1
|
Lee AJ, Hammond J, Sheridan J, Swift S, Munkacsi AB, Villas-Boas SG. Antifungal Activity of Disalt of Epipyrone A from Epicoccum nigrum Likely via Disrupted Fatty Acid Elongation and Sphingolipid Biosynthesis. J Fungi (Basel) 2024; 10:597. [PMID: 39330357 PMCID: PMC11433475 DOI: 10.3390/jof10090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Multidrug-resistant fungal pathogens and antifungal drug toxicity have challenged our current ability to fight fungal infections. Therefore, there is a strong global demand for novel antifungal molecules with the distinct mode of action and specificity to service the medical and agricultural sectors. Polyenes are a class of antifungal drugs with the broadest spectrum of activity among the current antifungal drugs. Epipyrone A, a water-soluble antifungal molecule with a unique, linear polyene structure, was isolated from the fungus Epiccocum nigrum. Since small changes in a compound structure can significantly alter its cell target and mode of action, we present here a study on the antifungal mode of action of the disalt of epipyrone A (DEA) using chemical-genetic profiling, fluorescence microscopy, and metabolomics. Our results suggest the disruption of sphingolipid/fatty acid biosynthesis to be the primary mode of action of DEA, followed by the intracellular accumulation of toxic phenolic compounds, in particular p-toluic acid (4-methylbenzoic acid). Although membrane ergosterol is known to be the main cell target for polyene antifungal drugs, we found little evidence to support that is the case for DEA. Sphingolipids, on the other hand, are known for their important roles in fungal cell physiology, and their biosynthesis has been recognized as a potential fungal-specific cell target for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Alex J Lee
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Joseph Hammond
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Jeffrey Sheridan
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Yang YM, Zhao EJ, Wei W, Xu ZF, Shi J, Wu X, Zhang B, Igarashi Y, Jiao RH, Liang Y, Tan RX, Ge HM. Cytochrome P450 Catalyzes Benzene Ring Formation in the Biosynthesis of Trialkyl-Substituted Aromatic Polyketides. Angew Chem Int Ed Engl 2023; 62:e202214026. [PMID: 36458944 DOI: 10.1002/anie.202214026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Lorneic acid and related natural products are characterized by a trialkyl-substituted benzene ring. The formation of the aromatic core in the middle of the polyketide chain is unusual. We characterized a cytochrome P450 enzyme that can catalyze the hallmark benzene ring formation from an acyclic polyene substrate through genetic and biochemical analysis. Using this P450 as a beacon for genome mining, we obtained 12 homologous type I polyketide synthase (PKS) gene clusters, among which two gene clusters are activated and able to produce trialkyl-substituted aromatic polyketides. Quantum chemical calculations were performed to elucidate the plausible mechanism for P450-catalyzed benzene ring formation. Our work expands our knowledge of the catalytic diversity of cytochrome P450.
Collapse
Affiliation(s)
- Yu Meng Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Er Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wanqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Lee AJ, Cadelis MM, Kim SH, Swift S, Copp BR, Villas-Boas SG. Epipyrone A, a Broad-Spectrum Antifungal Compound Produced by Epicoccum nigrum ICMP 19927. Molecules 2020; 25:E5997. [PMID: 33352899 PMCID: PMC7766273 DOI: 10.3390/molecules25245997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023] Open
Abstract
We have isolated a filamentous fungus that actively secretes a pigmented exudate when growing on agar plates. The fungus was identified as being a strain of Epicoccum nigrum. The fungal exudate presented strong antifungal activity against both yeasts and filamentous fungi, and inhibited the germination of fungal spores. The chemical characterization of the exudate showed that the pigmented molecule presenting antifungal activity is the disalt of epipyrone A-a water-soluble polyene metabolite with a molecular mass of 612.29 and maximal UV-Vis absorbance at 428 nm. This antifungal compound showed excellent stability to different temperatures and neutral to alkaline pH.
Collapse
Affiliation(s)
- Alex J. Lee
- School of Biological Sciences, University of Auckland, 3A Symonds Street, 1010 Auckland, New Zealand; (A.J.L.); (S.H.K.)
| | - Melissa M. Cadelis
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, 1010 Auckland, New Zealand; (M.M.C.); (B.R.C.)
- School of Medical Sciences, University of Auckland, 85 Park Road, Grafton, 1023 Auckland, New Zealand;
| | - Sang H. Kim
- School of Biological Sciences, University of Auckland, 3A Symonds Street, 1010 Auckland, New Zealand; (A.J.L.); (S.H.K.)
| | - Simon Swift
- School of Medical Sciences, University of Auckland, 85 Park Road, Grafton, 1023 Auckland, New Zealand;
| | - Brent R. Copp
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, 1010 Auckland, New Zealand; (M.M.C.); (B.R.C.)
| | - Silas G. Villas-Boas
- School of Biological Sciences, University of Auckland, 3A Symonds Street, 1010 Auckland, New Zealand; (A.J.L.); (S.H.K.)
| |
Collapse
|
4
|
Screening and Whole-Genome Sequencing of Two Streptomyces Species from the Rhizosphere Soil of Peony Reveal Their Characteristics as Plant Growth-Promoting Rhizobacteria. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2419686. [PMID: 30255092 PMCID: PMC6145153 DOI: 10.1155/2018/2419686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Two bacteria, Streptomyces albireticuli MDJK11 and S. alboflavus MDJK44, which are potential plant growth-promoting rhizobacteria against pathogenic fungi were isolated from the rhizosphere soil of peony in Shandong, China. Their biological characteristics and complete genome sequences were reported in this study. The total genome size of MDJK11 was only 8.14 Mb with 6,550 protein-coding genes and a high GC content of 72.8 mol%. The MDJK44 genome comprises a 9.62 Mb chromosome with 72.1 mol% GC content, 7,285 protein-coding genes, and two plasmids. Some gene sequences in these two genomes were analyzed to be heterologously obtained by horizontal transfer. Gene or gene cluster candidates responding to secondary metabolites production, antimicrobial activities, and plant growth-promoting capacities were also analyzed in this paper. The genomic information and biological characteristics will facilitate the understanding and application of S. albireticuli and S. alboflavus species as biocontrol agents in future agriculture.
Collapse
|
5
|
Park HB, Park JS, Lee SI, Shin B, Oh DC, Kwon HC. Gordonic Acid, a Polyketide Glycoside Derived from Bacterial Coculture of Streptomyces and Gordonia Species. JOURNAL OF NATURAL PRODUCTS 2017; 80:2542-2546. [PMID: 28845982 DOI: 10.1021/acs.jnatprod.7b00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite numerous efforts to discover novel bioactive products from microorganisms, previously reported compounds are repetitively reisolated. A new polyketide glycoside, gordonic acid (1), isolated from the mixed culture of two Gram-positive bacteria, Gordonia sp. KMC005 and Streptomyces tendae KMC006, is reported. The structure of 1 was characterized as an acyclic polyene polyketide substituted with a β-d-digitoxopyranose through NMR, HR-ESI-QTOF-MS, IR, and UV spectral data. The stereochemistry for 1 was determined by Mosher's method followed by 2D NOESY analysis and by NMR chemical shift calculations supported by DP4 analysis. Gordonic acid (1) showed weak activity against Micrococcus luteus and Enterococcus hirae.
Collapse
Affiliation(s)
- Hyun Bong Park
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Gangwon-do 25451, Republic of Korea
| | - Jin-Soo Park
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Gangwon-do 25451, Republic of Korea
| | - Seung Il Lee
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Gangwon-do 25451, Republic of Korea
| | - Bora Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University , Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University , Seoul 151-742, Republic of Korea
| | - Hak Cheol Kwon
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Gangwon-do 25451, Republic of Korea
| |
Collapse
|
6
|
Liu H, Chen Z, Zhu G, Wang L, Du Y, Wang Y, Zhu W. Phenolic polyketides from the marine alga-derived Streptomyces sp. OUCMDZ-3434. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Park HB, Lee JK, Lee KR, Kwon HC. Angumycinones A and B, two new angucyclic quinones from Streptomyces sp. KMC004 isolated from acidic mine drainage. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Djinni I, Defant A, Kecha M, Mancini I. Antibacterial polyketides from the marine alga-derived endophitic Streptomyces sundarbansensis: a study on hydroxypyrone tautomerism. Mar Drugs 2013; 11:124-35. [PMID: 23306172 PMCID: PMC3564162 DOI: 10.3390/md11010124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/04/2012] [Accepted: 12/25/2012] [Indexed: 11/16/2022] Open
Abstract
Polyketide 13 [=2-hydroxy-5-((6-hydroxy-4-oxo-4H-pyran-2-yl)methyl)-2- propylchroman-4-one] and three related known compounds 7, 9 and 11 were obtained and structurally characterized from Streptomyces sundarbansensis strain, an endophytic actinomycete isolated from the Algerian marine brown algae Fucus sp. Compound 13 was obtained as the major metabolite from optimized culture conditions, by using Agar state fermentation. Due to tautomeric equilibrium, 13 in CD(3)OD solution was able to incorporate five deuterium atoms, as deduced by NMR and ESI-MS/MS analysis. The 2-hydroxy-γ-pyrone form was established for these metabolites based on the comparison of their experimental IR spectra with the DFT calculated ones, for both the corresponding 4-hydroxy-α-pyrone and 2-hydroxy-γ-pyrone forms. During antibacterial evaluation, compound 13 stood out as the most active of the series, showing a selective activity against the gram positive pathogenic methicillin-resistant S. aureus (MRSA, MIC = 6 μΜ), with a bacteriostatic effect.
Collapse
Affiliation(s)
- Ibtissem Djinni
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, Targa Ouzemmour 06000, Algeria; E-Mails: (I.D.); (M.K.)
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, via Sommarive 14, I-38123 Povo-Trento, Italy; E-Mail:
| | - Andrea Defant
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, via Sommarive 14, I-38123 Povo-Trento, Italy; E-Mail:
| | - Mouloud Kecha
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, Targa Ouzemmour 06000, Algeria; E-Mails: (I.D.); (M.K.)
| | - Ines Mancini
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, via Sommarive 14, I-38123 Povo-Trento, Italy; E-Mail:
| |
Collapse
|