1
|
Bernstein DI, Sawtell NM, Bravo FJ, Dixon DA, Gege C, Kleymann G. Intermittent therapy with helicase-primase inhibitor IM-250 efficiently controls recurrent herpes disease and reduces reactivation of latent HSV. Antiviral Res 2023; 219:105733. [PMID: 37858763 DOI: 10.1016/j.antiviral.2023.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Herpes is a contagious life-long infection with persistently high incidence and prevalence, causing significant disease worldwide. Current therapies have efficacy against active HSV infections but no impact on the latent viral reservoir in neurons. Thus, despite treatment, disease recurs from latency and the infectious potential remains unaffected within patients. Here, efficacy of the helicase-primase inhibitor (HPI) IM-250 against chronic neuronal HSV infections utilizing two classic herpes in vivo latency/reactivation animal models (intravaginal guinea pig HSV-2 infection model and ocular mouse HSV-1 infection model) is presented. Intermittent therapy of infected animals with 4-7 cycles of IM-250 during latency silences subsequent recurrences analyzed up to 6 months. In contrast to common experience, our studies show that the latent reservoir is indeed accessible to antiviral therapy altering the latent viral reservoir such that reactivation frequency can be reduced significantly by prior IM-250 treatment. We provide evidence that antiviral treatment during HSV latency can reduce future reactivation from the latent reservoir, supporting a conceptual shift in the antiviral field, and reframing what is achievable with respect to therapy of latent neuronal HSV infections.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Nancy M Sawtell
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Christian Gege
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany
| | - Gerald Kleymann
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany.
| |
Collapse
|
2
|
Yadavalli T, Patil C, Sharma P, Volety I, Borase H, Kapoor D, Shukla D. Unique Attributes of Guinea Pigs as New Models to Study Ocular Herpes Pathophysiology and Recurrence. Invest Ophthalmol Vis Sci 2023; 64:41. [PMID: 38015175 PMCID: PMC10691389 DOI: 10.1167/iovs.64.14.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose The objective of this study was to explore the ocular and systemic outcomes of herpes simplex virus type 1 (HSV-1) infection in guinea pigs, to monitor the spontaneous reactivation of the virus, and to assess the effectiveness of various treatments, drawing comparisons to conventional rabbit models. Methods Guinea pigs and rabbits were infected in the right corneas with differing doses and strains of HSV-1. Observations were made over a 71-day period, focusing on comparing ocular lesions, viral shedding patterns, and weight loss between the two animal models. Postinfection, the effectiveness of trifluridine ophthalmic drops, oral acyclovir, and valacyclovir was evaluated. The confirmation of viral infection was done through virus titer assay, fluorescein staining, and corneal imaging. Results Guinea pigs and rabbits manifested symptoms akin to human herpes stromal keratitis (HSK) when exposed to varying titers of viral suspension. Regardless of the initial viral load, all guinea pig groups demonstrated comparable ocular pathology, witnessing conditions like blepharitis and conjunctivitis within 3 days, progressing to severe conditions, including total corneal opacification and necrotizing keratitis. Tear film collection revealed nonsignificant differences in viral plaques between all groups. Notably, guinea pigs in the low-infection group experienced the most weight loss, although without significant differences. The replication of the same experiment on rabbits yielded consistent results in disease pathology across different groups, with occurrences of blepharitis and conjunctivitis. Interestingly, after initial resolution, guinea pigs presented a more frequent and broadly observed increase in disease score and corneal opacity, a phenomenon rarely seen in rabbits within the same timeframe. The effectiveness of 1% trifluridine was observed in mitigating ocular HSV-1 disease in both species, whereas oral acyclovir and valacyclovir were found to be detrimental and ineffective in guinea pigs but not in rabbits. Conclusions This study demonstrates the potential suitability of guinea pigs as new models for ocular HSV-1 investigations, filling a critical preclinical void of models capable of showcasing spontaneous HSV reactivation in the eye. The observed similarities and differences in the reactions of guinea pigs and rabbits to HSV-1 infection and treatments provide crucial insights, laying the foundation for future studies on ocular HSV pathogenesis, latency, and improved treatment options.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
| | - Chandrashekhar Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
| | - Pankaj Sharma
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Pachota M, Grzywa R, Iwanejko J, Synowiec A, Iwan D, Kamińska K, Skoreński M, Bielecka E, Szczubialka K, Nowakowska M, Mackereth CD, Wojaczyńska E, Sieńczyk M, Pyrć K. Novel inhibitors of HSV-1 protease effective in vitro and in vivo. Antiviral Res 2023; 213:105604. [PMID: 37054954 DOI: 10.1016/j.antiviral.2023.105604] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen known to cause infections of diverse severity, ranging from mild ulceration of mucosal and dermal tissues to life-threatening viral encephalitis. In most cases, standard treatment with acyclovir is sufficient to manage the disease progression. However, the emergence of ACV-resistant strains drives the need for new therapeutics and molecular targets. HSV-1 VP24 is a protease indispensable for the assembly of mature virions and, as such, constitutes an interesting target for the therapy. In this study, we present novel compounds, KI207M and EWDI/39/55BF, that block the activity of VP24 protease and consequently inhibit HSV-1 infection in vitro and in vivo. The inhibitors were shown to prevent the egress of viral capsids from the cell nucleus and suppress the cell-to-cell spread of the infection. They were also proven effective against ACV-resistant HSV-1 strains. Considering their low toxicity and high antiviral potency, the novel VP24 inhibitors could provide an alternative for treating ACV-resistant infections or a drug to be used in combined, highly effective therapy.
Collapse
Affiliation(s)
- Magdalena Pachota
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Renata Grzywa
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Jakub Iwanejko
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Dominika Iwan
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Karolina Kamińska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Marcin Skoreński
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Ewa Bielecka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Krzysztof Szczubialka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Cameron D Mackereth
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA Laboratory, IECB, 33706, Pessac, France
| | - Elżbieta Wojaczyńska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Marcin Sieńczyk
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Amenamevir, a Helicase-Primase Inhibitor, for the Optimal Treatment of Herpes Zoster. Viruses 2021; 13:v13081547. [PMID: 34452412 PMCID: PMC8402822 DOI: 10.3390/v13081547] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022] Open
Abstract
Acyclovir, valacyclovir, and famciclovir are used for the treatment of herpes simplex virus (HSV) and varicella-zoster virus (VZV) infections. Helicase-primase inhibitors (HPIs) inhibit replication fork progression that separates double DNA strands into two single strands during DNA synthesis. The HPIs amenamevir and pritelivir have novel mechanisms of anti-herpetic action, and their once-daily administration has clinical efficacy for genital herpes. Among HPIs, amenamevir has anti-VZV activity. The concentrations of HSV-1 and VZV required for the 50% plaque reduction of amenamevir were 0.036 and 0.047 μM, respectively. We characterized the features of amenamevir regarding its mechanism, resistance, and synergism with acyclovir. Its antiviral activity was not influenced by the viral replication cycle, in contrast to acyclovir. A clinical trial of amenamevir for herpes zoster demonstrated its non-inferiority to valacyclovir. To date, amenamevir has been successfully used in over 1,240,000 patients with herpes zoster in Japan. Post-marketing surveillance of amenamevir in Japan reported side effects with significant potential risk identified by the Japanese Risk Management Plan, including thrombocytopenia, gingival bleeding, and palpitations, although none of these were serious. The clinical efficacy and safety profiles of amenamevir were established in patients with herpes zoster. Therefore, amenamevir as an HPI opens a new era of anti-herpes therapy.
Collapse
|
5
|
Shiraki K, Takemoto M, Daikoku T. Emergence of varicella-zoster virus resistance to acyclovir: epidemiology, prevention, and treatment. Expert Rev Anti Infect Ther 2021; 19:1415-1425. [PMID: 33853490 DOI: 10.1080/14787210.2021.1917992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Acyclovir has led to the development of successful systemic therapy for herpes simplex virus and varicella-zoster virus (VZV) infection, and the use of valacyclovir and famciclovir has improved treatment. Additionally, the use of a helicase-primase (HP) inhibitor (HPI), amenamevir, is changing the treatment of herpes zoster (HZ).Area covered: VZV infection is prevented by vaccines and is treated with antiviral agents. Acyclovir and penciclovir are phosphorylated by viral thymidine kinase and work as chain terminators. Improvements in the management of immunocompromised patients have reduced severe and prolonged immunosuppression and chronic VZV infection with acyclovir-resistant mutants has become rarer. The HP is involved in the initial step of DNA synthesis and amenamevir has novel mechanisms of action, efficacy to acyclovir-resistant mutants, and pharmacokinetic characteristics. The literature search for PUBMED was conducted on 10 April 2020 and updated on 4 November 2020.Expert opinion: Amenamevir has been used to treat HZ in Japan. Although the number of patients with VZV infection will decrease owing to the use of vaccines, the addition of HPI will improve treatment and treatment options for resistant viruses. The clinical use of HPIs in addition to current nucleoside analogs opens a new era of antiherpes therapy.
Collapse
Affiliation(s)
- Kimiyasu Shiraki
- Senri Kinran University & Department of Virology, University of Toyama, Toyama, Japan
| | - Masaya Takemoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Tohru Daikoku
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| |
Collapse
|
6
|
Shoji N, Tanese K, Sasaki A, Horiuchi T, Utsuno Y, Fukuda K, Hoshino Y, Noda S, Minami H, Asakura W. Pharmaceuticals and Medical Device Agency approval summary: Amenamevir for the treatment of herpes zoster. J Dermatol 2020; 47:683-688. [PMID: 32424854 DOI: 10.1111/1346-8138.15393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
In July 2017, Japan's Ministry of Health, Labor and Welfare issued a marketing authorization valid throughout Japan for N-(2,6-dimethylphenyl)-N-(2-{[4-(1,2,4-oxadiazol-3-yl)phenyl]amino}-2-oxoethyl)-1,1-dioxothiane-4-carboxamide (amenamevir) for the first time worldwide. The decision was based on the favorable opinion of the Pharmaceuticals and Medical Device Agency (PMDA) recommending a marketing authorization of amenamevir for treatment of herpes zoster (HZ). Amenamevir has a different action mechanism from previously approved synthetic nucleoside compounds for the treatment of HZ including acyclovir, valacyclovir and famciclovir. The usual adult dose is 400 mg amenamevir p.o. once daily for 7 days. The benefit is its ability to cure HZ as well as preventing postherpetic neuralgia. The most common side-effects are increase of urine N-acetyl-β-D-glucosaminidase and α1-microglobulin levels. However, based on the detailed evaluation of the submitted clinical studies, there seems to be no serious safety concerns about amenamevir regarding the kidney of both renally normal and impaired patients. The objective of this article is to summarize the scientific review of the application. The detailed scientific assessment report and product information, including the summary of product characteristics, are available on the PMDA website (www.pmda.go.jp/PmdaSearch/iyakuSearch/).
Collapse
Affiliation(s)
- Naoko Shoji
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Keiji Tanese
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Ayano Sasaki
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Taishi Horiuchi
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Yuji Utsuno
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Koichi Fukuda
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Yukiko Hoshino
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Shinichi Noda
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Hirofumi Minami
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | - Wataru Asakura
- Office of New Drug IV, Pharmaceuticals and Medical Device Agency, Tokyo, Japan
| | | |
Collapse
|
7
|
Kato K, den Adel M, Groenendaal-van de Meent D, Ohtsu Y, Takada A, Katashima M. An Open-Label, Single-Dose, Human Mass Balance Study of Amenamevir in Healthy Male Adults. Clin Pharmacol Drug Dev 2018; 8:595-602. [PMID: 30412362 PMCID: PMC6619336 DOI: 10.1002/cpdd.630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Amenamevir is an inhibitor of the helicase-primase enzyme complex developed for the treatment of varicella zoster virus. This mass balance study investigated the absorption, metabolism, and excretion of a single dose (200 mg) of 14 C-labeled amenamevir in healthy male volunteers. Blood, urine, and feces samples were collected for up to 8 days after the dose. Safety and tolerability were assessed through voluntary reporting of adverse events, physical examination, and clinical laboratory testing. Amenamevir was rapidly absorbed, with a median time to peak drug concentration of 1.0 to 1.5 hours and a plasma half-life of 8 to 9 hours. Overall, 95.3% of the administered dose was recovered, with the majority of radiolabeled drug excreted in feces (74.6%) followed by urine (20.6%). The major route of elimination was fecal, with around 70% of the dose excreted as metabolites and <0.1% as the unchanged drug. Metabolic profiling revealed that predominantly radiolabeled amenamevir (80%) and its hydroxyl metabolite R5 (up to 7.1%) were present in plasma. Single-dose amenamevir was well tolerated; 3 transient and mild adverse events were reported in 3 subjects. Overall, >95% of a single 200-mg dose of amenamevir was eliminated by 168 hours after the dose, with the major route of elimination being fecal.
Collapse
Affiliation(s)
- Kota Kato
- Astellas Pharma Inc., Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Katsumata K, Chono K, Suzuki H. Antiviral efficacy of the helicase-primase inhibitor amenamevir in murine models of severe herpesvirus infection. Biochem Pharmacol 2018; 158:201-206. [PMID: 30365949 DOI: 10.1016/j.bcp.2018.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Existing treatments have limited efficacy against severe infection associated with herpes simplex virus (HSV) and herpes zoster virus (VZV), particularly in immunocompromized patients and those with multidermatomal infection. This issue, along with issues regarding drug resistance, support the need for improved therapeutic options. To investigate the antiviral effect of amenamevir, a VZV and HSV helicase-primase inhibitor, in severe infection conditions, mouse models of severe HSV-1 infection were developed by immunosuppression or multidermatomal infection. Mice with cyclosporin-induced immunosuppression and HSV-1 infection via inoculation of a dorsolateral area of skin were orally treated with amenamevir (10-100 mg/kg/day) for different durations (2-5 days). Immunosuppressed mice maintained high skin HSV-1 titers in the absence of treatment. Amenamevir successfully reduced HSV-1 titers at all tested doses in immunosuppressed mice, but required a longer treatment period to avoid a rebound in viral titers due to immunosuppression. To compare the efficacy of amenamevir and valacyclovir, a murine model of multidermatomal HSV-1 infection was generated by scarifying the dorsolateral area of skin in a line and inoculating broadly with HSV-1. The mice were treated with amenamevir or valacyclovir starting on Day 3, 4, or 5 post-infection for 5 days. Although both drugs similarly reduced disease scores when treatment was started on Day 3, amenamevir also reduced disease severity when treatment was initiated on Day 4, whereas valacyclovir did not. Amenamevir was not affected by the host's immune status in terms of effective oral doses and was more efficacious in treating severe cutaneous infection even when treatment initiation was delayed.
Collapse
Affiliation(s)
- Kiyomitsu Katsumata
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Koji Chono
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Suzuki
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| |
Collapse
|
9
|
Andronova VL. MODERN ETHIOTROPIC CHEMOTHERAPY OF HERPESVIRUS INFECTIONS: ADVANCES, NEW TRENDS AND PERSPECTIVES. ALPHAHERPESVIRUSES (PART II). Vopr Virusol 2018; 63:149-159. [PMID: 36494970 DOI: 10.18821/0507-4088-2018-63-4-149-159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
A key role in the treatment of herpesviral infections is played by modified nucleosides and their predecessors - acyclovir, its L-valine ester (valaciclovir) and famciclovir (prodrug of penciclovir). The biological activity of compounds of this class is determined by their similarity to natural nucleosides. After phosphorylation by viral thymidine kinase and then cell enzymes to the triphosphate forms, acyclovir and penciclovir inhibit the activity of viral DNA polymerase and synthesis of viral DNA. The increasing role of herpesvirus infections in human infectious pathology, as well as the development of drug resistance in viruses, mainly in patients with immunodeficiencies of various origins, necessitate the search for new compounds possessing anti-herpesvirus activity, using as a biological target not DNA polymerase, but other viral proteins and enzymes, unique or different from cellular proteins, performing similar functions.
Collapse
Affiliation(s)
- V L Andronova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|
10
|
Yajima M, Yamada H, Takemoto M, Daikoku T, Yoshida Y, Long T, Okuda T, Shiraki K. Profile of anti-herpetic action of ASP2151 (amenamevir) as a helicase-primase inhibitor. Antiviral Res 2017; 139:95-101. [DOI: 10.1016/j.antiviral.2016.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022]
|
11
|
Quantification of ASP2151 in Human Plasma and Urine: A Pitfall Associated with Supersaturation of Analyte in Urine. Chromatographia 2017. [DOI: 10.1007/s10337-016-3236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Takada A, Katashima M, Kaibara A, Chono K, Katsumata K, Sawamoto T, Suzuki H, Yano Y. Integrative pharmacokinetic-pharmacodynamic modeling and simulation of amenamevir (ASP2151) for treatment of recurrent genital herpes. Drug Metab Pharmacokinet 2016; 31:323-32. [PMID: 27461507 DOI: 10.1016/j.dmpk.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022]
Abstract
Amenamevir is a novel drug that targets the viral helicase-primase complex. While dose-dependent efficacy had been observed in non-clinical studies, no clear dose dependence has been observed in humans. We therefore developed a pharmacokinetic/pharmacodynamic (PK/PD) model to explain this inconsistency between species and to clarify the immune-related healing of amenamevir in humans. The model consisted of a non-linear kinetic model for a virtual number of virus plaques as a built-in biomarker. Lesion score was defined as an endpoint of antiviral efficacy, and logit model analysis was applied to the ordered-categorical lesion score. The modeling results suggested the time course profiles of lesion score could be explained with the efficacy terms in the logit model, using change in number of virus plaques as an indicator of the effects of amenamevir and time elapsed as an indicator of the healing of the immune response. In humans, the PD effect was almost dose-independent, and immune-related healing may have been the driving force behind the reduction in lesion scores. Drug efficacy is occasionally masked in diseases healed by the immune response, such as genital herpes. The PK/PD model proposed in the present study must be useful for explanation the PK/PD relationship of such drugs.
Collapse
Affiliation(s)
- Akitsugu Takada
- Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, Japan.
| | | | - Atsunori Kaibara
- Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, Japan
| | - Koji Chono
- Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, Japan
| | | | - Taiji Sawamoto
- Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, Japan
| | - Hiroshi Suzuki
- Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, Japan
| | - Yoshitaka Yano
- Kyoto Pharmaceutical University, 5 Misasagi-Nakauchicho, Yamashina-ku, Kyoto, Japan
| |
Collapse
|
13
|
Regulated bioanalysis of conformers - A case study with ASP2151 in dog plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:56-63. [PMID: 26093120 DOI: 10.1016/j.jchromb.2015.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022]
Abstract
We developed and validated bioanalytical methods for a potent helicase-primase inhibitor ASP2151 that has two conformers. These conformers elute as unseparated broad peaks under ordinary high-performance liquid chromatographic conditions, indicating discernable differences in hydrophobicity. We observed that column temperature and mobile phase pH have no effect on these peaks and that conformers form a single symmetrical peak when tetrahydrofuran is added to the mobile phase. In addition, we needed to develop semi-automated methods where inter-conversion of the conformers is unlikely to cause sample-to-sample extraction variability. Briefly, following the addition of deuterium-labeled ASP2151 as an internal standard (IS), dog plasma samples or acetonitrile-added urine samples were filtrated. The filtrates were then injected into a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) system and trapped onto an extraction column. Extracts were back-flushed onto an analytical C18 column (4.6×50mm, 3μm) with a mobile phase consisting of methanol, tetrahydrofuran, and 20mmol/L ammonium acetate (45:5:50, v/v/v). The eluent was monitored in the negative atmospheric pressure chemical ionization mode. The calibration curve was linear over a range of 5-1000ng/mL for plasma and 0.5-100μg/mL for urine. Validation data met the acceptance criteria in accordance with regulatory guidance and demonstrated that these methods were selective, accurate, and reproducible. In addition, the present methods were successfully applied to a pharmacokinetic study in dogs.
Collapse
|
14
|
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. BIOCHEMISTRY (MOSCOW) 2015; 79:1635-52. [DOI: 10.1134/s0006297914130124] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
James SH, Larson KB, Acosta EP, Prichard MN. Helicase-primase as a target of new therapies for herpes simplex virus infections. Clin Pharmacol Ther 2014; 97:66-78. [PMID: 25670384 DOI: 10.1002/cpt.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
The seminal discovery of acyclovir 40 years ago heralded the modern era of truly selective antiviral therapies and this drug remains the therapy of choice for herpes simplex virus infections. Yet by modern standards, its antiviral activity is modest and new drugs against novel molecular targets such as the helicase-primase have the potential to improve clinical outcome, particularly in high-risk patients. A brief synopsis of current therapies for these infections and clinical need is provided to help provide an initial perspective. The function of the helicase-primase complex is then summarized and the development of new inhibitors of the helicase-primase complex, such as pritelivir and amenamevir, is discussed. We review their mechanism of action, propensity for drug resistance, and pharmacokinetic characteristics and discuss their potential to advance current therapeutic options. Strategies that include combinations of these inhibitors with acyclovir are also considered, as they will likely maximize clinical efficacy.
Collapse
Affiliation(s)
- S H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
16
|
Hornig J, McGregor A. Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach. Expert Opin Drug Discov 2014; 9:891-915. [DOI: 10.1517/17460441.2014.922538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Takada A, Katashima M, Kaibara A, Sawamoto T, Zhang W, Keirns J. Statistical analysis of Amenamevir (ASP2151) between pharmacokinetics and clinical efficacies with non-linear effect model for the treatment of genital herpes. Clin Pharmacol Drug Dev 2014; 3:365-70. [PMID: 27129009 DOI: 10.1002/cpdd.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/17/2014] [Indexed: 11/07/2022]
Abstract
Amenamevir is the international non-proprietary name for ASP2151 synthesized by Astellas Pharma, Inc. It is a structurally novel class of helicase-primase inhibitor and demonstrated more potency in vitro anti-viral activity with low cytotoxicity against varicella-zoster virus (VZV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2) than acyclovir (ACV). Phase II randomized trial assessed the safety and efficacy of ASP2151 for episodic therapy of recurrent genital herpes was conducted. Participants self-initiated with ASP2151 (100, 200, or 400 mg daily for 3 days), ASP2151 (1,200 mg as a single dose), placebo for 3 days, or Valacyclovir (500 mg twice daily for 3 days). We present a first population pharmacokinetic (PPK) modeling analysis of Amenamevir for genital herpes patients. The final model retained the effect of Weight and Albumin on CL. Statistical analysis between pharmacokinetics and clinical efficacies was done by using the time above 200 ng/mL (T200 ). T200 derived from the final PPK model to consider the correlation with Time to lesion healing and viral shedding. This finding suggested that it could be necessary to maintain the Amenamevir concentration above the threshold level to prevent the virus replication.
Collapse
Affiliation(s)
| | | | | | | | - Wenhui Zhang
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | - James Keirns
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| |
Collapse
|
18
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Background Herpesviruses notably establish lifelong infections, with latency and reactivation. Many of the known human herpesviruses infect large proportions of the population worldwide. Treatment or prevention of herpes infections and recurrent disease still pose a challenge in the 21st century. Sources of data Original papers and review articles, meeting abstracts, a book (Clinical Virology; DD Richman, RJ Whitley & FG Hayden eds) and company web sites. Areas of agreement For herpes simplex types 1 and 2 and for varicella zoster, acyclovir (ACV; now increasingly replaced by its prodrug valacyclovir, VACV) and famciclovir (FCV) have greatly reduced the burden of disease and have established a remarkable safety record. Drug-resistance, in the otherwise healthy population, has remained below 0.5% after more that 20 years of antiviral use. In immunocompromised patients, drug resistance is more common and alternative drugs with good safety profiles are desirable. For human cytomegalovirus disease, which occurs in immunocompromised patients, ganciclovir and increasingly its prodrug valganciclovir are the drugs of choice. However, alternative drugs, with better safety, are much needed. Areas of controversy Various questions are highlighted. Should the new 1-day therapies for recurrent herpes labialis and genital herpes replace the current standard multi-day therapies? The marked differences between VACV and FCV (e.g. triphosphate stability, effect on latency) may not yet be fully exploited? Do current antivirals reduce post-herpetic neuralgia (PHN)? For immunocompromised patients with varicella zoster virus (VZV) disease, should the first-line treatment be FCV, not ACV or VACV? Should there be more support to explore new avenues for current antivirals, for example in possibly reducing herpes latency or Alzheimer's disease (AD)? Should primary Epstein-Barr virus (EBV) disease in adolescents be treated with antivirals? How can new compounds be progressed when the perceived market need is small but the medical need is great. FCV was reclassified from prescription-only to pharmacist-controlled for herpes labialis in New Zealand in 2010; should this be repeated more widely? This article reviews new drugs in clinical trials and highlights some of the problems hindering their progress.
Collapse
|
20
|
Field HJ, Mickleburgh I. The helicase-primase complex as a target for effective herpesvirus antivirals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:145-59. [PMID: 23161010 DOI: 10.1007/978-1-4614-5037-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herpes simplex virus and varicella-zoster virus have been treated for more that half a century using nucleoside analogues. However, there is still an unmet clinical need for improved herpes antivirals. The successful compounds, acyclovir; penciclovir and their orally bioavailable prodrugs valaciclovir and famciclovir, ultimately block virus replication by inhibiting virus-specific DNA-polymerase. The helicase-primase (HP) complex offers a distinctly different target for specific inhibition of virus DNA synthesis. This review describes the synthetic programmes that have already led to two HP-inhibitors (HPI) that have commenced clinical trials in man. One of these (known as AIC 316) continues in clinical development to date. The specificity of HPI is reflected by the ability to select drug-resistant mutants. The role of HP-antiviral resistance will be considered and how the study of cross--resistance among mutants already shows subtle differences between compounds in this respect. The impact of resistance on the drug development in the clinic will also be considered. Finally, herpesvirus latency remains as the most important barrier to a therapeutic cure. Whether or not helicase primase inhibitors alone or in combination with nucleoside analogues can impact on this elusive goal remains to be seen.
Collapse
|
21
|
Pharmacokinetics and pharmacodynamics of ASP2151, a helicase-primase inhibitor, in a murine model of herpes simplex virus infection. Antimicrob Agents Chemother 2012; 57:1339-46. [PMID: 23274658 DOI: 10.1128/aac.01803-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC(50)) of 14 ng/ml. In the cutaneously HSV-1-infected mouse model, ASP2151 dose dependently suppressed intradermal HSV-1 growth, with the effect reaching a plateau at a dose of 30 mg/kg of body weight/day. The dose fractionation study showed that intradermal HSV-1 titers were below the detection limit in mice treated with ASP2151 at 100 mg/kg/day divided into two daily doses and at 30 or 100 mg/kg/day divided into three daily doses. The intradermal HSV-1 titer correlated with the maximum concentration of drug in serum (C(max)), the area under the concentration-time curve over 24 h (AUC(24h)), and the time during which the concentration of ASP2151 in plasma was above 100 ng/ml (T(>100)). The continuous infusion of ASP2151 effectively decreased intradermal HSV-1 titers below the limit of detection in mice in which the ASP2151 concentration in plasma reached 79 to 145 ng/ml. Our findings suggest that the antiviral efficacy of ASP2151 is most closely associated with the PK parameter T(>100) in HSV-1-infected mice. Based on these results, we propose that a plasma ASP2151 concentration exceeding 100 ng/ml for 21 to 24 h per day provides the maximum efficacy in HSV-1-infected mice.
Collapse
|
22
|
Mukherjee S, Hanson AM, Shadrick WR, Ndjomou J, Sweeney NL, Hernandez JJ, Bartczak D, Li K, Frankowski KJ, Heck JA, Arnold LA, Schoenen FJ, Frick DN. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic Acids Res 2012; 40:8607-21. [PMID: 22740655 PMCID: PMC3458564 DOI: 10.1093/nar/gks623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.
Collapse
Affiliation(s)
- Sourav Mukherjee
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor. Antimicrob Agents Chemother 2012; 56:3587-91. [PMID: 22526302 DOI: 10.1128/aac.00133-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. To evaluate the anti-HSV activity of ASP2151, susceptibility testing was performed on viruses isolated from patients participating in a placebo- and valacyclovir-controlled proof-of-concept phase II study for recurrent genital herpes. A total of 156 HSV strains were isolated prior to the dosing of patients, and no preexisting variants with less susceptibility to ASP2151 or acyclovir (ACV) were detected. ASP2151 inhibited HSV-1 and HSV-2 replication with mean 50% effective concentrations (EC(50)s) of 0.043 and 0.069 μM, whereas ACV exhibited mean EC(50)s of 2.1 and 3.2 μM, respectively. Notably, the susceptibilities of HSV isolates to ASP2151 and ACV were not altered after dosing with the antiviral agents. Taken together, these results demonstrate that ASP2151 inhibits the replication of HSV clinical isolates more potently than ACV, and HSV resistant to this novel helicase-primase inhibitor as well as ACV may not easily emerge in short-term treatment for recurrent genital herpes patients.
Collapse
|
24
|
Himaki T, Masui Y, Chono K, Daikoku T, Takemoto M, Haixia B, Okuda T, Suzuki H, Shiraki K. Efficacy of ASP2151, a helicase–primase inhibitor, against thymidine kinase-deficient herpes simplex virus type 2 infection in vitro and in vivo. Antiviral Res 2012; 93:301-304. [DOI: 10.1016/j.antiviral.2011.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/23/2011] [Accepted: 11/26/2011] [Indexed: 10/14/2022]
|
25
|
Hanson AM, Hernandez JJ, Shadrick WR, Frick DN. Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase. Methods Enzymol 2012; 511:463-83. [PMID: 22713333 DOI: 10.1016/b978-0-12-396546-2.00021-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes two types of FRET-based fluorescence assays that can be used to identify and analyze compounds that inhibit the helicase encoded by the hepatitis C virus (HCV). Both assays use a fluorescently labeled DNA or RNA oligonucleotide to monitor helicase-catalyzed strand separation, and they differ from other real-time helicase assays in that they do not require the presence of other nucleic acids to trap the reaction products. The first assay is a molecular beacon-based helicase assay (MBHA) that monitors helicase-catalyzed displacement of a hairpin-forming oligonucleotide with a fluorescent moiety on one end and a quencher on the other. DNA-based MBHAs have been used extensively for high-throughput screening (HTS), but RNA-based MBHAs are typically less useful because of poor signal to background ratios. In the second assay discussed, the fluorophore and quencher are split between two hairpin-forming oligonucleotides annealed in tandem to a third oligonucleotide. This split beacon helicase assay can be used for HTS with either DNA or RNA oligonucleotides. These assays should be useful to the many labs searching for HCV helicase inhibitors in order to develop new HCV therapies that are still desperately needed.
Collapse
Affiliation(s)
- Alicia M Hanson
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|