1
|
Alradwan I, Zhi P, Zhang T, Lip H, Zetrini A, He C, Henderson JT, Rauth AM, Wu XY. Nanoparticulate drug combination inhibits DNA damage repair and PD-L1 expression in BRCA-mutant and wild type triple-negative breast cancer. J Control Release 2025; 377:661-674. [PMID: 39615752 DOI: 10.1016/j.jconrel.2024.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
The high mortality rate associated with metastatic breast cancer presents a significant global challenge. Inherent and chemotherapy-induced DNA damage repair, alongside immunosuppression, drastically contribute to triple-negative breast cancer (TNBC) relapse and metastasis. While poly (ADP-ribose) polymerase (PARP) inhibitors such as olaparib show effectiveness against BRCA1-mutant TNBC, they may lead to drug resistance and reduced efficacy due to increased programmed death-ligand 1 (PD-L1) expression. Our study explored the use of polymer-lipid nanoparticles (PLN) loaded with doxorubicin (DOX) and oligomeric hyaluronic acid (oHA), functionalized iRGD-peptide for integrins targeting (iRGD-DOX-oHA-PLN), to prevent TNBC immunosuppression, DNA repair, and metastasis. The results demonstrate that the iRGD-DOX-oHA-PLNs efficiently downregulated single and double-strand DNA repair proteins and enhanced DNA damage while decreasing PD-L1 expression compared to olaparib. Accordingly, iRGD-DOX-oHA-PLN treatment showed significantly higher efficiency in reducing levels of primary tumor growth and numbers of metastases to the lung and liver compared to olaparib in vitro and in vivo in both BRCA1-mutant and wild type TNBC orthotopic xenograft models.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada; Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Pei Zhi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto M5G 2M9, Ontario, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5S 3M2, Ontario, Canada.
| |
Collapse
|
2
|
Sivakumar PM, Zarepour A, Akther S, Perumal G, Khosravi A, Balasekar P, Zarrabi A. Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance. Int J Biol Macromol 2024:139211. [PMID: 39732249 DOI: 10.1016/j.ijbiomac.2024.139211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity. This review underscores the significance of anionic polysaccharides as essential components of the evolving landscape of cancer therapy and theranostics. These polymers can be tailored to carry a wide range of therapeutic cargo, including chemotherapeutic agents, nucleic acids, and imaging agents. Their negative charge enables electrostatic interactions with positively charged drugs and facilitates the formation of stable nanoparticles, liposomes, or hydrogels for controlled drug release. Additionally, their hydrophilic nature aids in prolonging circulation time, reducing drug degradation, and minimizing off-target effects. Besides, some of them could act as targeting agents or therapeutic compounds that lead to improved therapeutic performance. This review offers valuable information for researchers, clinicians, and biomedical engineers. It provides insights into the recent progress in the applications of anionic polysaccharide-based delivery platforms in cancer theranostics to transform patient outcomes.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Sohail Akther
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK.
| | - Govindaraj Perumal
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Premkumar Balasekar
- Department of Pharmacology, K.K. College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Gerugambakkam 600128, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
3
|
Liu Y, Wu Y, Deng H, Li W, Cui L, Rong J, Zhao J. A polylysine/hyaluronan-based core-shell nanoparticle triggers drug delivery by ATP/hyaluronidase dual stimuli for inducing apoptosis of breast cancer cells. Int J Biol Macromol 2024; 277:134188. [PMID: 39084428 DOI: 10.1016/j.ijbiomac.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yan Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Haotian Deng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Wanying Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Lishu Cui
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| |
Collapse
|
4
|
Kuna K, Baddam SR, Kalagara S, Akkiraju PC, Tade RS, Enaganti S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int J Biol Macromol 2024; 262:129434. [PMID: 38232877 DOI: 10.1016/j.ijbiomac.2024.129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
The field of cancer therapy is advancing rapidly, placing a crucial emphasis on innovative drug delivery systems. The increasing global impact of cancer highlights the need for creative therapeutic strategies. Natural polymer-based nanotherapeutics have emerged as a captivating avenue in this pursuit, drawing substantial attention due to their inherent attributes. These attributes include biodegradability, biocompatibility, negligible toxicity, extended circulation time, and a wide range of therapeutic payloads. The unique size, shape, and morphological characteristics of these systems facilitate profound tissue penetration, complementing active and passive targeting strategies. Moreover, these nanotherapeutics exploit specific cellular and subcellular trafficking pathways, providing precise control over drug release kinetics. This comprehensive review emphasizes the utilization of naturally occurring polymers such as polysaccharides (e.g., chitosan, hyaluronic acid, alginates, dextran, and cyclodextrin) and protein-based polymers (e.g., ferritin, gelatin, albumin) as the foundation for nanoparticle development. The paper meticulously examines their in vitro characteristics alongside in vivo efficacy, particularly focusing on their pivotal role in ameliorating diverse types of solid tumors within cancer therapy. The amalgamation of material science ingenuity and biological insight has led to the formulation of these nanoparticles, showcasing their potential to reshape the landscape of cancer treatment.
Collapse
Affiliation(s)
- Krishna Kuna
- Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana, India.
| | - Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01655, United States of America
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States of America
| | - Pavan C Akkiraju
- Department of Biotechnology, School of Allied Healthcare Sciences, Malla Reddy University, Hyderabad, India
| | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Sreenivas Enaganti
- Department of Bioinformatics, Averinbiotech Laboratories, Nallakunta, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Jamshidi Z, Dehghan R, Nejabat M, Abnous K, Taghdisi SM, Hadizadeh F. Dual-targeting CD44 and mucin by hyaluronic acid and 5TR1 aptamer for epirubicin delivery into cancer cells: Synthesis, characterization, in vitro and in vivo evaluation. Heliyon 2024; 10:e24833. [PMID: 38312665 PMCID: PMC10835225 DOI: 10.1016/j.heliyon.2024.e24833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
One of the revolutionized cancer treatment is active targeting nanomedicines. This study aims to create a dual-targeted drug delivery system for Epirubicin (EPI) to cancer cells. Hyaluronic acid (HA) is the first targeting ligand, and 5TR1 aptamer (5TR1) is the second targeting ligand to guide the dual-targeted drug delivery system to the cancer cells. HA is bound to highly expressed receptors like CD44 on cancer cells. 5TR1, DNA aptamer, is capable of recognizing MUC1 glycoprotein, which is overexpressed in cancer cells. The process involved binding EPI and 5TR1 to HA using adipic acid dihydrazide (AA) as a linker. The bond between the components was confirmed using 1H NMR. The binding of 5TR1 to HA-AA-EPI was confirmed using gel electrophoresis. The particle size (132.6 ± 9 nm) and Zeta Potential (-29 ± 4.4 mV) were measured for the final nanoformulation (HA-AA-EPI-5TR1). The release of EPI from the HA-AA-EPI-5TR1 nanoformulation was also studied at different pH levels. In the acidic pH (5.4 and 6.5) release pattern of EPI from the HA-AA-EPI-5TR1 nanoformulation was higher than physiological pH (7.4). The cytotoxicity and cellular uptake of the synthetic nanoformula were evaluated using MTT and flow cytometry analysis. Flow cytometry and cellular cytotoxicity studies were exhibited in a negative MUC1-cell line (CHO) and two positive MUC1+cell lines (MCF-7 and C26). Results confirmed that there is a notable contrast between the dual-targeted (HA-AA-EPI-5TR1) and single-targeted (HA-AA-EPI) nanoformulation in MCF-7 and C26 cell lines (MUC1+). In vivo studies showed that HA-AA-EPI-5TR1 nanoformulation has improved efficiency with limited side effect in C26 tumor-bearing mice. Also, Fluorescence imaging and pathological evaluation showed reduced side effects in the heart tissue of mice receiving HA-AA-EPI-5TR1 than free EPI. So, this targeted approach effectively delivers EPI to cancer cells with reduced side effects.
Collapse
Affiliation(s)
- Zahra Jamshidi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Dehghan
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Institute, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Cirillo N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int J Mol Sci 2023; 24:15812. [PMID: 37958796 PMCID: PMC10649834 DOI: 10.3390/ijms242115812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaluronic acid (HA) receptor CD44 is widely used for identifying cancer stem cells and its activation promotes stemness. Recent evidence shows that overexpression of CD44 is associated with poor prognosis in most human cancers and mediates therapy resistance. For these reasons, in recent years, CD44 has become a treatment target in precision oncology, often via HA-conjugated antineoplastic drugs. Importantly, HA molecules of different sizes have a dual effect and, therefore, may enhance or attenuate the CD44-mediated signaling pathways, as they compete with endogenous HA for binding to the receptors. The magnitude of these effects could be crucial for cancer progression, as well as for driving the inflammatory response in the tumor microenvironment. The increasingly common use of HA-conjugated drugs in oncology, as well as HA-based compounds as adjuvants in cancer treatment, adds further complexity to the understanding of the net effect of hyaluronan-CD44 activation in cancers. In this review, I focus on the significance of CD44 in malignancy and discuss the dichotomous function of the hyaluronan/CD44 axis in cancer progression.
Collapse
Affiliation(s)
- Nicola Cirillo
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
7
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
8
|
Abdel-Rahman RM, Abdel-Mohsen AM. Marine Biomaterials: Hyaluronan. Mar Drugs 2023; 21:426. [PMID: 37623707 PMCID: PMC10456333 DOI: 10.3390/md21080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.
Collapse
Affiliation(s)
- Rasha M. Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| | - A. M. Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| |
Collapse
|
9
|
Ravi V, Desikan K. Curvilinear regression analysis of benzenoid hydrocarbons and computation of some reduced reverse degree based topological indices for hyaluronic acid-paclitaxel conjugates. Sci Rep 2023; 13:3239. [PMID: 36828838 PMCID: PMC9958057 DOI: 10.1038/s41598-023-28416-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/18/2023] [Indexed: 02/26/2023] Open
Abstract
Graph theoretical molecular descriptors alias topological indices are a convenient means for expressing in numerical form the chemical structure encoded in a molecular graph. The structure descriptors derived from molecular graphs are widely used in quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies. The reason for introducing new indices is to obtain predictions of target properties of considered molecules that are better than the predictions obtained using already known indices. In this paper, we apply the reduced reverse degree based indices introduced in 2021 by Vignesh et al. In the QSPR analysis, we first compute the reduced reverse degree based indices for a family of benzenoid hydrocarbon molecules and then we obtain the correlation with the Physico-chemical properties of the considered molecules. We show that all the properties taken into consideration for the benzenoid hydrocarbons can be very effectively predicted by the reduced reverse degree based indices. Also, we have compared the predictive capability of reduced reverse degree based topological descriptors against 16 existing degree based indices. Further, we compute the defined reduced reverse degree based topological indices for Hyaluronic Acid-Paclitaxel Conjugates [Formula: see text], [Formula: see text].
Collapse
Affiliation(s)
- Vignesh Ravi
- grid.412813.d0000 0001 0687 4946Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kalyani Desikan
- Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India.
| |
Collapse
|
10
|
Bognanni N, Viale M, La Piana L, Strano S, Gangemi R, Lombardo C, Cambria MT, Vecchio G. Hyaluronan-Cyclodextrin Conjugates as Doxorubicin Delivery Systems. Pharmaceutics 2023; 15:374. [PMID: 36839696 PMCID: PMC9963997 DOI: 10.3390/pharmaceutics15020374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In the last years, nanoparticles based on cyclodextrins have been widely investigated for the delivery of anticancer drugs. In this work, we synthesized nanoparticles with a hyaluronic acid backbone functionalized with cyclodextrins under green conditions. We functionalized hyaluronic acid with two different molecular weights (about 11 kDa and 45 kDa) to compare their behavior as doxorubicin delivery systems. We found that the new hyaluronan-cyclodextrin conjugates increased the water solubility of doxorubicin. Moreover, we tested the antiproliferative activity of doxorubicin in the presence of the new cyclodextrin polymers in SK-N-SH and SK-N-SH-PMA (over-expressing CD44 receptor) cancer cells. We found that hyaluronan-cyclodextrin conjugates improved the uptake and antiproliferative activity of doxorubicin in the SK-N-SH-PMA compared to the SK-N-SH cell line at the ratio 8/1 doxorubicin/polymer. Notably, the system based on hyaluronan (45 kDa) was more effective as a drug carrier and significantly reduced the IC50 value of doxorubicin by about 56%. We also found that hyaluronic acid polymers determined an improved antiproliferative activity of doxorubicin (IC50 values are on average reduced by about 70% of free DOXO) in both cell lines at the ratio 16/1 doxorubicin/polymer.
Collapse
Affiliation(s)
- Noemi Bognanni
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luana La Piana
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Strano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Gangemi
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Cinzia Lombardo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
11
|
Sahiner N, Ayyala RS, Suner SS. Nontoxic Natural Polymeric Particle Vehicles Derived from Hyaluronic Acid and Mannitol as Mitomycin C Carriers for Bladder Cancer Treatment. ACS APPLIED BIO MATERIALS 2022; 5:5554-5566. [PMID: 36399694 DOI: 10.1021/acsabm.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyaluronic acid/mannitol (HA/MN)-based particles were designed as mitomycin c (MMC) delivery vehicles through the crosslinking of 1:0, 3:1, 1:3, and 0:1 mole ratios of HA/MN to investigate their potential use in bladder cancer therapy. The HA/MN-MMC particles prepared by the microemulsion crosslinking method were of 0.5-10 μm size with a zeta potential value of -36.7 mV. The MMC carrier potential of the HA/MN-MMC particles was investigated by changing HA/MN ratios in the particle structure. The MMC loading capacity of neat HA particles was 5.3 ± 1.1 mg/g, whereas HA/MN (1:3) particles could be loaded with about three times more drug, for example, 18.4 ± 0.8 mg/g. The kinetic of MMC drug delivery from the HA/MN-MMC particles were tested in vitro in bladder cancer conditions for example, pH 4.5, 6, and 7.4. The HA-MMC particles released approximately 70% of the loaded drug in 300 h, while 43% of the loaded drug was released from the HA/MN-MMC particles within 600 h under physiological conditions, pH 7.4, 37 °C. The cytotoxicity of HA-based particles on healthy L929 fibroblast cells and HTB-9 human bladder cancer cells was investigated in vitro via MTT tests. Bare MMC inhibited about 90% of L929 fibroblast cells even at 100 μg/mL, but the cell viabilities in the presence of HA-MMC and HA/MN-MMC particles were 85 ± 5 and 109 ± 7% at 1000 μg/mL, respectively. The HA/MN-MMC (1:3) particles at 1000 μg/mL were found capable of destroying half of HTB-9 human bladder cancer cells within 24 h. Interestingly, the same particles at 50 μg/mL destroyed almost all the cancer cells with 8 ± 5% cell viability in 72 h of incubation time. The designed HA/MN-MMC (1:3) particles were found to afford a chemotherapeutic effect on the tumor cancers while reducing the toxicity of MMC against L929 fibroblast cells.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, Florida33612, United States.,Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale17100, Turkey.,Department of Chemical & Biomedical Engineering, Materials Science and Engineering Program, University of South Florida, Tampa, Florida33620, United States
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, Florida33612, United States
| | - Selin S Suner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale17100, Turkey
| |
Collapse
|
12
|
Nasser H, Eikmanns BJ, Tolba MM, El-Azizi M, Abou-Aisha K. The Superiority of Bacillus megaterium over Escherichia coli as a Recombinant Bacterial Host for Hyaluronic Acid Production. Microorganisms 2022; 10:microorganisms10122347. [PMID: 36557601 PMCID: PMC9787986 DOI: 10.3390/microorganisms10122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Hyaluronic acid (HA) is a polyanionic mucopolysaccharide extensively used in biomedical and cosmetic industries due to its unique rheological properties. Recombinant HA production using other microbial platforms has received increasing interest to avoid potential toxin contamination associated with its production by streptococcal fermentation. In this study, the Gram-negative strains Escherichia coli (pLysY/Iq), E. coli Rosetta2, E. coli Rosetta (DE3) pLysS, E. coli Rosetta2 (DE3), E. coli Rosetta gammiB(DE3)pLysS, and the Gram-positive Bacillus megaterium (MS941) were investigated as new platforms for the heterologous production of HA. (2) Results: The HA biosynthesis gene hasA, cloned from Streptococcus equi subsp. zoopedemicus, was ligated into plasmid pMM1522 (MoBiTec), resulting in pMM1522 hasA, which was introduced into E. coli Rosetta-2(DE3) and B. megaterium (MS941). The initial HA titer by the two hosts in the LB medium was 5 mg/L and 50 mg/L, respectively. Streptococcal hasABC and hasABCDE genes were ligated into plasmid pPT7 (MoBiTec) and different E. coli host strains were then transformed with the resulting plasmids pPT7hasABC and pPT7hasABCDE. For E. coli Rosetta-gamiB(DE3)pLysS transformed with pPT7hasABC, HA production was 500 ± 11.4 mg/L in terrific broth (TB) medium. Productivity was slightly higher (585 ± 2.9 mg/L) when the same host was transformed with pPT7 carrying the entire HA operon. We also transformed B. megaterium (MS941) protoplasts carrying T7-RNAP with pPT7hasABC and pPT7hasABCDE. In comparison, the former plasmid resulted in HA titers of 2116.7 ± 44 and 1988.3 ± 19.6 mg/L in LB media supplemented with 5% sucrose and A5 medium + MOPSO, respectively; the latter plasmid boosted the titer final concentration further to reach 2476.7 ± 14.5 mg/L and 2350 ± 28.8 mg/L in the two media, respectively. The molecular mass of representative HA samples ranged from 105 − 106 Daltons (Da), and the polydispersity index (PDI) was <2. Fourier transform infrared spectroscopy (FTIR) spectra of the HA product were identical to those obtained for commercially available standard polymers. Finally, scanning electron microscopic examination revealed the presence of extensive HA capsules in E. coli Rosetta-gamiB(DE3)pLysS, while no HA capsules were produced by B. megaterium. (3) Conclusions: Our results suggested that Gram-positive bacteria are probably superior host strains for recombinant HA production over their Gram-negative counters. The titers and the molecular weight (MW) of HA produced by B. megaterium were significantly higher than those obtained by different E. coli host strains used in this study.
Collapse
Affiliation(s)
- HebaT’Allah Nasser
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum City 63723, Egypt
| | - Mohamed El-Azizi
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| |
Collapse
|
13
|
V G, Das M, Zarei M, Vp M, Harohally NV, G SK. Studies on the partial characterization of extracted glycosaminoglycans from fish waste and its potentiality in modulating obesity through in-vitro and in-vivo. Glycoconj J 2022; 39:525-542. [PMID: 35913650 DOI: 10.1007/s10719-022-10077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Glycosaminoglycans (GAGs) are bioactive polysaccharides or glycoconjugates found in the fish waste having significant health impacts. In the present study it has been attempted to extract GAGs from mackerel fish waste through chemical and enzymatic methods. Further, the extracted GAGs (e-GAGs) were analyzed for their composition (uronic acid, total sugar & sulfate), chemical characterization was carried out through techniques of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) & Proton NMR. Further, probable major GAGs present was identified by enzymatic digestion. The biological potential of the extracted glycoconjugate was assessed further through in-vitro and in-vivo studies. In-vitro biological activity showed good lipase inhibition (IC50, 2.6 mg/mL) and bile acid binding properties (dose-dependent). Lipid accumulation lowered in the e-GAGs differentiated 3T3L1 preadipocyte cells have also been observed. The high fat fed animal (in-vivo) study showed ameliorative effect via reducing blood sugar∼1.28↓, lipid profile↓, plasma insulin∼3.5↓, improved glucose tolerance, and homeostatic model assessment for insulin resistance (HOMA-IR, ∼3.0↓). Furthermore, elimination of bile acid (BA) due to GAG-BA binding properties resultant in removal of elevated fecal triglyceride and cholesterol suggesting its lipid lowering activity. Regulation of various proteins linked to carbohydrate and lipid metabolism including fatty acid synthase (FAS), low density lipoproteins receptor (LDL-R), 7α-hydroxylase, glucose transporter-4 (GLUT4) and Peroxisome proliferator- activated receptor gamma (PPAR-γ) were significant (p < 0.05) with e-GAGs treatment when compared to HFD group. Thus, the e-GAGs showed potential hypolipidemic activity through elimination of bile acid binding property together with regulating the specific protein related to obesity and its associated complications.
Collapse
Affiliation(s)
- Geetha V
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
| | - Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
| | - Mayookha Vp
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nanishankar V Harohally
- Department of Spices and Flavour Sciences, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India
| | - Suresh Kumar G
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570 020, Mysore, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
14
|
Zhang X, Zeng Z, Liu H, Xu L, Sun X, Xu J, Song G. Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma. NANOSCALE 2022; 14:3306-3323. [PMID: 35170601 DOI: 10.1039/d1nr08394e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. Given its inconspicuous and atypical early symptoms and hidden location, most patients have already reached the terminal stage before diagnosis. At present, the diagnosis of PDAC mainly depends on serological and imaging examinations. However, serum tests cannot identify specific tumor locations and each imaging technology has its own defects, bringing great challenges to the early diagnosis of PDAC. Therefore, it is of great significance to find new strategies for the early and accurate diagnosis of PDAC. In recent years, a magneto-optical nanoplatform integrating near infrared fluorescence, photoacoustic, magnetic resonance imaging, etc. has attracted widespread attention, giving full play to the complementary advantages of each imaging modality. Herein, we summarize the recent advances of imaging modalities in the diagnosis of pancreatic cancer, and then discuss in detail the construction and modification of magneto or/and optical probes for multimodal imaging, and advances in early diagnosis using the combination of various imaging modalities, which can provide potential tools for the early diagnosis or even intraoperative navigation and post-treatment follow-up of PDAC patients.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Zhiming Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xin Sun
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Xu
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
15
|
Chang YL, Liao PB, Wu PH, Chang WJ, Lee SY, Huang HM. Cancer Cytotoxicity of a Hybrid Hyaluronan-Superparamagnetic Iron Oxide Nanoparticle Material: An In-Vitro Evaluation. NANOMATERIALS 2022; 12:nano12030496. [PMID: 35159842 PMCID: PMC8839197 DOI: 10.3390/nano12030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
While hyaluronic acid encapsulating superparamagnetic iron oxide nanoparticles have been reported to exhibit selective cytotoxicity toward cancer cells, it is unclear whether low-molecular-weight hyaluronic acid-conjugated superparamagnetic iron oxide nanoparticles also display such cytotoxicity. In this study, high-molecular-weight hyaluronic acid was irradiated with γ-ray, while Fe3O4 nanoparticles were fabricated using chemical co-precipitation. The low-molecular-weight hyaluronic acid and Fe3O4 nanoparticles were then combined according to a previous study. Size distribution, zeta potential, and the binding between hyaluronic acid and iron oxide nanoparticles were examined using dynamic light scattering and a nuclear magnetic resonance spectroscopy. The ability of the fabricated low-molecular-weight hyaluronic acid conjugated superparamagnetic iron oxide nanoparticles to target cancer cells was examined using time-of-flight secondary ion mass spectrometry and T2* weighted magnetic resonance images to compare iron signals in U87MG human glioblastoma and NIH3T3 normal fibroblast cell lines. Comparison showed that the present material could target U87MG cells at a higher rate than NIH3T3 control cells, with a viability inhibition rate of 34% observed at day two and no cytotoxicity observed in NIH3T3 normal fibroblasts during the three-day experimental period. Supported by mass spectrometry images confirming that the nanoparticles accumulated on the surface of cancer cells, the fabricated materials can reasonably be suggested as a candidate for both magnetic resonance imaging applications and as an injectable anticancer agent.
Collapse
Affiliation(s)
- Yen-Lan Chang
- Divison of Prosthodontics, Department of Stomatology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
| | - Pei-Bang Liao
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Ping-Han Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jen Chang
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, 11696 Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; (W.-J.C.); (S.-Y.L.)
- Correspondence: ; Tel.: +886-291-937-9783
| |
Collapse
|
16
|
CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15010103. [PMID: 35056160 PMCID: PMC8781203 DOI: 10.3390/ph15010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to enter hMSCs. The results show the notable role of CD44 and the pronounced effect of HA Mw in the NPs’ internalization. HA/CS NPs uptake occurs via different endocytic pathways simultaneously, and most notably, NPs with 280 kDa HA were internalized by clathrin-mediated endocytosis. Instead, NPs with 820 kDa HA revealed a greater contribution of caveolae and cytoskeleton components.
Collapse
|
17
|
Shao D, Gao Q, Sheng Y, Li S, Kong Y. Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose. Int J Biol Macromol 2022; 202:37-45. [PMID: 35033530 DOI: 10.1016/j.ijbiomac.2022.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
An intelligent drug delivery platform based on the hybrids of mesoporous silica nanoparticles (MSN), sodium hyaluronate (HA), chitosan (CS) and oxidized sodium carboxymethyl cellulose (oxCMC) is developed, which can be used for dual-responsive dual-drug delivery. Hydrophilic cytarabine (Cyt) is first loaded into the mesopores of the aminated MSN (NH2-MSN), which is encapsulated by the hydrogel of HA and cystamine (Cys) crosslinked via amidation. The Cyt encapsulated hydrogel which is denoted as Cyt/NH2-MSN/HA is co-encapsulated with hydrophobic methotrexate (MTX) into the hydrogel of CS and oxCMC resulted from Schiff base reaction. Since the acylhydrazone bonds (-HC=N-) between CS and oxCMC are sensitive to pH and the disulfide bonds (-S-S-) in Cys are sensitive to glutathione (GSH), the resultant dual-drug encapsulated hydrogel, denoted as Cyt/NH2-MSN/HA/MTX/CS/oxCMC, can be used for dual-responsive (pH and GSH) drug delivery. The results of cell viability demonstrate that the developed dual-drug encapsulated hydrogel has significantly higher efficacy of chemotherapy than that of single-drug (MTX or Cyt) encapsulated hydrogel.
Collapse
Affiliation(s)
- Dan Shao
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiang Gao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 518000, China.
| | - Yanshan Sheng
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shangji Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
18
|
Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: A systematic review. ACTA ACUST UNITED AC 2021; 29:439-447. [PMID: 34499323 DOI: 10.1007/s40199-021-00416-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023]
Abstract
Chemotherapy is the most common treatment strategy for cancer patients. Nevertheless, limited drug delivery to cancer cells, intolerable toxicity, and multiple drug resistance are constant challenges of chemotherapy. Novel targeted drug delivery strategies by using nanoparticles have attracted much attention due to reducing side effects and increasing drug efficacy. Therefore, the most important outcome of this study is to answer the question of whether active targeted HA-based drug nanocarriers have a significant effect on improving drug delivery to cancer cells.This study aimed to systematically review studies on the use of hyaluronic acid (HA)-based nanocarriers for chemotherapy drugs. The two databases MagIran and SID from Persian databases as well as international databases PubMed, WoS, Scopus, Science Direct, Embase, as well as Google Scholar were searched for human studies and cell lines and/or xenograft mice published without time limit until 2020. Keywords used to search included Nanoparticle, chemotherapy, HA, Hyaluronic acid, traditional medicine, natural medicine, chemotherapeutic drugs, natural compound, cancer treatment, and cancer. The quality of the studies was assessed by the STROBE checklist. Finally, studies consistent with inclusion criteria and with medium- to high-quality were included in the systematic review.According to the findings of studies, active targeted HA-based drug nanocarriers showed a significant effect on improving drug delivery to cancer cells. Also, the use of lipid nanoparticles with a suitable coating of HA have been introduced as biocompatible drug carriers with high potential for targeted drug delivery to the target tissue without affecting other tissues and reducing side effects. Enhanced drug delivery, increased therapeutic efficacy, increased cytotoxicity and significant inhibition of tumor growth, as well as high potential for targeted chemotherapy are also reported to be benefits of using HA-based nanocarriers for tumors with increased expression of CD44 receptor.
Collapse
|
19
|
Han HH, Kang H, Kim SJ, Pal R, Kumar ATN, Choi HS, Hahn SK. Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. RSC Adv 2021; 11:23073-23081. [PMID: 34262698 PMCID: PMC8240508 DOI: 10.1039/d1ra03936a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Despite wide investigation on molecular imaging contrast agents, there are still strong unmet medical needs to enhance their signal-to background ratio, brightness, photostability, and biocompatibility with multimodal imaging capability. Here, we assessed the feasibility of fluorescent nanodiamonds (FNDs) as carbon based photostable and biocompatible materials for molecular imaging applications. Because FNDs have negatively charged nitrogen vacancy (NV) centers, they can emit bright red light. FNDs were conjugated to hyaluronate (HA) for target-specific molecular imaging. HA is a biocompatible, biodegradable, and linear polysaccharide with abundant HA receptors in the liver, enabling liver targeted molecular imaging. In vitro cell viability tests revealed the biocompatibility of HA-FND conjugates and the competitive cellular uptake test confirmed their target-specific intracellular delivery to HepG2 cells with HA receptors. In addition, in vivo fluorescence lifetime (FLT) assessment revealed the imaging capability of FNDs and HA-FND conjugates. After that, we could confirm the statistically significant liver-targeted delivery of HA-FND conjugates by in vivo imaging system (IVIS) analysis and ex vivo biodistribution tests in various organs. The renal clearance test and histological analysis corroborated the in vivo biocompatibility and safety of HA-FND conjugates. All these results demonstrated the feasibility of HA-FND conjugates for further molecular imaging applications.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Rahul Pal
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| |
Collapse
|
20
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Abstract
Hyaluronic acid (HA), an important component of the extracellular matrix, has high water solubility and biocompatibility, and good application prospects in biomedicine. Especially in tumour treatment, prodrug polymer micelles prepared from HA and chemotherapeutics can increase water solubility, prolong drug release time, improve organ distribution and therapeutic effects, and show good tumour targeting and biocompatibility. Therefore, this study introduces strategies for using HA to prepare prodrug polymer micelles and discusses recent research on HA prodrug micelles for antitumor applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
22
|
Harrer D, Sanchez Armengol E, Friedl JD, Jalil A, Jelkmann M, Leichner C, Laffleur F. Is hyaluronic acid the perfect excipient for the pharmaceutical need? Int J Pharm 2021; 601:120589. [PMID: 33845151 DOI: 10.1016/j.ijpharm.2021.120589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023]
Abstract
Hyaluronic acid has become an interesting and important polymer as an excipient for pharmaceutical products due to its beneficial properties, like solubility, biocompatibility and biodegradation. To improve the properties of hyaluronic acid, different possibilities for chemical modifications are presented, and the opportunities as novel systems for drug delivery are discussed. This review gives an overview over the production of hyaluronic acid, the possibilities of its chemical modification and the current state of in vitro and in vivo research. Furthermore, market approved and commercially available products are reviewed and derivatives undergoing clinical trials and applying for market approval are shown. In particular, hyaluronic acid has been studied for different administrations in rheumatology, ophthalmology, local anesthetics, cancer treatment and bioengineering of tissues. The present work concludes with perspectives for future administration of pharmaceuticals based on hyaluronic acid.
Collapse
Affiliation(s)
- Daniela Harrer
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Julian D Friedl
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Max Jelkmann
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Marine Exopolysaccharide Complexed With Scandium Aimed as Theranostic Agents. Molecules 2021; 26:molecules26041143. [PMID: 33672781 PMCID: PMC7924592 DOI: 10.3390/molecules26041143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties. They may represent a new class of ligands to be combined with theranostic radionuclides, such as 47Sc/44Sc. The goal of this work was to investigate the feasibility of such coupling. (2) Methods: EPSs, as well as heparin used as a drug reference, were characterized in terms of molar mass and dispersity using Asymmetrical Flow Field-Flow Fractionation coupled to Multi-Angle Light Scattering (AF4-MALS). The intrinsic viscosity of EPSs at different ionic strengths were measured in order to establish the conformation. To determine the stability constants of Sc with EPS and heparin, a Free-ion selective radiotracer extraction (FISRE) method has been used. (3) Results: AF4-MALS showed that radical depolymerization produces monodisperse EPSs, suitable for therapeutic use. EPS conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration. The LogK of Sc-EPS complexes have been determined and showing that they are comparable to the Sc-Hep. (4) Conclusions: EPSs are very promising to be coupled with the theranostic pair of scandium for Nuclear Medicine.
Collapse
|
24
|
Khot S, Rawal SU, Patel MM. Dissolvable-soluble or biodegradable polymers. DRUG DELIVERY DEVICES AND THERAPEUTIC SYSTEMS 2021:367-394. [DOI: 10.1016/b978-0-12-819838-4.00024-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Guzzo T, Barile F, Marras C, Bellini D, Mandaliti W, Nepravishta R, Paci M, Topai A. Stability Evaluation and Degradation Studies of DAC ® Hyaluronic-Polylactide Based Hydrogel by DOSY NMR Spectroscopy. Biomolecules 2020; 10:E1478. [PMID: 33114342 PMCID: PMC7690892 DOI: 10.3390/biom10111478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
The stability and the degradation of polymers in physiological conditions are very important issues in biomedical applications. The copolymer of hyaluronic acid and poly-D,L-lactic acid (made available in a product called DAC®) produces a hydrogel which retains the hydrophobic character of the poly-D,L-lactide sidechains and the hydrophilic character of a hyaluronic acid backbone. This hydrogel is a suitable device for the coating of orthopedic implants with structured surfaces. In fact, this gel creates a temporary barrier to bacterial adhesion by inhibiting colonization, thus preventing the formation of the biofilm and the onset of an infection. Reabsorbed in about 72 h after the implant, this hydrogel does not hinder bone growth processes. In the need to assess stability and degradation of both the hyaluronan backbone and of the polylactic chains along time and temperature, we identified NMR spectroscopy as a privileged technique for the characterization of the released species, and we applied diffusion-ordered NMR spectroscopy (DOSY-NMR) for the investigation of molecular weight dispersion. Our diffusion studies of DAC® in physiological conditions provided a full understanding of the product degradation by overcoming the limitations observed in applying classical chromatography approaches by gel permeation UV.
Collapse
Affiliation(s)
- Tatiana Guzzo
- Colosseum Combinatorial Chemistry Centre for Technology S.r.l (C4T), Via della Ricerca Scientifica snc, 00133 Rome, Italy; (T.G.); (F.B.); (C.M.)
| | - Fabio Barile
- Colosseum Combinatorial Chemistry Centre for Technology S.r.l (C4T), Via della Ricerca Scientifica snc, 00133 Rome, Italy; (T.G.); (F.B.); (C.M.)
| | - Cecilia Marras
- Colosseum Combinatorial Chemistry Centre for Technology S.r.l (C4T), Via della Ricerca Scientifica snc, 00133 Rome, Italy; (T.G.); (F.B.); (C.M.)
| | | | - Walter Mandaliti
- Department of Chemical Science and Technology, University of Rome, Tor Vergata, 00133 Rome, Italy; (W.M.); (R.N.); (M.P.)
| | - Ridvan Nepravishta
- Department of Chemical Science and Technology, University of Rome, Tor Vergata, 00133 Rome, Italy; (W.M.); (R.N.); (M.P.)
| | - Maurizio Paci
- Department of Chemical Science and Technology, University of Rome, Tor Vergata, 00133 Rome, Italy; (W.M.); (R.N.); (M.P.)
| | - Alessandra Topai
- Colosseum Combinatorial Chemistry Centre for Technology S.r.l (C4T), Via della Ricerca Scientifica snc, 00133 Rome, Italy; (T.G.); (F.B.); (C.M.)
| |
Collapse
|
26
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
27
|
Jahanbani A, Shao Z, Sheikholeslami SM. Calculating degree based multiplicative topological indices of Hyaluronic Acid-Paclitaxel conjugates’ molecular structure in cancer treatment. J Biomol Struct Dyn 2020; 39:5304-5313. [DOI: 10.1080/07391102.2020.1800512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Akbar Jahanbani
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zehui Shao
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | | |
Collapse
|
28
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
29
|
Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep 2020; 10:10987. [PMID: 32620860 PMCID: PMC7335198 DOI: 10.1038/s41598-020-67748-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The biggest challenge in colorectal cancer therapy is to avoid intestinal drug absorption before reaching the colon, while focusing on tumor specific delivery with high local concentration and minimal toxicity. In our work, thymoquinone (TQ)-loaded polymeric nanocapsules were prepared using the nanoprecipitation technique using Eudragit S100 as polymeric shell. Conjugation of anisamide as a targeting ligand for sigma receptors overexpressed by colon cancer cells to Eudragit S100 was carried out via carbodiimide coupling reaction, and was confirmed by thin layer chromatography and 1H-NMR. TQ nanocapsules were characterized for particle size, surface morphology, zeta potential, entrapment efficiency % (EE%), in vitro drug release and physical stability. A cytotoxicity study on three colon cancer cell lines (HT-29, HCT-116, Caco-2) was performed. Results revealed that the polymeric nanocapsules were successfully prepared, and the in vitro characterization showed a suitable size, zeta potential, EE% and physical stability. TQ exhibited a delayed release pattern from the nanocapsules in vitro. Anisamide-targeted TQ nanocapsules showed higher cytotoxicity against HT-29 cells overexpressing sigma receptors compared to their non-targeted counterparts and free TQ after incubation for 48 h, hence delineating anisamide as a promising ligand for active colon cancer targeting.
Collapse
|
30
|
Tao B, Yin ZN. Synthesis of HA-SS-MP: A Prodrug With High Specificity for Cancer Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20932761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thiolated hyaluronic acid was synthesized, and a quantification method was established to determine the content of the thiol group. Three thiol compounds, 2-nitro-5-mercapto-benzoic acid (TNB), 2- mercaptonicotinic acid (2-MNA), and mercaptopyridine (MPD), were tested for their efficiency in forming adducts with hyaluronic acid (HA) through disulfide bonds. Our results showed that MPD exhibited the highest disulfide exchange efficiency when the reaction was conducted at the optimal pH value. The synthesized hyaluronic acid-SS-mercaptopurine (HA-SS-MP) was characterized by1H-nuclear magnetic resonance spectroscopy. The HA-SS-MP micelle showed a particle size of 264.4 nm in aqueous solution. An in vitro release experiment demonstrated that the releasing rate of 6-MP from HA-SS-MP in the release medium containing glutathione (GSH) was much higher than that in the release medium without GSH. Cell uptake experiments demonstrated the CD44 targeting of hyaluronic acid. Cytotoxicity tests in mouse melanoma cells (B16F10) showed that HA-SS-MP can kill melanoma cells effectively and with lower cytotoxicity, compared with the active ingredient, 6-MP.
Collapse
Affiliation(s)
- Bo Tao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, China, Chengdu
| | - Zong-ning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, China, Chengdu
| |
Collapse
|
31
|
Yang Y, Li Y, Chen K, Zhang L, Qiao S, Tan G, Chen F, Pan W. Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy. Int J Nanomedicine 2020; 15:2885-2902. [PMID: 32425522 PMCID: PMC7188338 DOI: 10.2147/ijn.s249205] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Poor site-specific delivery and insufficient intracellular drug release in tumors are inherent disadvantages to successful chemotherapy. In this study, an extraordinary polymeric micelle nanoplatform was designed for the efficient delivery of paclitaxel (PTX) by combining dual receptor-mediated active targeting and stimuli response to intracellular reduction potential. Methods The dual-targeted redox-sensitive polymer, folic acid-hyaluronic acid-SS-vitamin E succinate (FHSV), was synthesized via an amidation reaction and characterized by 1H-NMR. Then, PTX-loaded FHSV micelles (PTX/FHSV) were prepared by a dialysis method. The physiochemical properties of the micelles were explored. Moreover, in vitro cytological experiments and in vivo animal studies were carried out to evaluate the antitumor efficacy of polymeric micelles. Results The PTX/FHSV micelles exhibited a uniform, near-spherical morphology (148.8 ± 1.4 nm) and a high drug loading capacity (11.28% ± 0.25). Triggered by the high concentration of glutathione, PTX/FHSV micelles could quickly release their loaded drug into the release medium. The in vitro cytological evaluations showed that, compared with Taxol or single receptor-targeted micelles, FHSV micelles yielded higher cellular uptake by the dual receptor-mediated endocytosis pathway, thus leading to significantly superior cytotoxicity and apoptosis in tumor cells but less cytotoxicity in normal cells. More importantly, in the in vivo antitumor experiments, PTX/FHSV micelles exhibited enhanced tumor accumulation and produced remarkable tumor growth inhibition with minimal systemic toxicity. Conclusion Our results suggest that this well-designed FHSV polymer has promising potential for use as a vehicle of chemotherapeutic drugs for precise cancer therapy.
Collapse
Affiliation(s)
- Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yunjian Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Kai Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Sen Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guoxin Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Zhejiang 312500, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
32
|
Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:E940. [PMID: 32290285 PMCID: PMC7226393 DOI: 10.3390/cancers12040940] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.
Collapse
Affiliation(s)
- So Yun Lee
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Woo Yeup Jeong
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
33
|
Tabernero A, Cardea S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110940. [PMID: 32409086 DOI: 10.1016/j.msec.2020.110940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Microbial exopolysaccharides are polymers that show a great potential for biomedical applications, such as tissue engineering applications and drug delivery, due to their biocompatibility, biodegradability and their gelling properties. These polysaccharides are obtained from a microorganism culture with a relatively straightforward downstream process thanks to their extracellular character, and can be processed to obtain aerogels, fibers and micro- or nano-particles with conventional techniques. However, these techniques present several disadvantages in that they involve time-consuming processes and the use of toxic solvents. Supercritical carbon dioxide techniques can overcome these drawbacks, but their use for processing microbial exopolysaccharides is not extended in the scientific community. This review describes the most frequently used exopolysaccharides in biomedical applications and how they can be obtained, as well as the different supercritical carbon dioxide techniques that can be used for processing them and their challenges. Specifically, high pressure shows a great potential to process and sterilize exopolysaccharide biomaterials for biomedical applications (e.g. tissue engineering or drug delivery systems) in spite of the disadvantage concerning the hydrophilicity of this type of polymers.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, SA, Spain
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
34
|
Hassan A, Saeed A, Afzal S, Shahid M, Amin I, Idrees M. Applications and hazards associated with carbon nanotubes in biomedical sciences. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1724151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Hassan
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afraz Saeed
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
35
|
d'Amora M, Camisasca A, Boarino A, Arpicco S, Giordani S. Supramolecular functionalization of carbon nano-onions with hyaluronic acid-phospholipid conjugates for selective targeting of cancer cells. Colloids Surf B Biointerfaces 2020; 188:110779. [PMID: 31955017 DOI: 10.1016/j.colsurfb.2020.110779] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 01/04/2020] [Indexed: 01/05/2023]
Abstract
Carbon nano-onions (CNOs) are promising materials for biomedical applications due to their low cytotoxicity and excellent biocompatibility. Supramolecular functionalization with biocompatible polymers is an effective strategy to develop engineered drug carriers for targeted delivery applications. In this study, we report the use of a hyaluronic acid-phospholipid (HA-DMPE) conjugate to target CD44 overexpressing cancer cells, while enhancing solubility of the nanoconstruct. Non-covalently functionalized CNOs with HA-DMPE show excellent in vitro cell viability in human breast carcinoma cells overexpressing CD44 and are uptaken to a greater extent compared to human ovarian carcinoma cells with an undetectable amount of CD44. In addition, they possess high in vivo biocompatibility in zebrafish (Danio Rerio) during the different stages of development and they prevalently localize in the digestive tract of the zebrafish larvae.
Collapse
Affiliation(s)
- Marta d'Amora
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy
| | - Adalberto Camisasca
- School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland
| | - Alice Boarino
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy; Department of Chemistry, University of Turin, via Giuria 7, 10125, Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, via Giuria 9, 10125, Torino, Italy
| | - Silvia Giordani
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy; School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland; Department of Chemistry, University of Turin, via Giuria 7, 10125, Torino, Italy.
| |
Collapse
|
36
|
Yan Y, Dong Y, Yue S, Qiu X, Sun H, Zhong Z. Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46548-46557. [PMID: 31763810 DOI: 10.1021/acsami.9b17223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.
Collapse
Affiliation(s)
- Yu Yan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
37
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
38
|
Pearce AK, O'Reilly RK. Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine. Bioconjug Chem 2019; 30:2300-2311. [PMID: 31441642 DOI: 10.1021/acs.bioconjchem.9b00456] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomedicine is a promising strategy for improving clinical outcomes for cancer therapies, by improving drug efficacy through enhanced delivery to disease sites. It is of importance for ultimate clinical success to consider the contributing factors to achieving this goal, such as size, chemistry, and functionality of nanoparticle delivery systems, and how these parameters influence tumor localization and uptake. This Topical Review will first discuss the evolution and progress of nanoparticles for cancer drug delivery and the current challenges that remain to be addressed. Strategies for overcoming the limitations of passive targeting through active targeting approaches, and the current state of such nanomedicines in the clinic will be highlighted. Finally, novel approaches toward the design of active targeted nanoparticles building on our growing understanding of nanobio interactions are considered, in order to shed light on future design considerations for accelerating clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Amanda K Pearce
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| | - Rachel K O'Reilly
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| |
Collapse
|
39
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
40
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
41
|
Zhao T, Qin S, Peng L, Li P, Feng T, Wan J, Yuan P, Zhang L. Novel hyaluronic acid-modified temperature-sensitive nanoparticles for synergistic chemo-photothermal therapy. Carbohydr Polym 2019; 214:221-233. [DOI: 10.1016/j.carbpol.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
|
42
|
Cho HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00448-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Aldawsari HM, Dhaliwal HK, Aljaeid BM, Alhakamy NA, Banjar ZM, Amiji MM. Optimization of the Conditions for Plasmid DNA Delivery and Transfection with Self-Assembled Hyaluronic Acid-Based Nanoparticles. Mol Pharm 2018; 16:128-140. [PMID: 30525660 DOI: 10.1021/acs.molpharmaceut.8b00904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymeric systems have been extensively studied as polyelectrolyte complexes to enhance the cellular delivery and transfection efficiency of genetic materials, such as plasmid DNA (pDNA). Here, self-assembled nanoparticles were formulated by complexation of hyaluronic acid (HA)-conjugated poly(ethylene glycol) (HA-PEG) and poly(ethylenimine) (HA-PEI), respectively, with pDNA creating relatively small, stable, and multifunctional nanoparticle complex formulations with high transfection efficiency. This formulation strategy offers high gene expression efficiency and negligible cytotoxicity in HeLa and A549 human lung cancer cell lines. To develop the ideal formulation, in vitro transfection efficiency was studied for three different nanoparticle formulations (HA-PEI/HA-PEG, HA-PEI, and HA-PEG) with different concentrations. The combination of the three polymers (HA, PEG, and PEI) was significant for the formulation to achieve the maximum gene expression results. The nanoparticles were found to be stable for up to a week at 4 °C conditions. Overall, these HA-based nanoparticles showed promising aspects that can be utilized in the designing of gene delivery vectors for cancer therapy.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , KSA
| | - Harkiranpreet Kaur Dhaliwal
- Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Bader Mubarak Aljaeid
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , KSA
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , KSA
| | - Zainy Mohammad Banjar
- Department of Department of Clinical and Biochemistry, Faculty of Medicine , King Abdulaziz University , Jeddah 21589 , KSA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
44
|
Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, Genta I. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040267. [PMID: 30544868 PMCID: PMC6321127 DOI: 10.3390/pharmaceutics10040267] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
The microfluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking in vivo conditions. This review covers the general aspects of the microfluidic technique and its application in several fields, such as the synthesis, recovering, and samples analysis of nanoparticles, and in vitro characterization and their in vivo application. Among these, advantages in the production of polymeric nanoparticles in a well-controlled, reproducible, and high-throughput manner have been highlighted, and detailed descriptions of microfluidic devices broadly used for the synthesis of polysaccharide nanoparticles have been provided. These nanoparticulate systems have drawn attention as drug delivery vehicles over many years; nevertheless, their synthesis using the microfluidic technique is still largely unexplored. This review deals with the use of the microfluidic technique for the synthesis of polysaccharide nanoparticles; evaluating features of the most studied polysaccharide drug carriers, such as chitosan, hyaluronic acid, and alginate polymers. The critical assessment of the most recent research published in literature allows us to assume that microfluidics will play an important role in the discovery and clinical translation of nanoplatforms.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Gloria Bergamini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
45
|
Ueda J, Yoshida H, Mamada Y, Taniai N, Yoshioka M, Hirakata A, Kawano Y, Shimizu T, Kanda T, Takata H, Uchida E. Evaluation of the Impact of Preoperative Values of Hyaluronic Acid and Type IV Collagen on the Outcome of Patients with Hepatocellular Carcinoma After Hepatectomy. J NIPPON MED SCH 2018; 85:221-227. [PMID: 30259891 DOI: 10.1272/jnms.jnms.2018_85-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recently, some reports have revealed a relationship between post-hepatectomy prognosis in hepatocellular carcinoma (HCC) and hepatic fibrosis markers. We evaluated the relationship between these markers of hepatic fibrosis, clinicopathological findings, and prognosis. METHODS Three hundred and sixty patients underwent hepatectomy for HCC in the Nippon Medical School Hospital between 1993 and 2013. We divided these patients into two groups: normal serum hyaluronic acid (HA) levels and abnormal levels. We also divided patients into groups with normal serum type IV collagen levels and abnormal levels. RESULTS The overall survival rate and recurrence-free survival rate of the normal group were significantly higher than those of the abnormal group. In the normal hyaluronic acid group, serum albumin and prothrombin time were significantly higher than in the abnormal group, and age, hepatitis C virus antibody (HCV)-Ab positivity, Child-Pugh grade B, liver cirrhosis, indocyanine green retention rate at 15 min (ICGR15), type IV collagen level, and type IV collagen 7s level were significantly lower than those in the abnormal group. In the normal type IV collagen group, HCV-Ab positivity, liver cirrhosis, ICGR15, HA level, and type IV collagen 7s level were significantly lower than those in the abnormal group, and the serum albumin level was significantly higher than that in the abnormal group. Multivariate analysis independently revealed the significant effect of serum type IV collagen on the overall survival rate as well as the significant effect of serum HA on the recurrence-free survival rate in patients who underwent hepatectomy for HCC. CONCLUSIONS Preoperative examinations of serum hyaluronic acid levels and type IV collagen levels are imperative for hepatic resection for HCC because these markers are significantly associated with liver function and prognosis.
Collapse
Affiliation(s)
- Junji Ueda
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School.,Department of Surgery, Nippon Medical School Tama Nagayama Hospital
| | - Hiroshi Yoshida
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Yasuhiro Mamada
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Nobuhiko Taniai
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Masato Yoshioka
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Atsushi Hirakata
- Department of Surgery, Nippon Medical School Tama Nagayama Hospital
| | - Youichi Kawano
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Tetsuya Shimizu
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Tomohiro Kanda
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Hideyuki Takata
- Department of Surgery, Nippon Medical School Tama Nagayama Hospital
| | - Eiji Uchida
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| |
Collapse
|
46
|
Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers (Basel) 2018; 10:polym10101133. [PMID: 30961058 PMCID: PMC6403826 DOI: 10.3390/polym10101133] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a nonsulfated glycosaminoglycan and a major component of the extracellular matrix. HA is overexpressed by numerous tumor cells, especially tumor-initiating cells. HA-based nanomaterials play in importance role in drug delivery systems. HA is used in various types of nanomaterials including micelle, polymersome, hydrogel, and inorganic nanoparticle formulations. Many experiments show that HA-based nanomaterials can serve as a platform for targeted chemotherapy, gene therapy, immunotherapy, and combination therapy with good potential for future biomedical applications in cancer treatment.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Myeong Ju Moon
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Dong Yi Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| |
Collapse
|
47
|
Novel targets for delaying aging: The importance of the liver and advances in drug delivery. Adv Drug Deliv Rev 2018; 135:39-49. [PMID: 30248361 DOI: 10.1016/j.addr.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Age-related changes in liver function have a significant impact on systemic aging and susceptibility to age-related diseases. Nutrient sensing pathways have emerged as important targets for the development of drugs that delay aging and the onset age-related diseases. This supports a central role for the hepatic regulation of metabolism in the association between nutrition and aging. Recently, a role for liver sinusoidal endothelial cells (LSECs) in the relationship between aging and metabolism has also been proposed. Age-related loss of fenestrations within LSECs impairs the transfer of substrates (such as lipoproteins and insulin) between sinusoidal blood and hepatocytes, resulting in post-prandial hyperlipidemia and insulin resistance. Targeted drug delivery methods such as nanoparticles and quantum dots will facilitate the direct delivery of drugs that regulate fenestrations in LSECs, providing an innovative approach to ameliorating age-related diseases and increasing healthspan.
Collapse
|
48
|
Chiesa E, Dorati R, Conti B, Modena T, Cova E, Meloni F, Genta I. Hyaluronic Acid-Decorated Chitosan Nanoparticles for CD44-Targeted Delivery of Everolimus. Int J Mol Sci 2018; 19:ijms19082310. [PMID: 30087241 PMCID: PMC6121415 DOI: 10.3390/ijms19082310] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/18/2023] Open
Abstract
Bronchiolitis obliterans syndrome (BOS), caused by lung allograft-derived mesenchymal cells' abnormal proliferation and extracellular matrix deposition, is the main cause of lung allograft rejection. In this study, a mild one-step ionotropic gelation method was set up to nanoencapsulate the everolimus, a key molecule in allograft organ rejection prevention, into hyaluronic acid-decorated chitosan-based nanoparticles. Rationale was the selective delivery of everolimus into lung allograft-derived mesenchymal cells; these cells are characterized by the CD44-overexpressing feature, and hyaluronic acid has proven to be a natural selective CD44-targeting moiety. The optimal process conditions were established by a design of experiment approach (full factorial design) aiming at the control of the nanoparticle size (≤200 nm), minimizing the size polydispersity (PDI 0.171 ± 0.04), and at the negative ζ potential maximization (-30.9 mV). The everolimus was successfully loaded into hyaluronic acid-decorated chitosan-based nanoparticles (95.94 ± 13.68 μg/100 mg nanoparticles) and in vitro released in 24 h. The hyaluronic acid decoration on the nanoparticles provided targetability to CD44-overexpressing mesenchymal cells isolated from bronchoalveolar lavage of BOS-affected patients. The mesenchymal cells' growth tests along with the nanoparticles uptake studies, at 37 °C and 4 °C, respectively, demonstrated a clear improvement of everolimus inhibitory activity when it is encapsulated in hyaluronic acid-decorated chitosan-based nanoparticles, ascribable to their active uptake mechanism.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Emanuela Cova
- Clinica di Malattie del Apparato Respiratorio, IRCCS Fondazione S. Matteo, via Golgi 19, 27100 Pavia, Italy.
| | - Federica Meloni
- Clinica di Malattie del Apparato Respiratorio, IRCCS Fondazione S. Matteo, via Golgi 19, 27100 Pavia, Italy.
- Department of Molecular Medicine, Pneumology Unit, University of Pavia, Viale Golgi, 19, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
49
|
Yang Y, Zhao Y, Lan J, Kang Y, Zhang T, Ding Y, Zhang X, Lu L. Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery. Int J Nanomedicine 2018; 13:4361-4378. [PMID: 30100720 PMCID: PMC6065576 DOI: 10.2147/ijn.s165359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction A reduction-sensitive CD44-positive tumor-targetable drug delivery system for doxorubicin (DOX) delivery was developed based on hyaluronic acid (HA)-grafted polymers. Materials and methods HA was conjugated with folic acid (FA) via a reduction-sensitive disulfide linkage to form an amphiphilic polymer (HA-ss-FA). The chemical structure of HA-ss-FA was analyzed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of HA-ss-FA was determined by high-performance gel permeation chromatography. Blank HA-ss-FA micelles and DOX-loaded micelles were prepared and characterized. The reduction responsibility, cellular uptake, and in vivo biodistribution of HA-ss-FA micelles were investigated. Results DOX-loaded micelles were of high encapsulation efficiency (88.09%), high drug-loading content (22.70%), appropriate mean diameter (100-120 nm), narrow size distribution, and negative zeta potential (-6.7 to -31.5 mV). The DOX release from the micelles was significantly enhanced in reduction environment compared to normal environment. The result of in vitro cytotoxicity assay indicated that the blank micelles were of low toxicity and good biocompatibility and the cell viabilities were >100% with the concentration of HA-ss-FA from 18.75 to 600.00 μg/mL. Cellular uptake and in vivo biodistribution studies showed that DOX-loaded micelles were tumor-targetable and could significantly enhance cellular uptake by CD44 receptor-mediated endocytosis, and the cellular uptake of DOX in CD44-positve A549 cells was 1.6-fold more than that in CD44-negative L02 cells. In vivo biodistribution of HA-ss-FA micelles showed that micelles were of good in vivo tumor targetability and the fluorescence of indocyanine green (ICG)-loaded micelles was 4- to 6.6-fold stronger than free ICG within 6 h in HCCLM3 tumor-bearing nude mice. Conclusion HA-ss-FA is a promising nanocarrier with excellent biocompatibility, tumor targetability, and controlled drug release capability for delivery of chemotherapy drugs in cancer therapy.
Collapse
Affiliation(s)
- Yishun Yang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yuan Zhao
- Experiment Centre for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yanan Kang
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Yue Ding
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Xinyu Zhang
- Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ;
| | - Lu Lu
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Martínez-Ballesta MC, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New "Smart-Foods" for Health. Foods 2018; 7:E72. [PMID: 29735897 PMCID: PMC5977092 DOI: 10.3390/foods7050072] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Nanotechnology is a field of research that has been stressed as a very valuable approach for the prevention and treatment of different human health disorders. This has been stressed as a delivery system for the therapeutic fight against an array of pathophysiological situations. Actually, industry has applied this technology in the search for new oral delivery alternatives obtained upon the modification of the solubility properties of bioactive compounds. Significant works have been made in the last years for testing the input that nanomaterials and nanoparticles provide for an array of pathophysiological situations. In this frame, this review addresses general questions concerning the extent to which nanoparticles offer alternatives that improve therapeutic value, while avoid toxicity, by releasing bioactive compounds specifically to target tissues affected by specific chemical and pathophysiological settings. In this regard, to date, the contribution of nanoparticles to protect encapsulated bioactive compounds from degradation as a result of gastrointestinal digestion and cellular metabolism, to enable their release in a controlled manner, enhancing biodistribution of bioactive compounds, and to allow them to target those tissues affected by biological disturbances has been demonstrated.
Collapse
Affiliation(s)
- MCarment Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Cristina García-Viguera
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|