1
|
Tu C, Zhang M, Wu M, Liu M, Ke W. Main active constituents and mechanism of toxicity of raphides from Arisaema erubescens against Oncomelania hupensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116728. [PMID: 39029218 DOI: 10.1016/j.ecoenv.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
To find a high-efficiency and environment-friendly biogenic molluscicide against Oncomelania hupensis, and prevent aquatic ecosystem from being contaminated by chemical molluscicides and being toxic. We extracted and purified raphides from the tubers of Arisaema erubescent, and determined the active constituents and molluscicidal activity of the raphides, detoxification enzyme activity, and liver damage. The results showed that the raphides had a strong molluscicidal activity. O. hupensis snails were exposed to the lethal concentration (LC50) of 70.95 mg/L and 44.25 mg/L for treatment with raphides for 48 h and 72 h, respectively. The raphides of molluscicidal activity of the main constituents was as follows: intact raphides > calcium oxalate crystals > AEL (Arisaema erubescens Lectin). The activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in the snail livers increased significantly at the early stage of treatment (24 h), but decreased sharply in the later stage (120 h), compared with that in the control group. The results indicated that after treatment with 1/2 LC50 raphides for 120 h, the activities of POD, SOD, and CAT in the snail livers decreased by 82.5 %, 62.9 %, and 84.7 %, respectively. In addition, electron micrographs have shown that the raphides were needle-shaped crystals and tended to be sharp at both ends (with a groove down both sides) and some were barbed, which caused damage to the snail livers to different extent. Overall, our results indicate that the mechanism of toxicity of raphides against O. hupensis may be that the calcium oxalate crystals pricked the liver surface of snail and produced mechanical damage; and then the harmful protease AEL in the raphides was injected into the liver, which reduced the activities of detoxification enzymes, produced severe toxic reactions and eventually killed the O. hupensis snails.
Collapse
Affiliation(s)
- Chang Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; School of Life Sciences, Central China Normal University, Wuhan, Hubei Province 430079, China
| | - Mingjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Mingyu Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Minfeng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Wenshan Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Wang J, Cui J, Liu Z, Yang Y, Li Z, Liu H. Untargeted Metabolomics Based on Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High-Resolution Mass Spectrometry for Differential Metabolite Analysis of Pinelliae Rhizoma and Its Adulterants. Molecules 2024; 29:2155. [PMID: 38731650 PMCID: PMC11085193 DOI: 10.3390/molecules29092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiling Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (J.C.); (Z.L.); (Y.Y.); (Z.L.)
| |
Collapse
|
3
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
4
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
5
|
Sikder MM, Vestergård M, Kyndt T, Topalović O, Kudjordjie EN, Nicolaisen M. Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. THE ISME JOURNAL 2022; 16:2230-2241. [PMID: 35760884 PMCID: PMC9381567 DOI: 10.1038/s41396-022-01276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
In-depth understanding of metabolite-mediated plant-nematode interactions can guide us towards novel nematode management strategies. To improve our understanding of the effects of secondary metabolites on soil nematode communities, we grew Arabidopsis thaliana genetically altered in glucosinolate, camalexin, or flavonoid synthesis pathways, and analyzed their root-associated nematode communities using metabarcoding. To test for any modulating effects of the associated microbiota on the nematode responses, we characterized the bacterial and fungal communities. Finally, as a proxy of microbiome-modulating effects on nematode invasion, we isolated the root-associated microbiomes from the mutants and tested their effect on the ability of the plant parasitic nematode Meloidogyne incognita to penetrate tomato roots. Most mutants had altered relative abundances of several nematode taxa with stronger effects on the plant parasitic Meloidogyne hapla than on other root feeding taxa. This probably reflects that M. hapla invades and remains embedded within root tissues and is thus intimately associated with the host. When transferred to tomato, microbiomes from the flavonoid over-producing pap1-D enhanced M. incognita root-invasion, whereas microbiomes from flavonoid-deficient mutants reduced invasion. This suggests microbiome-mediated effect of flavonoids on Meloidogyne infectivity plausibly mediated by the alteration of the abundances of specific microbial taxa in the transferred microbiomes, although we could not conclusively pinpoint such causative microbial taxa.
Collapse
Affiliation(s)
- Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Gent, Belgium
| | - Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
6
|
Oliveira M, Lima CS, Llorent-Martínez EJ, Hoste H, Custódio L. Impact of Seasonal and Organ-Related Fluctuations on the Anthelmintic Properties and Chemical Profile of Cladium mariscus (L.) Pohl Extracts. FRONTIERS IN PLANT SCIENCE 2022; 13:934644. [PMID: 35812938 PMCID: PMC9260656 DOI: 10.3389/fpls.2022.934644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The use of plants and their metabolites stands as a promising option to tackle parasitic infections by gastrointestinal nematodes (GIN) in integrated control strategies. Still, the influence of environmental and phenological factors, and their interactions, in the wild on the metabolomics and biological properties of target plant species, is often disregarded. In this work, we hypothesized that variations in the anthelmintic (AH) properties and chemical composition of extracts from the salt tolerant species Cladium mariscus L. Pohl (sawgrass) may be influenced by seasonal factors and organ-parts. To test this hypothesis, acetone/water extracts were prepared from dried biomass obtained from aerial organs collected from sawgrass in consecutive seasons and tested against Haemonchus contortus and Trichostrongylus colubriformis by the larval exsheathment inhibition assay (LEIA) and egg hatching inhibition assay (EHIA). To ascertain the role of plant organ, the activity of leaves and inflorescences extracts from summer samples was compared. The role of polyphenols in the anthelmintic activity depending on GINs and fluctuations across seasons and plant organs was assessed using polyvinylpolypyrrolidone (PVPP), coupled with an in-depth chemical profiling analysis using high-performance liquid chromatography completed with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn). Main differences in anthelmintic activities were observed for summer and autumn samples, for both assays. Moreover, inflorescences' extracts were significantly more active than those from leaves against both parasite species on EHIA and against H. contortus on LEIA. Application of PVPP totally inhibit the AH effects based on EHIA and only partly for LEIA. Non-treated PVPP extracts were predominantly composed of flavan-3-ols, proanthocyanidins, luteolin and glycosylated flavonoids, while two flavonoid glycosides were quantified in all PVPP-treated samples. Thus, the activity of such compounds should be further explored, although some unknown metabolites remain to be identified. This study reinforces the hypothesis of the AH potential of sawgrass and of its polyphenolic metabolites uses as nutraceutical and/or phytotherapeutic drugs.
Collapse
Affiliation(s)
- Marta Oliveira
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Caroline Sprengel Lima
- Laboratory of Antibiotics and Chemotherapeutics, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University, São José do Rio Preto, Brazil
| | - Eulogio J. Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Hervé Hoste
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Université de Toulouse, ENVT, Toulouse, France
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
7
|
Su F, Sun Y, Zhu W, Bai C, Zhang W, Luo Y, Yang B, Kuang H, Wang Q. A comprehensive review of research progress on the genus Arisaema: Botany, uses, phytochemistry, pharmacology, toxicity and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114798. [PMID: 34780984 DOI: 10.1016/j.jep.2021.114798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Arisaema belongs to the family Araceae, which includes Chinese herbal medicines with wide-ranging pharmacological functions, including those useful for the treatment of stubborn phlegm, cough, epilepsy, tetanus, snakebite, rheumatoid arthritis, and other ailments. AIM OF THE STUDY The current study aimed to comprehensively review the botany, uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of plants in the genus Arisaema and to provide novel insights to develop future research in this field. MATERIALS AND METHODS Relevant information on the genus Arisaema was obtained from published scientific materials (including materials from PubMed, Elsevier, Web of Science, Google Scholar, Baidu Scholar, CNKI, and Wiley) and other literature sources (e.g., the Chinese Pharmacopoeia, 2020 edition; Chinese herbal books and PhD and MSc thesis). RESULTS The application information complied with this review and included processing techniques, traditional uses, clinical applications and classic prescriptions. Approximately 260 compounds, including flavonoids, alkaloids, saccharides, steroids, fatty acids, amino acids and volatile oils, have been separated and identified from the genus Arisaema. The isolated compounds exhibit wide-ranging pharmacological activities such as antitumor activity, analgesic and sedative activity, antioxidant activity and anti-inflammatory activity. The toxicity and irritant impacts, quality control, and pharmacokinetics are also discussed in this review. CONCLUSIONS Plants in the genus Arisaema are valuable resources with therapeutic potential for a broad spectrum of ailments. Based on the limited literature, this review comprehensively and systematically summarizes current knowledge regarding the genus Arisaema for the first time. However, there have been insufficient studies on the active ingredients and germplasm and insufficient in-depth mechanistic studies. Therefore, isolation and identification of additional effective components and through research on the germplasm, pharmacodynamic mechanisms, and toxicology should be conducted to assess effectiveness and safety and to ensure the quality of the related drugs.
Collapse
Affiliation(s)
- Fazhi Su
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wenbo Zhu
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chenxi Bai
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wensen Zhang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yumeng Luo
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Haixue Kuang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Qiuhong Wang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 232 Outer Ring Road, University Town, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Bio-Efficacy of Chrysoeriol7, a Natural Chemical and Repellent, against Brown Planthopper in Rice. Int J Mol Sci 2022; 23:ijms23031540. [PMID: 35163461 PMCID: PMC8836193 DOI: 10.3390/ijms23031540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Brown planthopper (BPH, Nilaparvata lugens Stal.) is the most damaging rice pest affecting stable rice yields worldwide. Currently, methods for controlling BPH include breeding a BPH-resistant cultivar and using synthetic pesticides. Nevertheless, the continuous cultivation of resistant cultivars allows for the emergence of various resistant races, and the use of synthetic pesticides can induce environmental pollution as well as the emergence of unpredictable new pest species. As plants cannot migrate to other locations on their own to combat various stresses, the production of secondary metabolites allows plants to protect themselves from stress and tolerate their reproduction. Pesticides using natural products are currently being developed to prevent environmental pollution and ecosystem disturbance caused by synthetic pesticides. In this study, after BPH infection in rice, chrysoeriol7 (C7), a secondary metabolite that induces resistance against BPH, was assessed. After C7 treatment and BPH infection, relative expression levels of the flavonoid-related genes were elevated, suggesting that in plants subjected to BPH, compounds related to flavonoids, among the secondary metabolites, play an important role in inducing resistance. The plant-derived natural compound chrysoeriol7 can potentially thus be used to develop environmentally friendly pesticides. The suggested control of BPH can be effectively used to alleviate concerns regarding environmental pollution and to construct a relatively safe rice breeding environment.
Collapse
|
9
|
Oliveira M, Lima CS, Ketavong S, Llorent-Martínez EJ, Hoste H, Custódio L. Disclosing the bioactive metabolites involved in the in vitro anthelmintic effects of salt-tolerant plants through a combined approach using PVPP and HPLC-ESI-MS n. Sci Rep 2021; 11:24303. [PMID: 34934093 PMCID: PMC8692309 DOI: 10.1038/s41598-021-03472-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Strategies to reduce dependence on synthetic drugs for the treatment of gastrointestinal nematodes (GIN) infections in ruminants include the search for novel anthelmintic scaffolds on plants, yet salt-tolerant plants remain overlooked. This study aims to evaluate the in vitro anthelmintic properties of selected salt-tolerant plants against GIN, and identify the potential bioactive secondary metabolites involved. For that purpose, 80% acetone/water extracts were prepared from dried biomass of aerial organs of nine salt-tolerant plant species and tested against Haemonchus contortus and Trichostrongylus colubriformis by the Larval Exsheathment Inhibition Assay (LEIA) and Egg Hatching Inhibition Assay (EHIA). Pistacia lentiscus, Limoniatrum monopetalum, Cladium mariscus and Helychrisum italicum picardi were the most active in both GIN and life stages. To investigate the role of polyphenols in the anthelmintic activity, four selected extracts were treated with polyvinylpolypyrrolidone (PVPP), and non-treated and treated samples were further characterized by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn). While polyphenols seem responsible for the EHIA properties, they are partially accountable to LEIA results. Several phenolics involved in the anthelmintic effects were identified and discussed. In sum, these species are rich sources of anthelmintic compounds and, therefore, are of major interest for nutraceutical and/or phytotherapeutic applications against GIN in ruminants.
Collapse
Affiliation(s)
- Marta Oliveira
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Caroline Sprengel Lima
- Laboratory of Antibiotics and Chemotherapeutics, IBILCE, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Setha Ketavong
- UMR 1225 IHAP, INRAe, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Hervé Hoste
- UMR 1225 IHAP, INRAe, 23 Chemin des Capelles, 31076, Toulouse, France.,ENVT, Université de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
10
|
Yi S, Xu T, Song X, Wang W, Wang G, Yu W, Han B. The complete chloroplast genome of Arisaema bockii Engler and its phylogenetic analysis in the family Araceae. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3283-3285. [PMID: 34712813 PMCID: PMC8547865 DOI: 10.1080/23802359.2021.1993107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Arisaema bockii Engler is a perennial herbaceous medicinal plant, which is widely distributed in many provinces in China such as Anhui, Jiangsu, and Zhejiang. In this study, the complete chloroplast genome sequence of A. bockii was assembled and characterized based on high-throughput sequencing data. The total length of chloroplast genome was 175,537 bp, including large single-copy (LSC) and small single-copy (SSC) regions of 98,870 bp and 23,345 bp, respectively, which were separated by a pair of 27,161 bp inverted repeat (IR) regions. The genome contained 129 genes, including 84 protein-coding genes, 36 tRNA genes, 8 rRNA genes, and one pseudogene. The overall GC content of the genome was 33.6%. A phylogenetic tree reconstructed by 30 chloroplast genomes revealed that A. bockii was mostly related to the same genus species A. ringens, A. franchetianum and A. erubescens. The work reported the first complete chloroplast genome of A. bockii, which may provide some useful information to the evolution of the family Araceae.
Collapse
Affiliation(s)
- Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, P.R. China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, P.R. China
| | - Tao Xu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, P.R. China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, P.R. China
| | - Xiangwen Song
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, P.R. China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, P.R. China
| | - Wei Wang
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, P.R. China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, P.R. China
| | - Guanglin Wang
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, P.R. China.,Analytical and Testing Center, West Anhui University, Lu'an, P.R. China
| | - Wangyang Yu
- Anhui Qiansouyan Biotechnology Co., Ltd, Lu'an, P.R. China
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, P.R. China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, P.R. China
| |
Collapse
|
11
|
Kant K, Lal UR, Rawat R, Kumar A, Ghosh M. Genus Arisaema: A Review of Traditional Importance, Chemistry and Biological Activities. Comb Chem High Throughput Screen 2021; 23:624-648. [PMID: 32297572 DOI: 10.2174/1386207323666200416150754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The Arisaema (Araceae) is a genus of approximately 180 perennial herbs widely distributed in the evergreen and deciduous forests. This genus (Arisaema) has been used as a medicinal agent since ancient times. Experimental investigations have shown a promising positive correlation with its folklore claim and this encourages us to report updated medicinal review (genus Arisaema) for future research. OBJECTIVE This review aimed to summarize the ethnobotany, folklore uses, chemistry and biological activities. CONCLUSION The comprehensive literature on genus Arisaema indicates the presence of terpenoids, flavonoids, and glycosphingolipids as the principal chemical constituents. Additionally, phytosterols, alkaloids, carboline derivatives and miscellaneous compounds were documented in plants of genus Arisaema. Biological investigations led to the credentials of antioxidant, anticancer, insecticidal, antimicrobial, anthelmintic and hepatoprotective activities. Following, several plant species are promising candidates for the treatment of cancer, parasitic diseases and microbial infection complications. Though, a lot of facets of this genus like phytoconstituents identification, mechanistic profile, adverse effects and clinical studies are still quite limited. Thus, this systematic review may act as a powerful tool in future studies for promoting health benefits against various health hazards.
Collapse
Affiliation(s)
- Kamal Kant
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Uma R Lal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
12
|
Dissection of the general two-step di- C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. Proc Natl Acad Sci U S A 2020; 117:30816-30823. [PMID: 33199630 DOI: 10.1073/pnas.2012745117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schaftoside and isoschaftoside are bioactive natural products widely distributed in higher plants including cereal crops and medicinal herbs. Their biosynthesis may be related with plant defense. However, little is known on the glycosylation biosynthetic pathway of these flavonoid di-C-glycosides with different sugar residues. Herein, we report that the biosynthesis of (iso)schaftosides is sequentially catalyzed by two C-glycosyltransferases (CGTs), i.e., CGTa for C-glucosylation of the 2-hydroxyflavanone aglycone and CGTb for C-arabinosylation of the mono-C-glucoside. The two enzymes of the same plant exhibit high homology but remarkably different sugar acceptor and donor selectivities. A total of 14 CGTa and CGTb enzymes were cloned and characterized from seven dicot and monocot plants, including Scutellaria baicalensis, Glycyrrhiza uralensis, Oryza sativa ssp. japonica, and Zea mays, and the in vivo functions for three enzymes were verified by RNA interference and overexpression. Through transcriptome analysis, we found homologous genes in 119 other plants, indicating this pathway is general for the biosynthesis of (iso)schaftosides. Furthermore, we resolved the crystal structures of five CGTs and realized the functional switch of SbCGTb to SbCGTa by structural analysis and mutagenesis of key amino acids. The CGT enzymes discovered in this paper allow efficient synthesis of (iso)schaftosides, and the general glycosylation pathway presents a platform to study the chemical defense mechanisms of higher plants.
Collapse
|
13
|
Zaman MA, Abbas RZ, Qamar W, Qamar MF, Mehreen U, Shahid Z, Kamran M. Role of secondary metabolites of medicinal plants against Ascaridia galli. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1782801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Arfan Zaman
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Fiaz Qamar
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Uzma Mehreen
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zohaib Shahid
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Kamran
- Faculty of Veterinary Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
14
|
Grignon-Dubois M, De Montaudouin X, Rezzonico B. Flavonoid pattern inheritance in the allopolyploid Spartina anglica - Comparison with the parental species S. maritima and S. alterniflora. PHYTOCHEMISTRY 2020; 174:112312. [PMID: 32197152 DOI: 10.1016/j.phytochem.2020.112312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
The invasive species Spartina anglica arose in Europe by a cross between the Afro-European species S. maritima (native, paternal ancestor) and the introduced North American S. alterniflora (invasive, maternal ancestor). Aqueous methanolic extracts were prepared from plant tissue for chemotaxonomical comparison between the three species and determination of the phenolic pattern inheritance in S. anglica. A total of 20 phenolic compounds were detected in the aerial tissues of S. anglica and S. alterniflora, but only seven in S. maritima. They were isolated from their respective crude extracts, and their structures were determined according to spectroscopic data analysis and chemical evidence. They all belong to the flavonoid class, with 13 of them identified as C-glycoflavonoid and seven as O-glycoflavonoid. All these products were detected for the first time from S. anglica, fourteen of them for the first time from S. alterniflora, and three of them for the first time from S. maritima. The individual concentrations in the three species were determined by quantitative HPLC. The two parental species were found to differ markedly in their foliar phenolic fingerprint, whereas that of S. anglica showed a clear maternal dominance. Eight of the fourteen major compounds identified were of maternal origin among which, six were over-expressed, only three were from paternal origin but under-regulated, while two originated from the two parents. As far as we know, this work represents the first exhaustive report of the phenolic fingerprints of S. alterniflora and S. anglica and of the phenolic pattern inheritance in S. anglica. The similarity in the phenolic chemistry of the introduced and invasive S. alterniflora to its progeny could play a role in the physiological vigour and invasion success of S. anglica. This work provide a foundation for further studies, considering the reported biological activities of C-glycosidic flavonoids and tricin derivatives, and the lack of knowledge of the ecological chemistry of the genus Spartina.
Collapse
|
15
|
HPLC–PDA and LC–MS/MS Analysis for the Simultaneous Quantification of the 14 Marker Components in Sojadodamgangki-Tang. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sojadodamgangki-tang (SDGT) is a traditional Korean medicine consisting of 12 medicinal herbs that has been used in Korea for the treatment of asthma since ancient times. However, the quality control of herbal formulas that contain two or more herbal medicines remains challenging. In this study, 14 marker components were analyzed simultaneously by using high-performance liquid chromatography with photodiode array detection in addition to the use of liquid chromatography–tandem mass spectrometry for quality evaluation of SDGT. The simultaneous determination of the 14 marker components was validated in terms of linearity, recovery, and precision. The established methods can provide useful data for the quality control of SDGT and related herbal formulas.
Collapse
|
16
|
Uawisetwathana U, Chevallier OP, Xu Y, Kamolsukyeunyong W, Nookaew I, Somboon T, Toojinda T, Vanavichit A, Goodacre R, Elliott CT, Karoonuthaisiri N. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 2019; 15:151. [PMID: 31741127 DOI: 10.1007/s11306-019-1616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation. OBJECTIVE To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves. METHODS Ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) was combined with multi-block PCA to analyze potential metabolites in response to BPH attack. RESULTS This multivariate statistical model revealed different metabolic response patterns between the BPH-susceptible and BPH-resistant varieties during BPH infestation. The metabolite responses of the resistant IL308 variety occurred on Day 1, which was significantly earlier than those of the susceptible KD variety which showed an induced response by Days 4 and 8. BPH infestation caused metabolic perturbations in purine, phenylpropanoid, flavonoid, and terpenoid pathways. While found in both susceptible and resistant rice varieties, schaftoside (1.8 fold), iso-schaftoside (1.7 fold), rhoifolin (3.4 fold) and apigenin 6-C-α-L-arabinoside-8-C-β-L-arabinoside levels (1.6 fold) were significantly increased in the resistant variety by Day 1 post-infestation. 20-hydroxyecdysone acetate (2.5 fold) and dicaffeoylquinic acid (4.7 fold) levels were considerably higher in the resistant rice variety than those in the susceptible variety, both before and after infestation, suggesting that these secondary metabolites play important roles in inducible and constitutive defenses against the BPH infestation. CONCLUSIONS These potential secondary metabolites will be useful as metabolite markers and/or bioactive compounds for effective and durable approaches to address the BPH problem.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Olivier P Chevallier
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Yun Xu
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wintai Kamolsukyeunyong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Intawat Nookaew
- College of Medicine, Department Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thapakorn Somboon
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Apichart Vanavichit
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
17
|
Wang J, Cheng C, Xin C, Wang Z. The Antidepressant-like Effect of Flavonoids from Trigonella Foenum-Graecum Seeds in Chronic Restraint Stress Mice via Modulation of Monoamine Regulatory Pathways. Molecules 2019; 24:molecules24061105. [PMID: 30897781 PMCID: PMC6471463 DOI: 10.3390/molecules24061105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Fenugreek (Trigonella Foenum-Graecum) seeds flavonoids (FSF) have diverse biological activities, while the antidepressant-like effect of FSF has been seldom explored. The aim of this study was to evaluate the antidepressant-like effect of FSF and to identify the potential molecular mechanisms. LC-MS/MS was used for the determination of FSF. Chronic restraint stress (CRS) was used to establish the animal model of depression. Observation of exploratory behavior in the forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT) indicated the stress level. The serum corticosterone (CORT) level was measured. The monoamine neurotransmitters (5-HT, NE and DA) and their metabolites, as well as monoamine oxidase A (MAO-A) enzyme activity in the prefrontal cortex, hippocampus and striatum, were evaluated. The protein expression levels of KLF11, SIRT1, MAO-A were also determined by western blot analysis. The results showed that FSF treatment significantly reversed the CRS-induced behavioral abnormalities, including reduced sucrose preference and increased immobility time. FSF administration markedly restored CRS induced changes in concentrations of serum corticosterone, prefrontal cortex neurotransmitters (NE, 5-HT and DA), hippocampus neurotransmitters (NE, 5-HT and DA) and striatum neurotransmitters (NE). FSF treatment exhibited significant inhibition of MAO-A activity in the prefrontal cortex and hippocampus. FSF also significantly down-regulated the KLF11, SIRT1 and MAO-A protein expression levels in the prefrontal cortex and hippocampus. These findings indicate that FSF could exhibit an antidepressant-like effect by down-regulating the KLF11/SIRT1-MAO-A pathways, inhibiting MAO-A expression and activity, as well as up-regulating monoamine neurotransmitters levels.
Collapse
Affiliation(s)
- Jiancheng Wang
- Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, Harbin 150001, China.
| | - Cuilin Cheng
- Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, Harbin 150001, China.
| | - Chao Xin
- Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, Harbin 150001, China.
| | - Zhenyu Wang
- Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
18
|
Ke W, Cheng X, Cao D, Sun Q, Zhang Q. Molluscicidal activity of Arisaema erubescens mixed with fertilizers against Oncomelania hupensis and its effect on rice germination and growth. Acta Trop 2018; 179:55-60. [PMID: 29287760 DOI: 10.1016/j.actatropica.2017.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
Abstract
To explore a new molluscicide with dual effects of fertilization and molluscicidal activity, an organic-inorganic compound fertilizer molluscicide was prepared by mixing the water extract (or powder) of Arisaema erubescens tubers with nitrogen fertilizer, phosphate fertilizer, potash fertilizer, and three mixed fertilizers (hereinafter referred to as ANF, APF, AKF and ACF, respectively). Leaching using the mixture was performed to test for molluscicidal activity, and indoor rice germination, seedling growth, and pot experiments were monitored. ANF exhibited superior molluscicidal activity, with respective 24-h and 48-h Oncomelania mortality rates significantly increased, reaching up to 67.7% and 92.3%. ANF, APF, and AKF significantly promoted rice germination and growth of rice, with ANF showing superior effects. The respective 3-day and 5-day germination rate of rice seeds treated with ANF significantly increased by 25% and 21% relative to that of the control group, and the respective 10-day and 20-day growth length of rice seedlings (aboveground part) increased by 106.2% and 33.2%. A positive correlation between ACF molluscicidal activity and concentration and treatment time were observed. The Oncomelania mortality rate at 48 h after treatment with a low ACF concentration (0.25 g/L) was 70.7%, whereas that at 24 h after treatment using a higher concentration (0.5 g/L) was 80.7%. ACF promoted rice seed germination and seedling growth, whereas inhibitory effects were observed using a high ACF concentration. Therefore, the combined application of A. erubescens and chemical fertilizers not only enhances molluscicidal activity, but also promotes rice growth, with the combined application of A. erubescens and nitrogen fertilizer and mixed fertilizer showing superior dual effects (molluscicide and fertilization).
Collapse
|
19
|
Bai HH, Wang NN, Mi J, Yang T, Fang DM, Wu LW, Zhao H, Li GY. Hydroxycinnamoylmalated flavone C -glycosides from Lemna japonica. Fitoterapia 2018; 124:211-216. [DOI: 10.1016/j.fitote.2017.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 01/20/2023]
|
20
|
Plant extracts as a natural treatment against the fish ectoparasite Neobenedenia sp. (Monogenea: Capsalidae). J Helminthol 2017; 93:57-65. [PMID: 29248015 DOI: 10.1017/s0022149x17001122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The toxicity of water-ethanol extracts of garlic (Allium sativum), ginger (Zingiber officinale), basil (Ocimum basilicum), bitter chaparro (Castela tortuousa), onion (Allium cepa) and papaya (Carica papaya) against adults, eggs and oncomiracidia of Neobenedenia spp. parasites was examined. Parasites were exposed to continuous immersion and treated as follows: extracts were tested at three dilutions: 1:10, 1:50 and 1:100 made with filtered seawater (35 g l-1); ethanol (70%) was evaluated at the same dilutions of 1:10 (7% ethanol), 1:50 (1.4% ethanol) and 1:100 (0.07% ethanol) and a seawater (35 g l-1) control. The antiparasitic effect was measured on: (1) adult survival, egg production and time to detachment from the culture vessel; (2) egg development and cumulative egg hatching; and (3) oncomiracidia survival. All three dilutions of ginger and dilutions 1:100 and 1:50 of basil extract reduced adult survival in vitro, time to detachment from the surface of the culture vessel, egg production and oncomiracidia survival. Bitter chaparro extract reduced adult egg production and oncomiracidia survival. Hatching success was significantly reduced (P < 0.05) in basil extract (1:100) to 86.6% compared to the seawater control (100%). Dilutions 1:10 of ginger and basil exhibited the highest impact on the biological parameters of Neobenedenia sp. Our study demonstrates that water-ethanol extracts of ginger, basil and bitter chaparro are toxic against Neobenedenia sp. life stages.
Collapse
|
21
|
Phenylpropanoid composition in fig (Ficus carica L.) leaves. J Nat Med 2017; 71:770-775. [DOI: 10.1007/s11418-017-1093-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
|
22
|
Toda K, Hitoe S, Takeda S, Shimizu N, Shimoda H. Passionflower Extract Induces High-amplitude Rhythms without Phase Shifts in the Expression of Several Circadian Clock Genes in Vitro and in Vivo. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2017; 13:84-92. [PMID: 28824345 PMCID: PMC5542920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Circadian rhythms play key roles in the regulation of physiological and behavioral systems including wake-sleep cycles. We evaluated the effects of passionflower (aerial parts of Passiflora incarnata Linnaeus) extract (PFE) on circadian rhythms using NIH3T3 cells and mice. PFE (100 μg/mL) induced high-amplitude rhythms in the expression of period circadian protein (Per) 2, cryptochrome (Cry) 1, superoxide dismutase (SOD) 1, and glutathione peroxidase (GPx) in vitro from 12 h after a treatment with serum-rich medium. Isovitexin 2"-O-glucoside, isoschaftoside, and homoorientin, which were purified from PFE, also significantly enhanced Per2 mRNA expression at 20 h. An oral treatment with PFE (100 mg/kg/day) at zeitgeber time (ZT) 0 h for 15 days improved sleep latencies and sleeping times in the pentobarbital-induced sleep test in mice, similar to muscimol (0.2 mg/kg, i.p.). PFE induced high-amplitude rhythms without obvious phase shifts in serum corticosterone levels and the expression of Per1, Per2, and Cry1 in the liver as well as NIH3T3 cells. However, in the cerebrum, PFE enhanced the circadian expression of brain-muscle ARNT-like protein (Bmal) 1, circadian locomotor output cycles kaput (Clock), and Per1. Regarding this difference, we suggest the involvement of several neurotransmitters that influence the circadian rhythm. Indeed, PFE significantly increased dopamine levels at ZT 18 h, and then affected the mRNA expression of the synthetic and metabolic enzymes such as monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), and glutamic acid decarboxylase (GAD). The results obtained show that PFE positively modulates circadian rhythms by inducing high-amplitude rhythms in the expression of several circadian clock genes.
Collapse
|
23
|
|
24
|
Liu G, Lai D, Liu QZ, Zhou L, Liu ZL. Identification of Nematicidal Constituents of Notopterygium incisum Rhizomes against Bursaphelenchus xylophilus and Meloidogyne incognita. Molecules 2016; 21:molecules21101276. [PMID: 27669203 PMCID: PMC6274203 DOI: 10.3390/molecules21101276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
During a screening program for new agrochemicals from Chinese medicinal herbs, the ethanol extract of Notopterygium incisum rhizomes was found to possess strong nematicidal activity against the two species of nematodes, Bursaphelenchus xylophilus and Meloidogyne incognita. Based on bioactivity-guided fractionation, the four constituents were isolated from the ethanol extract and identified as columbianetin, falcarindiol, falcarinol, and isoimperatorin. Among the four isolated constituents, two acetylenic compounds, falcarindiol and falcarinol (2.20-12.60 μg/mL and 1.06-4.96 μg/mL, respectively) exhibited stronger nematicidal activity than two furanocoumarins, columbianetin, and isoimperatorin (21.83-103.44 μg/mL and 17.21-30.91 μg/mL, respectively) against the two species of nematodes, B. xylophilus and M. incognita. The four isolated constituents also displayed phototoxic activity against the nematodes. The results indicate that the ethanol extract of N. incisum and its four isolated constituents have potential for development into natural nematicides for control of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Gai Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Qi Zhi Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China.
| | - Zhi Long Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
25
|
Ancheeva E, Daletos G, Muharini R, Lin WH, Teslov L, Proksch P. Flavonoids from Stellaria nemorum and Stellaria holostea. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stellaria nemorum L. and S. holostea L. (Caryophyllaceae) were investigated for their flavonoids. The new flavonoid 6- C-[(α-arabinopyranosyl)-(1→2)- O-β-xylopyranosyl]apigenin (1) and the four known C-glycosides, 6- C-[(α-arabinopyranosyl)-(1→2)- O-β-glucopyranosyl]apigenin (2), apigenin 6- C-β-galactopyranoside-8- C-β-glucopyranoside (3), apigenin 6- C-β-glucopyranoside-8- C-α-arabinopyranoside (4), and apigenin 6- C-β-glucopyranoside-8- C-β-xylopyranoside (5) were isolated from the aerial parts of S. nemorum for the first time. Furthemore, five known flavonoids, 3,5,7-trihydroxy-3′,5′-dimethoxyflavone (9), diosmetin 6- C-β-glucopyranoside (8), schaftoside (4), isoorientin (6) and orientin (7) were obtained from the aerial parts of S. holostea. Compounds 4, 8 and 9 are reported for the first time from this species. The structures of all isolated compounds were unambiguously elucidated by one- and two- dimensional NMR and mass spectral analysis, by acid hydrolysis, as well as by comparison with literature data. The crude extracts of the investigated species exhibited antimicrobial activity against Staphylococcus aureus, while none of the isolated compounds was found to be active.
Collapse
Affiliation(s)
- Elena Ancheeva
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- Department of Pharmacognosy, Pharmaceutical Faculty, Saint Petersburg State Chemical Pharmaceutical Academy, street prof. Popova 14,197376 Saint Petersburg, Russian Federation
| | - Georgios Daletos
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rini Muharini
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wen Han Lin
- National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Health Science Center, 100083 Beijing, People's Republic of China
| | - Leonid Teslov
- Department of Pharmacognosy, Pharmaceutical Faculty, Saint Petersburg State Chemical Pharmaceutical Academy, street prof. Popova 14,197376 Saint Petersburg, Russian Federation
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Preparation of 4-butylaniline-bonded silica gel for the solid-phase extraction of flavone glycosides. J Sep Sci 2015; 38:1149-55. [DOI: 10.1002/jssc.201400922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 11/07/2022]
|
27
|
Quispe C, Petroll K, Theoduloz C, Schmeda-Hirschmann G. Antioxidant effect and characterization of South American Prosopis pods syrup. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
de Oliveira DM, Siqueira EP, Nunes YR, Cota BB. Flavonoids from leaves of Mauritia flexuosa. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Qiu L, Jiao Y, Xie JZ, Huang GK, Qiu SL, Miao JH, Yao XS. Five new flavonoid glycosides from Nervilia fordii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:589-599. [PMID: 23659497 DOI: 10.1080/10286020.2013.790377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Five new flavonoid glycosides, namely nervilifordins F-J (1-5), were isolated from the 60% EtOH extract of the aerial parts of Nervilia fordii, along with three first isolated flavonoids (7, 8, and 13) and five known flavonoids (6, 9-12). The structures of new compounds were elucidated on the basis of 1D and 2D NMR and MS studies. Their anti-inflammatory activities were tested by measuring their inhibitory effects on nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages. Compounds 2 and 5 showed interesting inhibition effects with their EC50 values of 15.15 μM and 14.80 μM, respectively.
Collapse
Affiliation(s)
- Li Qiu
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Zeng P, Zhang Y, Pan C, Jia Q, Guo F, Li Y, Zhu W, Chen K. Advances in studying of the pharmacological activities and structure–activity relationships of natural C-glycosylflavonoids. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Hu Y, Zhang W, Zhang P, Ruan W, Zhu X. Nematicidal activity of chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:41-46. [PMID: 23214998 DOI: 10.1021/jf304314g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The nematicidal activity of Chaetomium globosum NK102, culture filtrates, and chaetoglobosin A (ChA) purified by HPLC was evaluated on Meloidogyne incognita . The results showed that C. globosum NK102 significantly repelled second-stage juveniles (J2s). Both filtrates and ChA demonstrated strong adverse effects on J2 mortality with 99.8% at 300 μg ChA/mL (LC(50) = 77.0 μg/mL) at 72 h. ChA and filtrates did not affect egg hatch until 72 h of exposure. All filtrate treatments inhibited the J2 penetration even in 12.5% dilution treatment. Similarly, ChA (300 and 30 μg/mL) showed a significant inhibitory effect on J2 penetration. The number of eggs per plant was significantly reduced in the treatment of 30 mg ChA/kg soil by 63% relative to control plants, indicating the apparent negative effect on reproduction of M. incognita. The study demonstrated the nematicidal activity of ChA and suggested that it could be a potential biocontrol agent for integrated management of M. incognita.
Collapse
Affiliation(s)
- Yang Hu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
32
|
Ntalli NG, Caboni P. Botanical nematicides: a review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9929-9940. [PMID: 22973877 DOI: 10.1021/jf303107j] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the uselfuness of nematicidal compounds in agricultural practices, some serious concerns are raised today about their excessive use leading to enhancement of biodegradation mechanisms in soil expressed as lack of efficacy under field conditions and resistance development. Moreover, the phase-out of methyl bromide has led to the need for a valid alternative to organophosporous and carbamate compounds, such us fosthiazate, fenamiphos, oxamyl, and aldicarb. In the past years, intregated pest management strategies have been practised worldwide to maximize crop production while maintaining and contributing to agriculture sustainability. Biopesticides and specifically bionematicides constitute a desirable component of pest management technology and practices. Particularly, in the frame of our ongoing research on natural nematicides of botanical origin, we have reviewed the international bibliography for candidate nematicidal compounds. We report herein the nematicidal activity of plant metabolites on the basis of their chemical characteristics and structure.
Collapse
Affiliation(s)
- Nikoletta G Ntalli
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly , Fytokou Street, 38446 Nea Ionia-Volos, Magnesia, Greece
| | | |
Collapse
|