1
|
Li H, Lin L, Feng Y, Zhao M. Exploration of optimal preparation strategy of Chenpi (pericarps of Citrus reticulata Blanco) flavouring essence with great application potential in sugar and salt-reduced foods. Food Res Int 2024; 175:113669. [PMID: 38129020 DOI: 10.1016/j.foodres.2023.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
To obtain flavouring essence with application potential in sugar and salt-reduced foods, the optimal strategy for extraction and microencapsulation of essential oil (EO) from Chenpi was investigated. UPLC-QTOF-MS/MS and liquid-liquid-extraction-GC-MS confirmed the selectivity for volatiles ranked in hydrodistillation > supercritical fluid extraction > solvent extraction. The aroma characteristic of Chenpi EO was distinguished by 33 key volatiles (screened out via headspace-SPME-GC-MS) and quantitative descriptive analysis. EO extracted by supercritical fluid extraction was preferred for preserving the original aroma of Chenpi and displaying more fruity, honey and floral. Chenpi flavouring essence with superior encapsulation efficiency, particle size, water dispersibility, and thermostability was obtained through optimally microencapsulating EO with gum arabic and maltodextrin (1:1) by high-pressure homogenization coupled with spray drying. Chenpi flavouring essence was able to reduce the usage of sugar and salt by 20 % via enhancing flavour perception of sweetness and saltiness. This study first developed a flavouring essence promisingly effective in both sugar and salt-reduced foods.
Collapse
Affiliation(s)
- Hanliang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China.
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| |
Collapse
|
2
|
Wang Q, Qiu Z, Chen Y, Song Y, Zhou A, Cao Y, Xiao J, Xiao H, Song M. Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:10332-10360. [PMID: 37326362 DOI: 10.1080/10408398.2023.2222834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The extensive health-promoting effects of Citri Reticulatae Pericarpium (CRP) have attracted researchers' interest. The difference in storage time, varieties and origin of CRP are closely related to the content of bioactive compounds they contain. The consitituent transformation mediated by environmental microorganisms (bacteria and fungi) and the production of new bioactive components during the storage process may be the main reason for 'the older, the better' of CRP. In addition, the gap in price between different varieties can be as large as 8 times, while the difference due to age can even reach 20 times, making the 'marketing young-CRP as old-CRP and counterfeiting origin' flood the entire market, seriously harming consumers' interests. However, so far, the research on CRP is relatively decentralized. In particular, a summary of the microbial transformation and authenticity identification of CRP has not been reported. Therefore, this review systematically summarized the recent advances on the main bioactive compounds, the major biological activities, the microbial transformation process, the structure, and content changes of the active substances during the transformation process, and authenticity identification of CRP. Furthermore, challenges and perspectives concerning the future research on CRP were proposed.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Ma E, Jin L, Qian C, Feng C, Zhao Z, Tian H, Yang D. Bioinformatics-Guided Identification of Ethyl Acetate Extract of Citri Reticulatae Pericarpium as a Functional Food Ingredient with Anti-Inflammatory Potential. Molecules 2022; 27:5435. [PMID: 36080202 PMCID: PMC9457579 DOI: 10.3390/molecules27175435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP) is one of the most commonly used food supplements and folk medicines worldwide, and possesses cardiovascular, digestive, and respiratory protective effects partially through its antioxidant and anti-inflammatory functions. The unique aromatic flavor and mild side effects make CRP a promising candidate for the development of anti-inflammatory functional food. However, recent studies show that the crude alcoholic extract and some isolated compounds of CRP show compromised anti-inflammatory activity, which became the main factor hindering its further development. To identify the bioactive compounds with anti-inflammatory potential, and improve the anti-inflammatory effects of the extract, a bioinformatics-guided extraction protocol was employed in this study. The potential bioactive candidates were identified by combing network pharmacology analysis, molecular docking, principal components analysis, k-means clustering, and in vitro testing of reference compounds. Our results demonstrated that 66 compounds in CRP could be grouped into four clusters according to their docking score profile against 24 receptors, while the cluster containing flavonoids and phenols might possess a more promising anti-inflammatory function. In addition, in vitro anti-inflammatory tests of the seven reference compounds demonstrated that hesperitin, naringenin, and gardenin B, which were grouped into a cluster containing flavonoids and phenols, significantly decreased LPS-induced NO, TNF-α, and IL-6 production of macrophages. While the compounds outside of that cluster, such as neohesperidin, naringin, hesperidin, and sinensetin showed little effect on alleviating LPS-induced NO and proinflammatory cytokine production. Based on the chemical properties of selected compounds, ethyl acetate (EtOAc) was selected as the solvent for extraction, because of its promising solubility of flavonoids and phenols. Furthermore, the ethanol alcoholic extract was used as a reference. The chemical profiling of EtOAc and crude alcoholic extract by HPLC/MS/MS also demonstrated the decreased abundance of flavonoid glycosides in EtOAc extract but increased abundance of phenols, phenolic acid, and aglycones. In accordance with the prediction, the EtOAc extract of CRP, but not the crude alcoholic extract, significantly decreased the NO, IL-6, and TNF-α production. Taken together, the results suggested selective extraction of phenols and flavonoids rich extract was able to increase the anti-inflammatory potential of CRP partially because of the synergistic effects between flavonoids, phenols, and enriched polymethoxyflavones. Our study might pave the road for the development of ethyl acetate extract of CRP as a novel functional food with anti-inflammatory function.
Collapse
Affiliation(s)
- Enyao Ma
- Guangdong Hanchao Traditional Chinese Medicine Technology Co., Ltd., Guangzhou 510163, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chong Feng
- Guangzhou Caizhilin Pharmaceutical Co., Ltd., Guangzhou 510360, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongru Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Liang S, Wen Z, Tang T, Liu Y, Dang F, Xie T, Wu H. Study on flavonoid and bioactivity features of the pericarp of Citri Reticulatae ‘chachi' during storage. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Liu J, Wang K, Li Y, Zhou B, Tseng K, Zhang X, Su Y, Sun W, Guo Y. Rapid Discrimination of Citrus reticulata 'Chachi' by Electrospray Ionization-Ion Mobility-High-Resolution Mass Spectrometry. Molecules 2021; 26:7015. [PMID: 34834108 PMCID: PMC8622672 DOI: 10.3390/molecules26227015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
A common idea is that some dishonest businessmen often disguise Citrus reticulata Blanco varieties as Citrus reticulata 'Chachi', which places consumers at risk of economic losses. In this work, we combined high-resolution ion mobility (U-shaped mobility analyzer) with high-resolution mass spectrometry to rapidly distinguish Citrus reticulata 'Chachi' from other Citrus species. The samples were analyzed directly through simple extraction and the analytes were separated in one second. It only took about 1 min to perform a cycle of sample analysis and data acquisition. The results showed that polymethoxylated flavones and their isomers were separated easily by the ion mobility analyzer and preliminarily identified according to the accurate mass. Moreover, the collision cross-section values of all analytes, which could be used as auxiliary parameters to characterize and identify the compounds in the samples, were measured. Twenty-four samples were grouped as two clusters by multivariate analysis, which meant that Citrus reticulata 'Chachi' could be effectively differentiated. It was confirmed that the developed method had the potential to rapidly separate polymethoxylated flavones and distinguish between Citrus reticulata 'Chachi' and other Citrus reticulata Blanco varieties.
Collapse
Affiliation(s)
- Juan Liu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Keke Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yuling Li
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Bowen Zhou
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yue Su
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China; (K.W.); (K.T.); (X.Z.)
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (Y.L.); (B.Z.)
| |
Collapse
|
6
|
Zhou T, Guo W, Ren S, Li Y, Wu J, Yang B. Flavonoid glycosides and other bioactive compounds in Citrus reticulate 'Chachi' peel analysed by tandem mass spectrometry and their changes during storage. Carbohydr Res 2021; 510:108462. [PMID: 34700219 DOI: 10.1016/j.carres.2021.108462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The peel of Citrus reticulate 'Chachiennsis' (Chachi) is a well-known functional food with multiple health benefits in Asia. There is an old saying "the longer time Chachi is stored, the better health benefits it has". Is it convincible? What are the critical bioactive compounds in Chachi? To answer these questions, gas chromatography-mass spectrometry (GC-MS) and ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were used to qualify and quantify the flavonoid glycosides and other bioactive compounds of Chachi with storage time of 5-20 years. Limonene was the representative volatile compound. The level of most volatile compounds decreased along with storage. Sixteen flavonoids glycosides and twenty flavonoids were identified. Nobiletin, hesperitin, tetramethoxy flavone and pentamethoxy flavone were characteristic bioactive compounds for Chachi. Most of them accumulated during 10-year storage, thereafter decreased. Ten years could be the optimal storage time. These results indicated that the old saying should be corrected.
Collapse
Affiliation(s)
- Ting Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Guo
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510385, China
| | - Shengchao Ren
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510385, China
| | - Yuming Li
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510385, China
| | - Jinming Wu
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510385, China.
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Zhang H, Chen Y, Guo Y, Xu W, Wang W, Wu S, Chen W, Huang Y. Label-free quantification proteomics reveals the active peptides from protein degradation during anaerobic fermentation of tea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem 2021; 365:130585. [PMID: 34325351 DOI: 10.1016/j.foodchem.2021.130585] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Citrus is one of the main fruits processed worldwide, producing a lot of industrial by-products. As the main part of citrus "residue", citrus peels have a wide application prospect. They could not only be directly used to produce various food products, but also be used as promising biofuels to produce ethanol and methane. Additionally, functional components (flavonoids, limonoids, alkaloids, essential oils and pectin) extracted from citrus peels have been related to the improvement of human health against active oxygen, inflammatory, cancer and metabolic disorders. Therefore, it is clear that the citrus peels have great potential to be developed into useful functional foods, medicines and biofuels. This review systematically summarizes the recent advances in current uses, processing, bioactive components and biological properties of citrus peels. A better understanding of citrus peels may provide reference for making full use of it.
Collapse
Affiliation(s)
- Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
10
|
He J, Chen C, He Q, Li J, Ying F, Chen G. The central bacterial community in Pericarpium Citri Reticulatae 'Chachiensis'. Food Res Int 2019; 125:108624. [PMID: 31554059 DOI: 10.1016/j.foodres.2019.108624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022]
Abstract
The dried and aged pericarps of Citri Reticulatae are condiments and medicinal products in southeast and eastern Asia for hundreds of years, among which Pericarpium Citri Reticulatae 'Chachiensis' (PCR-C) is the premium one with obvious health benefits. In order to explore the microbiota in PCR-C and their relationship with the chemical components during aging, culture-independent methods were applied to investigate PCR-C microbiota for the first time. Here in different PCR-C samples, 16S rRNA gene amplicon sequencing revealed common central bacterial community, which were absent or only accounted for small proportion in fresh pericarps or jute bag controls. Bacillus and Lactococcus were the top two dominant genera in PCR-C with acidic pH (4.06-4.51) and low moisture (11.48%-19.13%). Several OTUs were found to closely relate with specific compositions in essential oils and phenolics, such as d-limonene and nobiletin, which contributed to PCR-C flavor and quality. As the first study to reveal the central bacterial communities in PCR-C, it provides new insights to improve the quality and aging process of traditional Pericarpium Citri Reticulatae, and lays foundation for functional characterization of the microbes within.
Collapse
Affiliation(s)
- Jing He
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China
| | - Congcong Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China
| | - Qianxian He
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China
| | - Jingyu Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China
| | - Fan Ying
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China
| | - Gu Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| |
Collapse
|
11
|
Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chem 2019; 289:340-350. [DOI: 10.1016/j.foodchem.2019.03.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/23/2023]
|
12
|
Xu Y, Cai H, Cao G, Duan Y, Pei K, Zhou J, Xie L, Zhao J, Liu J, Wang X, Shen L. Discrimination of volatiles in herbal formula Baizhu Shaoyao San before and after processing using needle trap device with multivariate data analysis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171987. [PMID: 30110475 PMCID: PMC6030309 DOI: 10.1098/rsos.171987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
To characterize the chemical differences of volatile components between crude and processed Baizhu Shaoyao San (BSS), a classical Chinese herbal formula that is widely applied in the treatment of gastrointestinal diseases, we developed a gas chromatography-mass spectrometry-based needle trap device combined with multivariate data analysis to globally profile volatile components and rapidly identify differentiating chemical markers. Using a triple-bed needle packed with Carbopack X, DVB and Carboxen 1000 sorbents, we identified 121 and 123 compounds, respectively, in crude and processed BSS. According to the results of principal component analysis and orthogonal partial least-squares discriminant analysis, crude and processed BSS were successfully distinguished into two groups with good fitting and predicting parameters. Furthermore, 21 compounds were identified and adopted as potential markers that could be employed to quickly differentiate these two types of samples using S-PLOT and variable importance in projection analyses. The established method can be applied to explain the chemical transformation of Chinese medicine processing in BSS and further control the quality and understand the processing mechanism of Chinese herbal formulae. Besides, the triple-bed needle selected and optimized in this study can provide a valuable reference for other plant researches with similar components. Furthermore, the systematic research on compound identification and marker discrimination of the complex components in crude and processed BSS could work as an example for other similar studies, such as composition changes in one plant during different growth periods, botanical characters of different medicinal parts in same kind of medicinal herbs and quality identification of one species of medicinal herb from different regions.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, People's Republic of China
| | - Jia Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jiayu Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Xiaoqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Lin Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
13
|
Quality Evaluation Focusing on Tissue Fractal Dimension and Chemical Changes for Frozen Tilapia with Treatment by Tangerine Peel Extract. Sci Rep 2017; 7:42202. [PMID: 28169365 PMCID: PMC5294564 DOI: 10.1038/srep42202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
This work aimed to establish an effective approach to evaluate the quality of frozen fish, focusing on changes in fish tissue structure and chemical composition during storage. Fresh tilapia samples were treated by coating with tangerine peel (TP) extract and then stored at −4, −8 and −18 °C, respectively, for 40 days. The frozen fish tissues were analyzed for structural and chemical changes. Fractal dimension, which quantifies the porous structure formed in the tissue samples, texture properties including hardness and springiness, and moisture content and water activity all decreased during the storage, while the extents of lipid oxidation, measured as peroxide value and thiobarbituric acid concentration, and protein degradation, monitored with total volatile basic nitrogen and trichloroacetic acid soluble peptides, increased. The change rates of these parameters decreased with decreasing the storage temperature and by applying TP extract. A model was developed for predicting fractal dimension, which indicated the quality of preserved tilapia and thus can be used to predict the shelf life under different storage temperatures. The results demonstrated that TP extract could extend the shelf life of frozen tilapia by 35–45% by inhibiting changes in tissue structure, moisture loss, lipid oxidation and protein degradation during frozen storage.
Collapse
|
14
|
Dalia IH, Maged EM, Assem MES. Citrus reticulata Blanco cv. Santra leaf and fruit peel: A common waste products, volatile oils composition and biological activities. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jmpr2016.6139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Wang H, Chen G, Fu X, Liu RH. Effects of aging on the phytochemical profile and antioxidative activity of Pericarpium Citri Reticulatae ‘Chachiensis’. RSC Adv 2016. [DOI: 10.1039/c6ra22082g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PCR-Chachiensis stored long-term exhibits higher total phenolics, flavonoid content and superior antioxidant activity, which provide additional health benefits during aging.
Collapse
Affiliation(s)
- Hong Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Gu Chen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xiong Fu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Rui-Hai Liu
- Department of Food Science
- Cornell University
- Ithaca
- USA
| |
Collapse
|
16
|
Costa R, Bisignano C, Filocamo A, Grasso E, Occhiuto F, Spadaro F. Antimicrobial activity and chemical composition ofCitrus aurantifolia(Christm.) Swingle essential oil from Italian organic crops. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.964428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Chen Y, Wu J, Xu Y, Fu M, Xiao G. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8786-90. [PMID: 24945493 DOI: 10.1021/jf501079r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A second cooling was added to the oil collectors of an improved Clevenger-type apparatus (ICT) to investigate the thermal reaction of essential oils from orange peel compared to a traditional Clevenger-type apparatus (CT). The results demonstrated the yield rate of essential oil from ICT was significantly higher (p < 0.05) than that from CT. The major components of the essential oils consisted of monoterpenes, such as d-limonene, β-myrcene, β-pinene, γ-terpinene, α-pinene. Interestingly, ICT prevented the thermal reaction-the transformation of β-myrcene to β-thujene-and reduced the oxidation on α-pinene and β-pinene of the essential oil in comparison to CT. In addition, the yield rate of γ-terpinene can also be improved via ICT compared to CT. Thus, ICT is an effective improvement to traditional CT.
Collapse
Affiliation(s)
- Yulong Chen
- Sericultural and Agro-Food Processing Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou 510610, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Gandomi H, Abbaszadeh S, JebelliJavan A, Sharifzadeh A. Chemical Constituents, Antimicrobial and Antioxidative Effects of Trachyspermum ammi
Essential Oil. J FOOD PROCESS PRES 2013. [DOI: 10.1111/jfpp.12131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hassan Gandomi
- Department of Food Hygiene; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Sepideh Abbaszadeh
- Nutrition and Food Hygiene; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Ashkan JebelliJavan
- Department of Food Hygiene; Faculty of Veterinary; University of Semnan; Semnan Iran
| | - Aghil Sharifzadeh
- Mycology Research Center; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| |
Collapse
|
19
|
Release of terpenes from fir wood during its long-term use and in thermal treatment. Molecules 2012; 17:9990-9. [PMID: 22910123 PMCID: PMC6268138 DOI: 10.3390/molecules17089990] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022] Open
Abstract
Building structures made from fir wood are often attacked by wood-destroying insects for which the terpenes it contains serve as attractants. One of the possibilities for extending the lifetime of structures is to use older wood with a lower content of terpenes and/or thermally modified wood. The study evaluated the levels of terpenes in naturally aged fir wood (108, 146, 279, 287 and 390 years) and their decrease by thermal treatment (the temperature of 60 °C and 120 °C, treatment duration of 10 h). Terpenes were extracted from wood samples by hexane and analyzed by gas-chromatography mass-spectrometry (GC-MS). The results indicate that recent fir wood contained approximately 60 times more terpenes than the oldest wood (186:3.1 mg/kg). The thermal wood treatment speeded up the release of terpenes. The temperature of 60 °C caused a loss in terpenes in the recent fir wood by 62%, the temperature of 120 °C even by >99%. After the treatment at the temperature of 60 °C the recent fir wood had approximately the same quantity of terpenes as non-thermally treated 108 year old wood, i.e., approximately 60–70 mg/kg. After the thermal treatment at the temperature of 120 °C the quantity of terpenes dropped in the recent as well as the old fir wood to minimum quantities (0.7–1.1 mg/kg). The thermal treatment can thus be used as a suitable method for the protection of fir wood from wood-destroying insects.
Collapse
|