)·H2O, or CuHL for simplicity, was determined by X-ray diffraction. In the cationic complex, the copper center is in a nearly squared planar environment with the nitrate interacting as a counterion. CuHL was characterized by spectroscopic techniques, including solid-state FTIR, Raman, electron paramagnetic resonance (EPR) and diffuse reflectance and solution UV-Vis electronic spectroscopy. Calculations based on the density functional theory (DFT) assisted the interpretation and assignment of the spectroscopic data. The complex does not show relevant antioxidant activity evaluated by the radical cation of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method, being even less active than the free ligand as a radical quencher. Cytotoxicity assays of CuHL against three human tumor cell lines, namely MG-63, A549 and HT-29, revealed an important enhancement of the effectiveness as compared with both the ligand and the free metal ion. Moreover, its cytotoxic effect was remarkably stronger than that of the reference metallodrug cisplatin in all cancer cell lines tested, a promissory result in the search for new metallodrugs of essential transition metals.
Collapse
|
32
|
de Oliveira Carneiro Brum J, França TCC, LaPlante SR, Villar JDF. Synthesis and Biological Activity of Hydrazones and Derivatives: A Review. Mini Rev Med Chem 2020; 20:342-368. [PMID: 31612828 DOI: 10.2174/1389557519666191014142448] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer's, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.
Collapse
Affiliation(s)
- Juliana de Oliveira Carneiro Brum
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praca General Tiburcio 80, 22290-270, Rio de Janeiro, RJ, Brazil
| | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, RJ, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Universite du Quebec, INRS-Centre Armand-Frapier Sante Biotechnologie, 531, Boulevard de Praires, Laval H7V 1B7, Canada
| | - Steven R LaPlante
- Universite du Quebec, INRS-Centre Armand-Frapier Sante Biotechnologie, 531, Boulevard de Praires, Laval H7V 1B7, Canada
| | - José Daniel Figueroa Villar
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praca General Tiburcio 80, 22290-270, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Coumarin substituted symmetric diaminopyridine molecules: Synthesis, mesomorphic characterizations and DFT studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:303-324. [PMID: 32074071 DOI: 10.2478/acph-2020-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
Abstract
Six new N-pyrrolylhydrazide hydrazones were synthesized under micro synthesis conditions, assuring about 59-93 % yield, low harmful emissions and reagent economy. The structures of the new compounds were elucidated by melting points, TLC characteristics, IR, 1H and 13C NMR spectral data followed by MS data. The purity of the obtained compounds was proven by the corresponding elemental analyses. "Lipinski's rule of five" parameters were applied for preliminary evaluation of the pharmacokinetic properties of the target molecules. The initial in vitro safety screening for cytotoxicity (on HepG2 cells) and hemocompatibility (hemolysis assay) showed good safety of the new compounds, where ethyl 5-(4-bromophenyl)-1-(1-(2-(4-hydroxy-3-methoxybenzylidene)-hydrazineyl)-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyr-role-3-carboxylate (4d) and ethyl 5-(4-bromophenyl)-1-(1-(2-(2-hydroxybenzylidene)hydrazineyl)-1-oxo-3-phenylpropan--2-yl)-2-methyl-1H-pyrrole-3-carboxylate (4a) were the least toxic. The antioxidant activity in terms of radical scavenging activity (DPPH test) and reducing ability (ABTS) was also evaluated. The antioxidant protective potential of the compounds was next determined in different in vitro cellular-based models, revealing compounds 4d and 3 [ethyl 5-(4-bromophenyl)-1-(1-hydrazineyl-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate] as the most promising compounds, with 4d having better safety profile.
Collapse
|
35
|
Mohareb RM, Wardakhan WW, Abbas NS. Synthesis of Tetrahydrobenzo[ b]thiophene-3-carbohydrazide Derivatives as Potential Anti-cancer Agents and Pim-1 Kinase Inhibitors. Anticancer Agents Med Chem 2020; 19:1737-1753. [PMID: 30947678 DOI: 10.2174/1871520619666190402153429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/22/2018] [Accepted: 03/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tetrahydrobenzo[b]thiophene derivatives are well known to be biologically active compounds and many of them occupy a wide range of anticancer agent drugs. OBJECTIVE One of the main aim of this work was to synthesize target molecules not only possessing anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7- tetrahydrobenzo[b]thiophene-3-carbohydrazide derivatives using cyclohexan-1,4-dione and cyanoacetylhydrazine to give the 2-amino-6-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbohydrazide (3) as the key starting material for many heterocyclization reactions. METHODS Compound 3 was reacted with some aryldiazonium salts and the products were cyclised when reacted with either malononitrile or ethyl cyanoacetate. Thiazole derivatives were also obtained through the reaction of compound 3 with phenylisothiocyanate followed by heterocyclization with α-halocarbonyl derivatives. Pyrazole, triazole and pyran derivatives were also obtained. RESULTS The compounds obtained in this work were evaluated for their in-vitro cytotoxic activity against c-Met kinase, and the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). The results of anti-proliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions revealed that some compounds showed high activities. CONCLUSION The most promising compounds 5b, 5c, 7c, 7d, 11b, 14a, 16b, 18b, 19, 21a, 23c, 23d and 23i against c-Met kinase were further investigated against the five tyrosin kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 5b, 5c, 7d, 7e, 11b, 11c, 16c, 16d, 18c, 19, 23e, 23k and 23m were selected to examine their Pim-1 kinase inhibitions activity where compounds 7d, 7e, 11b, 11c, 16d, 18c and 23e showed high activities. All of the synthesized compounds have no impaired effect toward the VERO normal cell line.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Chemistry Department, Faculty of Science Cairo University, New Cairo, A.R, Egypt
| | - Wagnat W Wardakhan
- National Organization for Drug Control & Research, P.O. Box 29, Cairo, A.R, Egypt
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, A.R, Egypt.,Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
36
|
Zarafu I, Matei L, Bleotu C, Ionita P, Tatibouët A, Păun A, Nicolau I, Hanganu A, Limban C, Nuta DC, Nemeș RM, Diaconu CC, Radulescu C. Synthesis, Characterization, and Biologic Activity of New Acyl Hydrazides and 1,3,4-Oxadiazole Derivatives. Molecules 2020; 25:E3308. [PMID: 32708236 PMCID: PMC7396991 DOI: 10.3390/molecules25143308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023] Open
Abstract
Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis, cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8, and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54% of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3 and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug metabolism indicates that synthesized compounds could be metabolized via other pathways than NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further studies on the action mechanism of these compounds on the cell cycle may bring new information regarding their biological activity.
Collapse
Affiliation(s)
- Irina Zarafu
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Lilia Matei
- “Stefan S Nicolau” Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (L.M.); (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), Life, Environmental and Earth Sciences Division, University of Bucharest, 060023 Bucharest, Romania;
| | - Coralia Bleotu
- “Stefan S Nicolau” Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (L.M.); (C.B.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), Life, Environmental and Earth Sciences Division, University of Bucharest, 060023 Bucharest, Romania;
| | - Petre Ionita
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Arnaud Tatibouët
- Institute of Organic and Analytical Chemistry ICOA-UMR7311, University of Orleans, 45067 Orleans, France;
| | - Anca Păun
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Ioana Nicolau
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania; (P.I.); (A.P.); (I.N.)
| | - Anamaria Hanganu
- Research Institute of the University of Bucharest (ICUB), Life, Environmental and Earth Sciences Division, University of Bucharest, 060023 Bucharest, Romania;
- Institute of Organic Chemistry “C.D. Nenitescu” of the Romanian Academy, 060023 Bucharest, Romania
| | - Carmen Limban
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.L.); (D.C.N.)
| | - Diana Camelia Nuta
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.L.); (D.C.N.)
| | - Roxana Maria Nemeș
- National Institute of Pneumology Marius Nasta, 050152 Bucharest, Romania;
| | - Carmen Cristina Diaconu
- “Stefan S Nicolau” Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (L.M.); (C.B.); (C.C.D.)
| | - Cristiana Radulescu
- Faculty of Sciences and Arts, “Valahia” University of Targoviste, 130004 Targoviste, Romania
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13004 Targoviste, Romania
| |
Collapse
|
37
|
Ibrahim TS, Taher ES, Samir E, M. Malebari A, Khayyat AN, Mohamed MFA, Bokhtia RM, AlAwadh MA, Seliem IA, Asfour HZ, Alhakamy NA, Panda SS, AL-Mahmoudy AMM. In Vitro Antimycobacterial Activity and Physicochemical Characterization of Diaryl Ether Triclosan Analogues as Potential InhA Reductase Inhibitors. Molecules 2020; 25:molecules25143125. [PMID: 32650556 PMCID: PMC7397076 DOI: 10.3390/molecules25143125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 μg/mL, respectively compared to triclosan (10 μg/mL) and isoniazid (INH) (0.2 μg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28–4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Correspondence: (T.S.I.); (S.S.P.)
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Ebtihal Samir
- Physical Chemistry, Department of Analytical Chemistry, Faculty of Pharmacy, Deraya University, New Minia 61519, Egypt;
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Mohammed A. AlAwadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Israa A. Seliem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: (T.S.I.); (S.S.P.)
| | - Amany M. M. AL-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
| |
Collapse
|
38
|
Synthesis, Molecular Docking Studies and Biological Evaluation of N-Acylarylhydrazones as Anti-Inflammatory Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32468468 DOI: 10.1007/978-3-030-32633-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In the present work a series of N'-arylidene-2-(benzamido)-3-(naphthalen-2-yl)acrylohydrazides were synthesized by refluxing the intermediate 2-(benzamido)-3-(naphthalen-2-yl)acrylohydrazide with various substituted benzaldehyde in the presence of glacial acetic acid. The intermediate 2-(benzamido)-3-(naphthalen-2-yl)acrylohydrazide 2 was prepared by stirring 4-((naphthalen-2-yl)methylene)-2-phenyloxazol-5(4H)-one with hydrazine hydrate in the presence of absolute ethanol. The chemical structures of the compounds were established by IR, 1H NMR and mass spectral data. All the compounds were evaluated for anti-inflammatory (in vivo, in vitro) activity and performed docking against COX-2. The compounds 3a, 3c and 3o showed good inhibition of COX-2 in in vitro studies (0.75 μM, 0.5 μM and 0.7 μM as IC50, respectively). The compounds 3c, 3e and 3f were found to be more active than standard drug phenylbutazone at equidose. Molecular docking studies showed that compound 3 m exhibited good binding affinity against COX-2 with docking score 9.328 kcal/mol, when compared to the standard celecoxib.
Collapse
|
39
|
Singla N, Singh G, Bhatia R, Kumar A, Kaur R, Kaur S. Design, Synthesis and Antimicrobial Evaluation of 1,3,4‐Oxadiazole/1,2,4‐Triazole‐Substituted Thiophenes. ChemistrySelect 2020; 5:3835-3842. [DOI: 10.1002/slct.202000191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/17/2020] [Indexed: 09/20/2023]
Abstract
AbstractThe increasing level of antimicrobial resistance in pathogenic bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a major public health concern. Thus, in this context, a novel series of 1,3,4‐oxadiazole‐substituted thiophenes (4 a–m) and 1,2,4‐triazole (6 a–m) substituted thiophene derivatives were synthesized. Characterization of all the synthesized derivatives was done by various spectroscopic techniques such as 1H NMR, 13C NMR spectroscopy and mass spectrometry, and evaluated for antimicrobial activity against various pathological strains using broth dilution and disc diffusion method. In particular, compound 6 e and 4 e exhibited significant inhibitory potential with MIC ranging from 2–7 μg mL−1 against S. aureus, B. subtilis, P. aeruginosa and E. coli. Additionally, compound 6 e was found to be highly potent against methicillin resistant S. aureus (MRSA; MIC=2 μg mL−1). Molecular docking studies were also performed to confer the possible mode of action and association studies indicate the binding of potent active compound with DHFR enzyme (Ka=2.10×103 M−1). Further, the mechanism of action has also been explored by atomic force microscopy (AFM), which reveals the bacterial cell wall deformity and cell wall rupturing that may lead to bacteria cell death. Additionally, in silico ADME prediction study suggested the drug like properties of active compounds.
Collapse
Affiliation(s)
- Nishu Singla
- I.K. Gujral Punjab Technical University Kapurthala, Jalandhar 144 601 Punjab India
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001, Punjab India
- University institute of Pharma Sciences, CU Gharuan 140413 Punjab India
| | - Gagandeep Singh
- Department of Chemistry, Indian Institute of Technology Ropar- 140001 Punjab India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001, Punjab India
| | - Anoop Kumar
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001, Punjab India
- Department of Pharmacology and Toxicology, NIPER Raibareli-Lucknow 22900,1 UP India
| | - Rupinder Kaur
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001, Punjab India
| | - Satvinder Kaur
- G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar Ludhiana 142104 Punjab India
| |
Collapse
|
40
|
Megally Abdo NY, Milad Mohareb R, Halim PA. Uses of cyclohexane-1,3-dione for the synthesis of 1,2,4-triazine derivatives as anti-proliferative agents and tyrosine kinases inhibitors. Bioorg Chem 2020; 97:103667. [PMID: 32087416 DOI: 10.1016/j.bioorg.2020.103667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Abstract
Tetrahydrobenzo[b]thiophene derivatives were well known to be biologically active compounds and many of them occupy a wide range as anticancer agent drugs. One of our main aim of this work was to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of novel 1,2,4-triazines as efficient anticancer drugs with low cytotoxicity and good bioavailability properties using cyclohexane-1,3-dione and 3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-2-diazonium chloride to give the 2-(2-(2,6-dioxocyclohexylidene)hydrazinyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (3) as the key starting material for many heterocyclization reactions. Compound 3 was reacted with phenylisothiocyanate to give the tetrahydrobenzo[e][1,2,4]triazine derivative 5 which reacted with hydrazines to give dihydrazone derivatives. In addition, it underwent multi-component reactions with aromatic aldehydes and either malononitrile or ethyl cyanoacetate in the presence of triethylamine or ammonium acetate to produce fused pyran and fused pyridine derivatives, respectively. Compounds obtained in this work were evaluated for their c-Met kinase inhibitory potency as well as in-vitro cytotoxic activity against the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). Molecular modeling studies were carried out for the most active compounds 5, 7a, 7b, 10c, 10e, 11c and 11f using Molecular Operating Environment (MOE) software. It was found that all the tested compounds displayed potent c-Met enzymatic activity with IC50 values ranging from 0.24 to 9.36 nM. Ten of them (5, 7a, 7b, 10c, 10e, 10f, 11b, 11c, 11d and 11f) exhibited higher potency with IC50 values less than 1.00 nM compared with foretinib (IC50 = 1.16 nM). Also those compounds possessed moderate to strong cytotoxicity against the six tested cancer cell lines in the single-digit µM range. The synthesized compounds 5, 7a, 7b, 10c, 10e, 11c and 11f were fit on the active site of c-Met kinase, with almost the same binding pattern as foretinib and higher binding energy scores (from -16.38 to -18.21 kcal/mol) compared to foretinib (-16.37 kcal/mol). A series of novel 1,2,4-triazines were synthesized and displayed potent bioactivities, indicating that these compounds could be considered as a new lead for more investigation in the future.
Collapse
Affiliation(s)
- Nadia Y Megally Abdo
- Chemistry Department, Faculty of Education, Alexandria University, 21526 Alexandria, Egypt
| | | | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
41
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
42
|
Experimental and theoretical conformational studies of hydrazine derivatives bearing a chromene scaffold. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Tzankova D, Peikova L, Vladimirova S, Georgieva M. Development and validation of RP-HPLC method for stability evaluation of model hydrazone, containing a pyrrole ring. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e47035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RP-HPLC method with UV detection was developed and validated for determination of the chemical stability and stability in close to physiological conditions of a model pyrrole hydrazone ethyl 5-(4-bromophenyl)-1-(1-(2-(4-hydroxy-3-methoxybenzylidene) hydrazineyl)-4-methyl-1-oxopentan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate (D_5d), containing susceptible to hydrolysis hydrazone group. The evaluated substance was subjected to the influence of a variety of pH , representing the main physiological values of 37°C and corresponding pH values in the stomach (pH 2.0), blood (pH 7.4) and small intestine (pH 9.0). Chemical stability in a highly alkaline medium with a pH of 13.0 was also evaluated. The hydrazone I tested was found to be stable at pH 7.4 and pH 9.0 and 37 ° C and hydrolyzed under strong acidic (pH 2.0) and highly alkaline media (pH 13.0) and at the same temperature.The products of hydrolysis were identified to be the initial hydrazide and aldehyde, pointing the hydrazone group as most liable.
Collapse
|
44
|
Lipeeva AV, Zakharov DO, Gatilov YV, Pokrovskii MA, Pokrovskii AG, Shults EE. Design and Synthesis of 3‐(
N
‐Substituted)aminocoumarins as Anticancer Agents from 3‐Bromopeuruthenicin. ChemistrySelect 2019. [DOI: 10.1002/slct.201901377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alla V. Lipeeva
- Laboratory of Medicinal ChemistryNovosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Danila O. Zakharov
- Laboratory of Medicinal ChemistryNovosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
- Medicinal departmentNovosibirsk State University Pirogova St. 2 630090 Novosibirsk Russian Federation
| | - Yurii V. Gatilov
- Laboratory of Medicinal ChemistryNovosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
- Medicinal departmentNovosibirsk State University Pirogova St. 2 630090 Novosibirsk Russian Federation
| | - Mikhail A. Pokrovskii
- Medicinal departmentNovosibirsk State University Pirogova St. 2 630090 Novosibirsk Russian Federation
| | - Andrey G. Pokrovskii
- Medicinal departmentNovosibirsk State University Pirogova St. 2 630090 Novosibirsk Russian Federation
| | - Elvira E. Shults
- Laboratory of Medicinal ChemistryNovosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
- Medicinal departmentNovosibirsk State University Pirogova St. 2 630090 Novosibirsk Russian Federation
| |
Collapse
|
45
|
Khan I, Kanugala S, Shareef MA, Ganapathi T, Shaik AB, Shekar KC, Kamal A, Kumar CG. Synthesis of new bis‐pyrazole linked hydrazides and their in vitro evaluation as antimicrobial and anti‐biofilm agents: A mechanistic role on ergosterol biosynthesis inhibition inCandida albicans. Chem Biol Drug Des 2019; 94:1339-1351. [DOI: 10.1111/cbdd.13509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/19/2019] [Accepted: 02/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Irfan Khan
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Sirisha Kanugala
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Mohd. Adil Shareef
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Thipparapu Ganapathi
- Stem Cell Research DivisionDepartment of Biochemistry ICMR‐National Institute of Nutrition Hyderabad India
| | - Anver Basha Shaik
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Kunta Chandra Shekar
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Ahmed Kamal
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research Ghaziabad India
- School of Pharmaceutical Education and Research Jamia Hamdard University New Delhi India
| | - Chityal Ganesh Kumar
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
46
|
Hassan AY, Sarg MT, Hussein EM. Design, Synthesis, and Anticancer Activity of Novel Benzothiazole Analogues. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aisha Y. Hassan
- Department of Chemistry, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| | - Marwa T. Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Ebtehal M. Hussein
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| |
Collapse
|
47
|
Sreenivasulu R, Reddy KT, Sujitha P, Kumar CG, Raju RR. Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl)hydrazide-hydrazone derivatives. Bioorg Med Chem 2019; 27:1043-1055. [PMID: 30773423 DOI: 10.1016/j.bmc.2019.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
In recent years, indole-indazolyl hydrazide-hydrazone derivatives with strong cell growth inhibition and apoptosis induction characteristics are being strongly screened for their cancer chemo-preventive potential. In the present study, N-methyl and N,N-dimethyl bis(indolyl)hydrazide-hydrazone analog derivatives were designed, synthesized and allowed to evaluate for their anti-proliferative and apoptosis induction potential against cervical (HeLa), breast (MCF-7 and MDA-MB-231) and lung (A549) cancer cell lines relative to normal HEK293 cells. The MTT assay in conjunction with mitochondrial potential assays and the trypan blue dye exclusion were employed to ascertain the effects of the derivatives on the cancer cells. Further, mechanistic studies were conducted on compound 14a to understand the biochemical mechanisms and functional interactions with various signaling pathways triggered in HeLa and MCF-7 cells. Compound 14a induced apoptosis via caspase independent pathway through the participation of mitogen-activated protein kinases (MAPK) such as extracellular signal related kinase (ERK) and p38 as well as p53 pathways. It originates the activation of pro-apoptotic proteins such as Bak and Mcl-1s and also strongly induced the generation of reactive oxygen species. In downstream signaling pathway, activated p53 protein interacted with MAPK pathways, including SAPK/c-Jun N-terminal protein kinase (JNK), p38 and ERK kinases resulting in apoptotic cell death. The involvement of MAPK cascades such as p38, ERK and p38 on compound 14a induced apoptotic cell death was evidenced by the fact that the inclusion of specific inhibitors of p38, ERK1/2 and JNK MAPK (SB2035809, PD98059 and SP600125) prevented the compound 14a towards induced apoptosis. The results clearly showed that MAP kinase cascades were crucial for apoptotic response in compound 14a induced cellular killing and were dependent on p53 activity. Based on the results, compound 14a was identified as a promising candidate for cancer therapeutics and these findings furnish a basis for further in vivo experiments on anti-proliferative activity.
Collapse
Affiliation(s)
- Reddymasu Sreenivasulu
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, 522 510 Andhra Pradesh, India
| | | | - Pombala Sujitha
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Rudraraju Ramesh Raju
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, 522 510 Andhra Pradesh, India.
| |
Collapse
|
48
|
Atta KFM, Farahat OOM, Al-Shargabi TQ, Marei MG, Ibrahim TM, Bekhit AA, El Ashry ESH. Syntheses and in silico pharmacokinetic predictions of glycosylhydrazinyl-pyrazolo[1,5-c]pyrimidines and pyrazolo[1,5-c]triazolo[4,3-a]pyrimidines as anti-proliferative agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2277-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
49
|
Lamelas R, Lucio F, Labisbal E, Macías A, Pereira MT, Bastida R, Vila JM, Núñez C. Synthesis, coordination properties and DFT studies of novel trans-disubstituted hexaaza-macrocycles containing pyridine and/or ethyldioxolane arms. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1511780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rodrigo Lamelas
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fátima Lucio
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Elena Labisbal
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Macías
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M. Teresa Pereira
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rufina Bastida
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M. Vila
- Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), Lugo, Spain
| |
Collapse
|
50
|
Naik SD, Hosamani K, Vootla SK. Microwave synthesis, biological screening and computational studies of pyrimidine based novel coumarin scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cdc.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|