1
|
Ju R, Lu Y, Jiang Z, Chi J, Wang S, Liu W, Yin Y, Han B. A Thermosensitive and Degradable Chitin-Based Hydrogel as a Brucellosis Vaccine Adjuvant. Polymers (Basel) 2024; 16:2815. [PMID: 39408526 PMCID: PMC11478596 DOI: 10.3390/polym16192815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Brucellosis is a zoonotic infectious disease that has long endangered the development of animal husbandry and human health. Currently, vaccination stands as the most efficacious method for preventing and managing brucellosis. Alum, as the most commonly used adjuvant for the brucellosis vaccine, has obvious disadvantages, such as the formation of granulomas and its non-degradability. Therefore, the aims of this study were to prepare an absorbable, injectable, and biocompatible hydroxypropyl chitin (HPCT) thermosensitive hydrogel and to evaluate its immunization efficacy as an adjuvant for Brucella antigens. Specifically, etherification modification of marine natural polysaccharide chitin was carried out to obtain a hydroxypropyl chitin. Rheological studies demonstrated the reversible temperature sensitivity of HPCT hydrogel. Notably, 5 mg/mL of bovine serum albumin can be loaded in HPCT hydrogels and released continuously for more than one week. Furthermore, the L929 cytotoxicity test and in vivo degradation test in rats proved that an HPCT hydrogel had good cytocompatibility and histocompatibility and can be degraded and absorbed in vivo. In mouse functional experiments, as adjuvants for Brucella antigens, an HPCT hydrogel showed better specific antibody expression levels and cytokine (Interleukin-4, Interferon-γ) expression levels than alum. Thus, we believe that HPCT hydrogels hold much promise in the development of adjuvants.
Collapse
Affiliation(s)
- Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Yanjing Lu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| |
Collapse
|
2
|
Li H, Yue L, Ma S, Lu W, Liu J, Qin L, Wang D, Chang A, Yu B, Kong J, Wang J, Zhu H. The effects of different impeller combinations in the Sphingan WL gum fermentation process. Int J Biol Macromol 2024; 269:132059. [PMID: 38710250 DOI: 10.1016/j.ijbiomac.2024.132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
The fermentation of the high-viscosity polysaccharide WL gum has always been associated with poor mass transfer. Appropriate impeller configurations are key factors in maintaining homogeneity and sufficient mass transfer conditions. Therefore, a flat-folded disc turbine impeller (FFDT) taking into account both the reduced cavitation effect and the increased contact area was designed. Besides, a curved cross impeller (CC) and a fishbone-shaped impeller (FS) generating axial flow were also designed. The energy consumption and efficiency of the designed impellers and eight reported impellers were evaluated through fermentation and principal component analysis (PCA). Compared to the commonly-used six-blade flat-blade disc turbine (FBDT), the ungassed power number of FFDT was reduced by 50 %. Combinations of six-blade Brumajin impeller (BM) + FFDT and CC + FFDT produced high WL gum production and viscosity (34.0 g/L, 35.50 g/L, and 62.64 Pa·s, 61.68 Pa·s, respectively) and were suitable impellers for WL biosynthesis. WL gum from BM + FFDT showed higher viscosity, viscoelasticity, and molecular weight than that from FBDT + FBDT. In addition, fewer amino acids and pyruvic acid intermediates were formed using BM + FFDT, indicating a greater metabolic flux towards WL gum synthesis. This work provided an important reference for the design of impellers in high-viscosity fermentation systems.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Lin Yue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Shaohua Ma
- Petroleum Industry Training Center, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Lijian Qin
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Aiping Chang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Biyu Yu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Junjie Kong
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian 351100, People's Republic of China.
| |
Collapse
|
3
|
Che X, Zhao T, Hu J, Yang K, Ma N, Li A, Sun Q, Ding C, Ding Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers (Basel) 2024; 16:344. [PMID: 38337233 DOI: 10.3390/polym16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Xueyan Che
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Jing Hu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Kaicheng Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Nan Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133000, China
| | - Qi Sun
- Jilin Zhengrong Pharmaceutical Development Co., Ltd., Dunhua 133700, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Marine polysaccharide-based hydrogels for critical materials selective removal and recovery: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Liu J, Li H, Zhang X, Yue L, Lu W, Ma S, Zhu Z, Wang D, Zhu H, Wang J. Cost-Efficient Production of the Sphingan WL Gum by Sphingomonas sp. WG Using Molasses and Sucrose as the Carbon Sources. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:192-203. [PMID: 36635576 DOI: 10.1007/s10126-022-10193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The polysaccharide WL gum is produced by the marine microorganism Sphingomonas sp. WG and presents great commercial utility potential in many industries especially in oil industries. However, the high fermentation cost limits its wide application. Therefore, an efficient production system at a lower cost was established using beet molasses to partially replace the commonly used carbon sources. Four different molasses were screened and their composition was investigated. One-factor design and RSM statistical analysis were employed to optimize the WL gum fermentation medium. The effects of molasses on the rheological properties and gene expression of WL gum were also investigated. The results showed that the pretreated beet molasses generated both high broth viscosity and WL gum production (12.94 Pa·s and 11.16 g/L). Heavy metal ions and ash were found to be the key factors in unpretreated and pretreated molasses affecting WL production. The cost-efficient production medium contained (g/L): sucrose 61.79, molasses 9.95, yeast extract 1.23, K2HPO4 1, MgSO4 0.1, ZnSO4 0.1 and the WL gum production reached 40.25 ± 1.15 g/L. The WL gum product WL-molasses showed the higher apparent viscosity, and viscous modulus and elastic modulus than WL-sucrose and WL-mix, which might be related to its highest molecular mass. The higher expressional level of genes such as pgm, ugp, ugd, rmlA, welS, and welG in WL gum synthesis in the mixed carbon source medium caused the high production and broth viscosity. This work provided a cost-efficient method for WL gum production.
Collapse
Affiliation(s)
- Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Xuanyu Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Lin Yue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Shaohua Ma
- Petroleum Industry Training Center, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Ziyu Zhu
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Hu Zhu
- College of Chemistry and Materials Science, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Normal University, Fuzhou, Fujian, People's Republic of China.
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, People's Republic of China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Superporous hydrogels based on blends of chitosan and polyvinyl alcohol as a carrier for enhanced gastric delivery of resveratrol. Saudi Pharm J 2023; 31:335-347. [PMID: 37026050 PMCID: PMC10071363 DOI: 10.1016/j.jsps.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Resveratrol exhibits a number of pharmacological properties, notably antioxidant, anti-inflammatory and anti-cancer activities which are beneficial for the treatment of gastric diseases. However, the poor aqueous solubility and rapid metabolism are the important limitations in clinical uses. Superporous hydrogels (SPHs) based on chitosan/PVA blends were developed as a carrier for resveratrol solid dispersion (Res_SD) to increase the solubility and achieve sustained drug release in the stomach. The SPHs were prepared by gas forming method using glyoxal and sodium bicarbonate as cross-linking agent and gas generator, respectively. The solid dispersions of resveratrol with PVP-K30 were prepared by solvent evaporation and incorporated into the superporous hydrogels. All formulations showed rapid absorption of simulated gastric fluid and reached the equilibrium swollen state within a few minutes. The water absorption ratio and mechanical strength of SPHs were predominantly affected by the chitosan content, with maximum values at 1400 % and 375 g/cm2, respectively. The Res_SD-loaded SPHs exhibited good floating properties and SEM micrographs revealed a highly interconnected pores structure with size around 150 μm. Resveratrol was efficiently entrapped within the SPHs at levels between 64 and 90 % w/w and efficient drug release was sustained over 12 h dependent on the concentration of chitosan and PVA. The Res_SD-loaded SPHs exhibited slightly less cytotoxic efffect towards AGS cells than pure resveratrol. Furthermore, the formulation showed similar anti-inflammatory activity against RAW 264.7 cells compared with indomethacin.
Collapse
|
7
|
Development of Chitosan/Gelatin-Based Hydrogels Incorporated with Albumin Particles. Int J Mol Sci 2022; 23:ijms232214136. [PMID: 36430612 PMCID: PMC9694906 DOI: 10.3390/ijms232214136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The research subject of this paper are natural polymer-based hydrogels modified with albumin particles. The proteins were obtained via the salt-induced precipitation method, and next characterized using dynamic light scattering (DLS), UV-Vis spectroscopy and FT-IR spectroscopy. The most favorable composition showing monodispersity and particles with a size lower than 40 nm was selected for modification of hydrogels. Such systems were obtained via the photopolymerization performed under the influence of UV radiation using diacrylate poly(ethylene glycol) as a crosslinking agent and 2-hydroxy-2-methylpropiophenone as a photoinitiator. Next, the hydrogels' swelling ability, mechanical properties, wettability and surface morphology were characterized. Moreover, FT-IR spectroscopy, incubation studies in simulated physiological liquids, pro-inflammatory activity analysis and MTT reduction assay with L929 murine fibroblasts were performed. The release profiles of proteins from hydrogels were also verified. Materials modified with proteins showed higher swelling ability, increased flexibility even by 50% and increased surface hydrophilicity. Hydrogels' contact angles were within the range 62-69° while the tensile strength of albumin-containing hydrogels was approx. 0.11 MPa. Furthermore, the possibility of the effective release of protein particles from hydrogels in acidic environment (approximately 70%) was determined. Incubation studies showed hydrogels' stability and lack of their degradation in tested media. The viability of fibroblasts was 89.54% for unmodified hydrogel, and approx. 92.73% for albumin-modified hydrogel, and such an increase indicated the positive impact of the albumin on murine fibroblast proliferation.
Collapse
|
8
|
Dual ionically crosslinked chitosan–based injectable hydrogel as drug delivery system. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wei W, Yang Q, Hu J, Yao Y, Yang H. Dexamethasone-Loaded Injectable In-situ Thermal Crosslinking Magnetic Responsive Hydrogel for the Physiochemical Stimulation of Acupoint to Suppress Pain in Sciatica Rats. Cell Transplant 2022; 31:9636897221126088. [PMID: 36178143 PMCID: PMC9527991 DOI: 10.1177/09636897221126088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The physicochemical stimulation of acupoints is a widespread treatment strategy for different diseases, such as sciatica. Its efficacy is mainly based on the temporal and spatial modulation of the physicochemical properties of the acupoints. The existing therapies based on the stimulation of acupoints have certain disadvantages. Therefore, in this study, injectable dexamethasone (DXM)- and magnetic Fe3O4 nanoparticles-loaded chitosan/β-glycerophosphate (CS/GP) thermal crosslinking hydrogels were prepared, thereby improving the performance of embedding materials. The sciatica rat models were established to compare the therapeutic effects of hydrogels and catgut. The DXM or Fe3O4-loaded CS/GP hydrogels were compared in terms of their gelation kinetics, release kinetics, magnetic responsiveness in-vitro, and biocompatibility as well as their analgesic effects on the chronic constriction injury of the sciatic nerve (CCI) rats in-vivo. The CS/GP/Fe3O4/DXM hydrogel showed comparable gelation kinetics and good magnetic responsiveness in-vitro. This hydrogel could relieve sciatica by reducing the expression levels of inflammatory factors in serum, inhibiting the p38MAPK (p38, mitogen-activated protein kinase) phosphorylation, and decreasing the expression level of the P2X4 receptor (P2X4R) in the spinal dorsal horn. In conclusion, the DXM or Fe3O4-loaded CS/GP hydrogels can be considered as a treatment option for the physiochemical stimulation therapy of acupoints to improve sciatica.
Collapse
Affiliation(s)
- Wan Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiuhong Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Yao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huayuan Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Asfour MH, Abd El-Alim SH, Awad GEA, Kassem AA. Chitosan/β-glycerophosphate in situ forming thermo-sensitive hydrogel for improved ocular delivery of moxifloxacin hydrochloride. Eur J Pharm Sci 2021; 167:106041. [PMID: 34655737 DOI: 10.1016/j.ejps.2021.106041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023]
Abstract
The aim of the current work is to develop a thermo-sensitive hydrogel system of moxifloxacin hydrochloride (MOX) for improved ocular delivery. Fifteen formulations were prepared at different concentrations of β-glycerophosphate disodium salt (β-GP) 12-20% (w/v) and chitosan (CS) 1.7-1.9% (w/v). The optimized MOX loaded thermo-sensitive hydrogel system (F8), consisting of CS (1.8%, w/v) and β-GP (16%, w/v), showed optimum gelation temperature (35 °C) and gelation time (2 min), thus was selected for further investigations. It showed a significant decrease (p < 0.05) in the zeta potential value compared to CS solution with a favorable pH value (7.1) and confirmed thermoreversible behavior. MOX loaded F8 displayed a porous structure under scanning electron microscopy. Rheological investigation of MOX loaded F8 revealed the presence of a strong hydrogel network with high elasticity along with a small loss factor of 0.08 indicating a great ease of gel formation. The release of MOX from F8 was found to be governed by a combined mechanism of diffusion and relaxation. Biological assessment of two concentrations of MOX loaded F8 (0.25 and 0.5%) was conducted using healthy and infected male albino New Zealand rabbits, where an improved and prolonged antibacterial activity against Staphylococcus aureus compared to plain MOX (0.5%), marketed MOX eye drops (0.5%), was shown. Moreover, histopathological examination of ocular tissues confirmed the antibacterial efficacy of the optimized formulation eight days post topical therapy. Consequently, the developed CS/β-GP thermo-sensitive hydrogel system (F8) reveals a promising potential for enhancing the ocular delivery of MOX for treatment of bacterial infections.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| | - Ghada Elsayed Ahmed Awad
- Chemistry of Natural and Microbial Products Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
11
|
Djemaa IB, Auguste S, Drenckhan-Andreatta W, Andrieux S. Hydrogel foams from liquid foam templates: Properties and optimisation. Adv Colloid Interface Sci 2021; 294:102478. [PMID: 34280600 DOI: 10.1016/j.cis.2021.102478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/20/2022]
Abstract
Hydrogel foams are an important sub-class of macroporous hydrogels. They are commonly obtained by integrating closely-packed gas bubbles of 10-1000 μm into a continuous hydrogel network, leading to gas volume fractions of more than 70% in the wet state and close to 100% in the dried state. The resulting wet or dried three-dimensional architectures provide hydrogel foams with a wide range of useful properties, including very low densities, excellent absorption properties, a large surface-to-volume ratio or tuneable mechanical properties. At the same time, the hydrogel may provide biodegradability, bioabsorption, antifungal or antibacterial activity, or controlled drug delivery. The combination of these properties are increasingly exploited for a wide range of applications, including the biomedical, cosmetic or food sector. The successful formulation of a hydrogel foam from an initially liquid foam template raises many challenging scientific and technical questions at the interface of hydrogel and foam research. Goal of this review is to provide an overview of the key notions which need to be mastered and of the state of the art of this rapidly evolving field at the interface between chemistry and physics.
Collapse
Affiliation(s)
- I Ben Djemaa
- Institut Charles Sadron, University of Strasbourg, CNRS UPR22, 23 rue du Loess, 67037 Strasbourg, France; Urgo Research Innovation and Development, 42 rue de Longvic, 21304 Chenôve Cedex, France
| | - S Auguste
- Urgo Research Innovation and Development, 42 rue de Longvic, 21304 Chenôve Cedex, France
| | - W Drenckhan-Andreatta
- Institut Charles Sadron, University of Strasbourg, CNRS UPR22, 23 rue du Loess, 67037 Strasbourg, France
| | - S Andrieux
- Institut Charles Sadron, University of Strasbourg, CNRS UPR22, 23 rue du Loess, 67037 Strasbourg, France.
| |
Collapse
|
12
|
Yang Y, Rehak P, Xie TZ, Feng Y, Sun X, Chen J, Li H, Král P, Liu T. Nanosheets and Hydrogels Formed by 2 nm Metal-Organic Cages with Electrostatic Interaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56310-56318. [PMID: 33269903 DOI: 10.1021/acsami.0c16366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the mechanism of hydrogel formation in dilute aqueous solutions (>15 mg/mL) by 2 nm metal-organic cages (MOCs). Experiments and all-atom simulations confirm that with the addition of small electrolytes, the MOCs self-assemble into 2D nanosheets via counterion-mediated attraction because of their unique molecular structure and charge distribution as well as σ-π interactions. The stiff nanosheets are difficult to bend into 3-D hollow, spherical blackberry type structures, as observed in many other macroion systems. Instead, they stay in solution and their very large excluded volumes lead to gelation at low (∼1.5 wt %) MOC concentrations, with additional help from hydrophobic and partial π-π interactions similar to the gelation of graphene oxides.
Collapse
Affiliation(s)
- Yuqing Yang
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Pavel Rehak
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ting-Zheng Xie
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yi Feng
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xinyu Sun
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiahui Chen
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hui Li
- Center for Nanophase Materials Sciences, Oak Ridge Nation Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Petr Král
- Department of Chemistry, Physics, Biopharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Tianbo Liu
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
13
|
Rim MA, Choi JH, Park A, Youn J, Lee S, Kim NE, Song JE, Khang G. Characterization of Gelatin/Gellan Gum/Glycol Chitosan Ternary Hydrogel for Retinal Pigment Epithelial Tissue Reconstruction Materials. ACS APPLIED BIO MATERIALS 2020; 3:6079-6087. [PMID: 35021836 DOI: 10.1021/acsabm.0c00672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular transplantation approach to treat damaged or diseased retina is limited because of poor survival, distribution, and integration of cells after implantation to the sub-retinal space. To overcome this, it is important to develop a cell delivery system. In this study, a ternary hydrogel of gelatin (Ge)/gellan gum (GG)/glycol chitosan (CS) is suggested as a cell carrier for retinal tissue engineering (TE). Physicochemical properties such as porosity, swelling, sol fraction, and weight loss were measured. The mechanical study was performed with compressive strength and viscosity to confirm applicability in retinal TE. An in vitro experiment was carried out by encapsulating ARPE-19 in the designed hydrogel to measure viability and expression of retinal pigment epithelium-specific proteins and genes. The results showed that the ternary hydrogel system improves the mechanical properties and stability of the composite. Cell growth, survival, adhesion, and migration were enhanced as the CS was incorporated into the matrix. In particular, real-time polymerase chain reaction analysis showed a markedly improved specific gene expression rate in the Ge/GG/CS. Therefore, it is expected that the ternary system suggested in this study can be used as a promising material for retinal TE.
Collapse
Affiliation(s)
- Min A Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Na Eun Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
14
|
Nooshabadi VT, Khanmohamadi M, Valipour E, Mahdipour S, Salati A, Malekshahi ZV, Shafei S, Amini E, Farzamfar S, Ai J. Impact of exosome‐loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res A 2020; 108:2138-2149. [DOI: 10.1002/jbm.a.36959] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of medicineSemnan University of Medical Sciences Semnan Iran
- Department of Applied Cell SciencesKashan University of Medical Sciences Kashan Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Mehdi Khanmohamadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram HospitalIran University of Medical Sciences (IUMS) Tehran Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Shadi Mahdipour
- Department of Medical Genetics, School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Amir Salati
- Department of Tissue Engineering and Applied Cell Sciences, School of medicineSemnan University of Medical Sciences Semnan Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Shilan Shafei
- Department of Molecular Medicine, School of Advanced Technologies in MedicineInternational campus Tehran University of Medical Sciences Tehran Iran
| | - Elahe Amini
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram HospitalIran University of Medical Sciences (IUMS) Tehran Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
16
|
Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:919-928. [DOI: 10.1016/j.msec.2019.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
|
17
|
Yang F, Ren B, Cai Y, Tang J, Li D, Wang T, Feng Z, Chang Y, Xu L, Zheng J. Mechanically tough and recoverable hydrogels via dual physical crosslinkings. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fengyu Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| | - Baiping Ren
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| | - Yongqing Cai
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
| | - Ding Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
| | - Ting Wang
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
- State Key Laboratory of Bioelectronics Southeast University Nanjing 210096 China
| | - Zhangqi Feng
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing Jiangsu 210094 China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering Chung Yuan Christian University Chungli, Taoyuan 320 Taiwan
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology Zhuzhou 412007 China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering The University of Akron Akron Ohio 44325
| |
Collapse
|
18
|
Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging. Carbohydr Polym 2018; 193:119-128. [DOI: 10.1016/j.carbpol.2018.03.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
|
19
|
Hanauer N, Latreille PL, Banquy X. Mechanistic Insights into the Directed Assembly of Hydrogel Blocks Mediated by Polyelectrolytes or Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3864-3870. [PMID: 28318268 DOI: 10.1021/acs.langmuir.7b00924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we report the directed assembly of hydrogel blocks mediated by electrostatic interactions. We compared two different assembly mechanisms, one mediated by microgel particles and another mediated by direct interaction between oppositely charged blocks. The system consisted of hydrogel blocks made of an interpenetrated network of (hydroxyethyl)methacrylate-poly(ethylene glycol)dimethacrylate (HEMA-PEGDMA) and either positively charged polyethylenimine (PEI) or negatively charged hyaluronic acid (HA). Positively charged hydrogel blocks were pretreated with negatively charged microgel particles (MG) made of N-isopropylacrylamide-methacrylic acid. Both systems (PEI/HA and PEI/MG) demonstrated spontaneous directed assembly, meaning that positive blocks were systematically found in contact with oppositely charged blocks. Directed assembly in water of PEI/HA blocks resulted in large and open aggregates, while PEI/MG blocks exhibited more compact aggregates. Effects of salt and pH were also assessed for both systems. Inhibition of blocks aggregation was found to appear above a critical salt concentration (CSalt*) which was significantly higher for the PEI/HA system (80 mM) compared to the PEI/MG system (5-20 mM). The observed difference was interpreted in terms of the nanostructure of the contact area between blocks. Blocks aggregation was also found to be controlled by the content of negatively charged groups in the microgels as well as the concentration of MG in the suspension (CMG) used to treat the hydrogel block surfaces. Our results shine light on the subtle differences underlying the adhesion mechanisms between hydrogel blocks and suggest new routes toward the design of innovative complex soft materials.
Collapse
Affiliation(s)
- Nicolas Hanauer
- Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal C.P. 6128, succursale Centre Ville, Montréal, QC H3C 3J7, Canada
| | - Pierre Luc Latreille
- Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal C.P. 6128, succursale Centre Ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal C.P. 6128, succursale Centre Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
20
|
Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies. Int J Biol Macromol 2017; 97:115-122. [DOI: 10.1016/j.ijbiomac.2016.12.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Accepted: 12/30/2016] [Indexed: 11/17/2022]
|
21
|
Xiao J, Chen S, Yi J, Zhang H, Ameer GA. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1604872. [PMID: 28729818 PMCID: PMC5513192 DOI: 10.1002/adfm.201604872] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Jisheng Xiao
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Siyu Chen
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Ji Yi
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hao Zhang
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611
- Corresponding Author:
| |
Collapse
|
22
|
Behl G, Iqbal J, O'Reilly NJ, McLoughlin P, Fitzhenry L. Synthesis and Characterization of Poly(2-hydroxyethylmethacrylate) Contact Lenses Containing Chitosan Nanoparticles as an Ocular Delivery System for Dexamethasone Sodium Phosphate. Pharm Res 2016; 33:1638-48. [PMID: 26964548 DOI: 10.1007/s11095-016-1903-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/04/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Dexamethasone sodium phosphate (DXP) is an anti-inflammatory drug commonly used to treat acute and chronic ocular diseases. It is routinely delivered using eye-drops, where typically only 5% of the drug penetrates the corneal epithelium. The bioavailability of such ophthalmic drugs can be enhanced significantly using contact lenses incorporating drug-loaded nanoparticles (NPs). METHODS The mechanism of release from chitosan NPs (CS-NPs), synthesized by ionic gelation, was studied in vitro. The DXP loaded CS-NPs were subsequently entrapped in contact lenses and the optical and drug-release properties were assessed. RESULTS DXP release from CS-NPs followed diffusion and swelling controlled mechanisms, with an additional proposed impact from the electrostatic interaction between the drug and the CS-NPs. The release rate was found to increase with an increase in drug loading from 20 to 50 wt%. However, an inverse effect was observed when initial loading increased to 100 wt%. NP-laden lenses were optically clear (95-98% transmittance relative to the neat contact lens) and demonstrated sustained DXP release, with approximately 55.73% released in 22 days. CONCLUSIONS The release profile indicated that drug levels were within the therapeutic requirement for anti-inflammatory use. These results suggest that these materials might be a promising candidate for the delivery of DXP and other important ophthalmic therapeutics.
Collapse
Affiliation(s)
- Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, School of Science and Computing, Cork Road, Waterford, Ireland
| | - Javed Iqbal
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, School of Science and Computing, Cork Road, Waterford, Ireland
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, School of Science and Computing, Cork Road, Waterford, Ireland
| | - Peter McLoughlin
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, School of Science and Computing, Cork Road, Waterford, Ireland
| | - Laurence Fitzhenry
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, School of Science and Computing, Cork Road, Waterford, Ireland.
| |
Collapse
|
23
|
Kwon JI, Lee CM, Jeong HS, Oh PS, Hwang H, Lim ST, Sohn MH, Jeong HJ. The Alginate Layer for Improving Doxorubicin Release and Radiolabeling Stability of Chitosan Hydrogels. Nucl Med Mol Imaging 2015; 49:312-317. [PMID: 26550051 PMCID: PMC4630335 DOI: 10.1007/s13139-015-0337-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Chitosan hydrogels (CSH) formed through ionic interaction with an anionic molecule are suitable as a drug carrier and a tissue engineering scaffold. However, the initial burst release of drugs from the CSH due to rapid swelling after immersing in a biofluid limits their wide application as a drug delivery carrier. In this study, alginate layering on the surface of the doxorubicin (Dox)-loaded and I-131-labeled CSH (DI-CSH) was performed. The effect of the alginate layering on drug release behavior and radiolabeling stability was investigated. METHODS Chitosan was chemically modified using a chelator for I-131 labeling. After labeling of I-131 and mixing of Dox, the chitosan solution was dropped into tripolyphosphate (TPP) solution using an electrospinning system to prepare spherical microhydrogels. The DI-CSH were immersed into alginate solution for 30 min to form the crosslinking layer on their surface. The formation of alginate layer on the DI-CSH was confirmed by Fourier transform infrared spectroscopy (FT-IR) and zeta potential analysis. In order to investigate the effect of alginate layer, studies of in vitro Dox release from the hydrogels were performed in phosphate buffered in saline (PBS, pH 7.4) at 37 °C for 12 days. The radiolabeling stability of the hydrogels was evaluated using ITLC under different experimental condition (human serum, normal saline, and PBS) at 37 °C for 12 days. RESULTS Formatting the alginate-crosslinked layer on the CSH surface did not change the spherical morphology and the mean diameter (150 ± 10 μm). FT-IR spectra and zeta potential values indicate that alginate layer was formed successfully on the surface of the DI-CSH. In in vitro Dox release studies, the total percentage of the released Dox from the DI-CSH for 12 days were 60.9 ± 0.8, 67.3 ± 1.4, and 71.8 ± 2.5 % for 0.25, 0.50, and 1.00 mg Dox used to load into the hydrogels, respectively. On the other hand, after formatting alginate layer, the percentage of the released Dox for 12 days was decreased to 47.6 ± 1.4, 51.1 ± 1.4, and 57.5 ± 1.6 % for 0.25, 0.50, and 1.00 mg Dox used, respectively. The radiolabeling stability of DI-CSH in human serum was improved by alginate layer. CONCLUSIONS The formation of alginate layer on the surface of the DI-CSH is useful for improving the drug release behavior and radiolabeling stability.
Collapse
Affiliation(s)
- Jeong Il Kwon
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| | - Chang-Moon Lee
- />Department of Biomedical Engineering, Chonnam National University, Yeosu, Jeonnam 500-757 Republic of Korea
| | - Hwan-Seok Jeong
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| | - Phil-Sun Oh
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| | - Hyosook Hwang
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| | - Seok Tae Lim
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| | - Myung-Hee Sohn
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| | - Hwan-Jeong Jeong
- />Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju, Jeonbuk 500-757 Republic of Korea
| |
Collapse
|
24
|
|
25
|
Coburn JM, Kaplan DL. Engineering Biomaterial-Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. Bioconjug Chem 2015; 26:1212-23. [PMID: 25689115 PMCID: PMC4856894 DOI: 10.1021/acs.bioconjchem.5b00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The standard of care for cancer patients includes surgical resection, radiation, and chemotherapy with cytotoxic chemotherapy drugs usually part of the treatment. However, these drugs are commonly associated with cardiotoxicity, ototoxicity, nephrotoxicity, peripheral neuropathy, and myelosuppression. Strategies to deliver cytotoxic chemotherapy drugs while reducing secondary toxicity and increasing tumor dosing would therefore be desirable. This goal can be achieved through the use of controlled release drug carrier systems. The aim of this review is to provide an overview of clinically used drug carrier systems and recently developed approaches for drug-biomaterial conjugation.
Collapse
Affiliation(s)
- Jeannine M. Coburn
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
26
|
Yasmeen S, Lo MK, Bajracharya S, Roldo M. Injectable scaffolds for bone regeneration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12977-12985. [PMID: 25296391 DOI: 10.1021/la503057w] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Clinical treatments of significant bone defects involve invasive procedures such as the application of auto- and allografts. These procedures present many limitations including the potential for infection and rejection. There is therefore a need to develop novel therapeutic strategies able to exploit the natural regenerative potential of bone and that can be delivered in a less invasive manner. Among the materials studied for the development of novel scaffolds, stimuli-responsive gels containing hydroxyapatite and carbon nanotubes as nanofillers have generated great interest. In the present work, chitosan gels containing chitosan grafted CNTs and chitosan-hydroxyapatite complex have been formed by cross-linking with glycerol phosphate. The addition of the nanofillers afforded hydrogels with a faster sol/gel transition at 37 °C and enhanced mechanical properties. The thermosensitive composite gels also showed a good bioactivity profile associated with potential for the prolonged delivery of protein drugs. The inclusion of chemically cross-linked CNTs and HA in thermosensitive gels afforded injectable composite materials with enhanced properties, including reduction of gelation time, improved mechanical properties, good bioactivity, and prolonged drug release.
Collapse
Affiliation(s)
- Sabina Yasmeen
- School of Pharmacy and Biomedical Science, University of Portsmouth , St. Michael's Building, White Swan Road, Portsmouth, UK
| | | | | | | |
Collapse
|
27
|
Khalil KD, Ibrahim EI, Al-Sagheer FA. Synthesis of chitosan-graft
-poly[2-cyano-1-(pyridin-3-yl)allyl acrylate] copolymer from a novel monomer, prepared using a Morita-Baylis-Hillman reaction, and characterization of its antimicrobial activity. POLYM INT 2014. [DOI: 10.1002/pi.4760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Khaled D Khalil
- Chemistry Department, Faculty of Science; University of Kuwait; PO Box 5969 Safat 13060 Kuwait
| | - Enas I Ibrahim
- Chemistry Department, Faculty of Science; University of Kuwait; PO Box 5969 Safat 13060 Kuwait
| | - Fakhreia A Al-Sagheer
- Chemistry Department, Faculty of Science; University of Kuwait; PO Box 5969 Safat 13060 Kuwait
| |
Collapse
|
28
|
Supper S, Anton N, Seidel N, Riemenschnitter M, Curdy C, Vandamme T. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert Opin Drug Deliv 2013; 11:249-67. [PMID: 24304097 DOI: 10.1517/17425247.2014.867326] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Thermogelling chitosan (CS)/glycerophosphate (GP) solutions have been reported as a new type of parenteral in situ forming depot system. These free-flowing solutions at ambient temperature turn into semi-solid hydrogels after parenteral administration. AREAS COVERED Formulation parameters such as CS physico-chemical characteristics, CS/gelling agent ratio or pH of the system, were acknowledged as key parameters affecting the solution stability, the sol/gel transition behavior and/or the final hydrogel structure. We discuss also the use of the standard CS/GP thermogels for various biomedical applications, including drug delivery and tissue engineering. Furthermore, this manuscript reviews the different strategies implemented to improve the hydrogel characteristics such as combination with carrier particles, replacement of GP, addition of a second polymer and chemical modification of CS. EXPERT OPINION The recent advances in the formulation of CS-based thermogelling systems already overcame several challenges faced by the standard CS/GP system. Dispersion of drug-loaded carrier particles into the thermogels allowed achieving prolonged release profiles for low molecular weight drugs; incorporation of an additional polymer enabled to strengthen the network, while the use of chemically modified CS led to enhanced pH sensitivity or biodegradability of the matrix.
Collapse
Affiliation(s)
- Stephanie Supper
- Novartis Pharma AG, Technical Research & Development (TRD) , Basel, 4002 , Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Mercury(II) removal with modified magnetic chitosan adsorbents. Molecules 2013; 18:6193-214. [PMID: 23708232 PMCID: PMC6270650 DOI: 10.3390/molecules18066193] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022] Open
Abstract
Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II) removal from aqueous solutions. The one chitosan adsorbent (CS) is only cross–linked with glutaraldehyde, while the other (CSm), which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe3O4). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests). The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption), contact time (fitting to pseudo–first, –second order and Elovich equations), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG0 < 0, ΔH0 > 0, ΔS0 > 0). The maximum adsorption capacity (fitting with Langmuir and Freundlich model) of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.
Collapse
|
30
|
Huang KS, Wang CY, Yang CH, Grumezescu AM, Lin YS, Kung CP, Lin IY, Chang YC, Weng WJ, Wang WT. Synthesis and characterization of oil-chitosan composite spheres. Molecules 2013; 18:5749-60. [PMID: 23681059 PMCID: PMC6270591 DOI: 10.3390/molecules18055749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 11/25/2022] Open
Abstract
Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites), and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites), respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin) could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers.
Collapse
Affiliation(s)
- Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (K.-S.H.); (C.-P.K.); (I.-Y.L.); (Y.-C.C.); (W.-J.W.); (W.-T.W.)
| | - Chih-Yu Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest 011061, Romania; E-Mail:
| | - Yung-Sheng Lin
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung 43302, Taiwan; E-Mail:
| | - Chao-Pin Kung
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (K.-S.H.); (C.-P.K.); (I.-Y.L.); (Y.-C.C.); (W.-J.W.); (W.-T.W.)
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - I-Yin Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (K.-S.H.); (C.-P.K.); (I.-Y.L.); (Y.-C.C.); (W.-J.W.); (W.-T.W.)
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - Yi-Ching Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (K.-S.H.); (C.-P.K.); (I.-Y.L.); (Y.-C.C.); (W.-J.W.); (W.-T.W.)
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - Wei-Jie Weng
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (K.-S.H.); (C.-P.K.); (I.-Y.L.); (Y.-C.C.); (W.-J.W.); (W.-T.W.)
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| | - Wei-Ting Wang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan; E-Mails: (K.-S.H.); (C.-P.K.); (I.-Y.L.); (Y.-C.C.); (W.-J.W.); (W.-T.W.)
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; E-Mail:
| |
Collapse
|