1
|
Freitas AN, Remonatto D, Miotti Junior RH, do Nascimento JFC, da Silva Moura AC, de Carvalho Santos Ebinuma V, de Paula AV. Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach. Bioprocess Biosyst Eng 2024; 47:1735-1749. [PMID: 39102121 DOI: 10.1007/s00449-024-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Collapse
Affiliation(s)
- Amanda Noli Freitas
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Rodney Helder Miotti Junior
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - João Francisco Cabral do Nascimento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Adriana Candido da Silva Moura
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Valéria de Carvalho Santos Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
2
|
Lima PJM, Rios NS, Vilarrasa-García E, Cecilia JA, Rodríguez-Castellón E, Gonçalves LRB. Preparation of a heterogeneous biocatalyst through Thermomyces lanuginosus lipase immobilization on pore-expanded SBA-15. Int J Biol Macromol 2024; 274:133359. [PMID: 38914393 DOI: 10.1016/j.ijbiomac.2024.133359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Enrique Vilarrasa-García
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Juan Antonio Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | |
Collapse
|
3
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
4
|
Neto FS, Fernandes de Melo Neta MM, Sales MB, Silva de Oliveira FA, de Castro Bizerra V, Sanders Lopes AA, de Sousa Rios MA, Santos JCSD. Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis. Polymers (Basel) 2023; 15:polym15092057. [PMID: 37177203 PMCID: PMC10181460 DOI: 10.3390/polym15092057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lignocellulosic biomasses are used in several applications, such as energy production, materials, and biofuels. These applications result in increased consumption and waste generation of these materials. However, alternative uses are being developed to solve the problem of waste generated in the industry. Thus, research is carried out to ensure the use of these biomasses as enzymatic support. These surveys can be accompanied using the advanced bibliometric analysis tool that can help determine the biomasses used and other perspectives on the subject. With this, the present work aims to carry out an advanced bibliometric analysis approaching the main studies related to the use of lignocellulosic biomass as an enzymatic support. This study will be carried out by highlighting the main countries/regions that carry out productions, research areas that involve the theme, and future trends in these areas. It was observed that there is a cooperation between China, USA, and India, where China holds 28.07% of publications in this area, being the country with the greatest impact in the area. Finally, it is possible to define that the use of these new supports is a trend in the field of biotechnology.
Collapse
Affiliation(s)
- Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60440-554, Brazil
| | | | - Misael Bessa Sales
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Francisco Arisson Silva de Oliveira
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Ada Amélia Sanders Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| | - Maria Alexsandra de Sousa Rios
- Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Campus do Pici, Bloco 714, Fortaleza 60440-554, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60440-554, Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, Brazil
| |
Collapse
|
5
|
Cieh NL, Mokhtar MN, Baharuddin AS, Mohammed MAP, Wakisaka M. Progress on Lipase Immobilization Technology in Edible Oil and Fat Modifications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Ng Lin Cieh
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azhari Samsu Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Afandi P. Mohammed
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
6
|
Stability Enhancement of Aldehyde Dehydrogenase from Anoxybacillus geothermalis Strain D9 Immobilized onto Seplite LX120. Catalysts 2023. [DOI: 10.3390/catal13020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Enzyme stability is regarded as an important criterion for an industrial biocatalyst. Aldehyde dehydrogenase (ALDH) from A. geothermalis strain D9 was previously reported to exhibit good thermostability. However, this enzyme is still not suited to use in harsh environments. In this current work, we aim to see the viability of ALDH in terms of stability when immobilized into Seplite LX120. The purified ALDH was successfully immobilized via physical adsorption at 4 h with 1.25 mg/mL enzyme loading. The immobilized ALDH exhibited improved stability compared to free ALDH as the optimum temperature increased up to 80 °C and was stable with temperatures ranging from 30 to 90 °C. It was also stable in broad pH, ranging from pH 4 to pH 12. Moreover, more than 50% of the immobilized ALDH activity was retained after being stored at 25 °C and 4 °C for 9 and 11 weeks, respectively. The reusability of immobilized ALDH is up to seven cycles. The corroboration of ALDH immobilized on the Seplite LX120 was verified via Fourier-transform infrared spectroscopy, scanning electron microscopy, and a reduction in the surface area. The improved features of immobilized ALDH, especially in enzyme stability, are important for future applications.
Collapse
|
7
|
Costa IO, Rios NS, Lima PJM, Gonçalves LRB. Synthesis of organic-inorganic hybrid nanoflowers of lipases from Candida antarctica type B (CALB) and Thermomyces lanuginosus (TLL): Improvement of thermal stability and reusability. Enzyme Microb Technol 2023; 163:110167. [DOI: 10.1016/j.enzmictec.2022.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
|
8
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Wu S, Wu Y, Sun B, Zhang P, Tang K. Experimental and optimization for kinetic resolution of 1-(4-(trifluoromethyl)phenyl)ethanol enantiomers by lipase-catalyzed transesterification in organic phase. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Lima PJM, da Silva RM, Neto CACG, Gomes E Silva NC, Souza JEDS, Nunes YL, Sousa Dos Santos JC. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 2022; 69:2794-2818. [PMID: 33481298 DOI: 10.1002/bab.2098] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Rhonyele Maciel da Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Natan Câmara Gomes E Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| | - Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| |
Collapse
|
11
|
A Theoretical and Experimental Study for Enzymatic Biodiesel Production from Babassu Oil (Orbignya sp.) Using Eversa Lipase. Catalysts 2022. [DOI: 10.3390/catal12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A theoretical and experimental study was carried out on the biocatalytic production of babassu biodiesel through enzymatic hydroesterification. The complete hydrolysis of babassu oil was carried out using a 1:1 mass solution at 40 °C for 4 h using 0.4% of lipase from Thermomyces lanuginosus (TLL). Then, with the use of Eversa® Transform 2.0 lipase in the esterification step, a statistical design was used, varying the temperature (25–55 °C), the molar ratio between free fatty acids (FFAs) and methanol (1:1 to 1:9), the percentage of biocatalyst (0.1% to 0.9%), and the reaction time (1–5 h) using the Taguchi method. The ideal reaction levels obtained after the statistical treatment were 5 h of reaction at 40 °C at a molar ratio of 1:5 (FFAs/methanol) using 0.9% of the biocatalyst. These optimal conditions were validated by chromatographic analysis; following the EN 14103 standard, the sample showed an ester concentration of 95.76%. A theoretical study was carried out to evaluate the stability of Eversa with FFAs. It was observed in the molecular docking results that the ligands interacted directly with the catalytic site. Through molecular dynamics studies, it was verified that there were no significant conformational changes in the studied complexes. Theoretical and experimental results show the feasibility of this process.
Collapse
|
12
|
The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144529. [PMID: 35889401 PMCID: PMC9320690 DOI: 10.3390/molecules27144529] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal–organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to ‘house’ a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.
Collapse
|
13
|
Screening and Isolation of Potential Anti-Inflammatory Compounds from Saxifraga atrata via Affinity Ultrafiltration-HPLC and Multi-Target Molecular Docking Analyses. Nutrients 2022; 14:nu14122405. [PMID: 35745138 PMCID: PMC9230087 DOI: 10.3390/nu14122405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, a 100 g sample of Saxifraga atrata was processed to separate 1.3 g of 11-O-(4′-O-methylgalloyl)-bergenin (Fr1) after 1 cycle of MCI GEL® CHP20P medium pressure liquid chromatography using methanol/water. Subsequently, COX-2 affinity ultrafiltration coupled with reversed-phase liquid chromatography was successfully used to screen for potential COX-2 ligands in this target fraction (Fr1). After 20 reversed-phase liquid chromatography runs, 74.1 mg of >99% pure 11-O-(4′-O-methylgalloyl)-bergenin (Fr11) was obtained. In addition, the anti-inflammatory activity of 11-O-(4′-O-methylgalloyl)-bergenin was further validated through molecular docking analyses which suggested it was capable of binding strongly to ALOX15, iNOS, ERBB2, SELE, and NF-κB. As such, the AA metabolism, MAPK, and NF-κB signaling pathways were hypothesized to be the main pathways through which 11-O-(4′-O-methylgalloyl)-bergenin regulates inflammatory responses, potentially functioning by reducing pro-inflammatory cytokine production, blocking pro-inflammatory factor binding to cognate receptors and inhibiting the expression of key proteins. In summary, affinity ultrafiltration-HPLC coupling technology can rapidly screen for multi-target bioactive components and when combined with molecular docking analyses, this approach can further elucidate the pharmacological mechanisms of action for these compounds, providing valuable information to guide the further development of new multi-target drugs derived from natural products.
Collapse
|
14
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Abstract
The market for industrial enzymes has witnessed constant growth, which is currently around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts, with wide application in a broad range of industries. However, these biocatalytic processes are usually limited by the low stability of the enzyme, the half-life time, and the processes required to solve these problems are complex and lack application feasibility at the industrial scale. Emerging technologies create new materials for enzyme carriers and sophisticate the well-known immobilization principles to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the trending studies and industrial applications of the materials and protocols for lipase immobilization, analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and potential alternatives for lipases at the industrial level.
Collapse
|
17
|
Cipolatti EP, Rios NS, Sousa JS, Robert JDM, da Silva AAT, Pinto MC, Simas ABC, Vilarrasa-García E, Fernandez-Lafuente R, Gonçalves LRB, Freire DMG, Manoel EA. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Rosa CMR, Silva MVC, Aguiar LG, Castro HF, Freitas L. Prediction and comparison of textural properties of magnetic copolymer supports for enzyme immobilization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cintia Maria Rodrigues Rosa
- Department of Chemical Engineering School of Engineering of Lorena, University of São Paulo Lorena São Paulo Brazil
| | | | - Leandro Gonçalves Aguiar
- Department of Chemical Engineering School of Engineering of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Heizir Ferreira Castro
- Department of Chemical Engineering School of Engineering of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Larissa Freitas
- Department of Chemical Engineering School of Engineering of Lorena, University of São Paulo Lorena São Paulo Brazil
| |
Collapse
|
19
|
A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme Microb Technol 2020; 138:109560. [DOI: 10.1016/j.enzmictec.2020.109560] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
|
20
|
Borges JP, Quilles Junior JC, Moreno-Perez S, Fernandez-Lorente G, Boscolo M, Gomes E, da Silva R, Bocchini DA, Guisan JM. Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess Biosyst Eng 2020; 43:2107-2115. [PMID: 32594315 DOI: 10.1007/s00449-020-02399-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Lipase stability in organic solvent is crucial for its application in many biotechnological processes as biocatalyst. One way to improve lipase's activity and stability in unusual reaction medium is its immobilization on inert supports. Here, lipases from different sources and immobilized through weak chemical interactions on hydrophobic and ionic supports had their transesterification ability dramatically dependent on the support and also on the solvent that had been used. The ethanolysis of sardine oil was carried out at the presence of cyclohexane and tert-amyl alcohol, in which Duolite A568-Thermomyces lanuginosa lipase derivative achieved 49% of ethyl esters production after 24 h in cyclohexane. The selectivity of immobilized lipases was also studied and, after 3 h of synthesis, the reaction with Duolite A568-Thermomyces lanuginosa derivative in cyclohexane produced 24% ethyl ester of eicosapentaenoic acid and 1.2% ethyl ester of docosahexaenoic acid, displaying a selectivity index of 20 times the ethyl ester of eicosapentaenoic acid. Different derivatives of Candida antarctica lipases fraction B (CALB) and phospholipase Lecitase® Ultra (Lecitase) were also investigated. Along these lines, a combination between these factors may be applied to improve the activity and selectivity of immobilized lipases, decreasing the total cost of the process.
Collapse
Affiliation(s)
- Janaina Pires Borges
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Rua Prof. Francisco Degni, 55 - CEP, Araraquara - SP, 14800-060, Brazil
| | - José Carlos Quilles Junior
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil.
| | - Sônia Moreno-Perez
- Department of Biotechnology and Food Microbiology, Research Institute for Food Science, CIAL, CSIC/Campus UAM, 28049, Madrid, Spain
| | - Glória Fernandez-Lorente
- Department of Biology, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Mauricio Boscolo
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Eleni Gomes
- Department of Biology, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Daniela Alonso Bocchini
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Rua Prof. Francisco Degni, 55 - CEP, Araraquara - SP, 14800-060, Brazil
| | | |
Collapse
|
21
|
Leśniarek A, Chojnacka A, Drozd R, Szymańska M, Gładkowski W. Free and Immobilized Lecitase™ Ultra as the Biocatalyst in the Kinetic Resolution of ( E)-4-Arylbut-3-en-2-yl Esters. Molecules 2020; 25:molecules25051067. [PMID: 32120991 PMCID: PMC7179117 DOI: 10.3390/molecules25051067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
The influence of buffer type, co-solvent type, and acyl chain length was investigated for the enantioselective hydrolysis of racemic 4-arylbut-3-en-2-yl esters using Lecitase™ Ultra (LU). Immobilized preparations of the Lecitase™ Ultra enzyme had significantly higher activity and enantioselectivity than the free enzyme, particularly for 4-phenylbut-3-en-2-yl butyrate as the substrate. Moreover, the kinetic resolution with the immobilized enzyme was achieved in a much shorter time (24–48 h). Lecitase™ Ultra, immobilized on cyanogen bromide-activated agarose, was particularly effective, producing, after 24 h of reaction time in phosphate buffer (pH 7.2) with acetone as co-solvent, both (R)-alcohols and unreacted (S)-esters with good to excellent enantiomeric excesses (ee 90–99%). These conditions and enzyme were also suitable for the kinetic separation of racemic (E)-4-phenylbut-3-en-2-yl butyrate analogs containing methyl substituents on the benzene ring (4b,4c), but they did not show any enantioselectivity toward (E)-4-(4’-methoxyphenyl)but-3-en-2-yl butyrate (4d).
Collapse
Affiliation(s)
- Aleksandra Leśniarek
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
- Correspondence: (A.L.); (W.G.); Tel.: +48-713205154 (W.G.)
| | - Anna Chojnacka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (R.D.); (M.S.)
| | - Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (R.D.); (M.S.)
| | - Witold Gładkowski
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
- Correspondence: (A.L.); (W.G.); Tel.: +48-713205154 (W.G.)
| |
Collapse
|
22
|
Monteiro RRC, Neto DMA, Fechine PBA, Lopes AAS, Gonçalves LRB, dos Santos JCS, de Souza MCM, Fernandez-Lafuente R. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts' Performance under Ultrasonic Irradiation. Int J Mol Sci 2019; 20:ijms20225807. [PMID: 31752306 PMCID: PMC6888514 DOI: 10.3390/ijms20225807] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The synthesis of ethyl butyrate catalyzed by lipases A (CALA) or B (CALB) from Candida antarctica immobilized onto magnetic nanoparticles (MNP), CALA-MNP and CALB-MNP, respectively, is hereby reported. MNPs were prepared by co-precipitation, functionalized with 3-aminopropyltriethoxysilane, activated with glutaraldehyde, and then used as support to immobilize either CALA or CALB (immobilization yield: 100 ± 1.2% and 57.6 ± 3.8%; biocatalysts activities: 198.3 ± 2.7 Up-NPB/g and 52.9 ± 1.7 Up-NPB/g for CALA-MNP and CALB-MNP, respectively). X-ray diffraction and Raman spectroscopy analysis indicated the production of a magnetic nanomaterial with a diameter of 13.0 nm, whereas Fourier-transform infrared spectroscopy indicated functionalization, activation and enzyme immobilization. To determine the optimum conditions for the synthesis, a four-variable Central Composite Design (CCD) (biocatalyst content, molar ratio, temperature and time) was performed. Under optimized conditions (1:1, 45 °C and 6 h), it was possible to achieve 99.2 ± 0.3% of conversion for CALA-MNP (10 mg) and 97.5 ± 0.8% for CALB-MNP (12.5 mg), which retained approximately 80% of their activity after 10 consecutive cycles of esterification. Under ultrasonic irradiation, similar conversions were achieved but at 4 h of incubation, demonstrating the efficiency of ultrasound technology in the enzymatic synthesis of esters.
Collapse
Affiliation(s)
- Rodolpho R. C. Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (R.R.C.M.); (L.R.B.G.)
| | - Davino M. Andrade Neto
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (D.M.A.N.); (P.B.A.F.)
| | - Pierre B. A. Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (D.M.A.N.); (P.B.A.F.)
| | - Ada A. S. Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
| | - Luciana R. B. Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (R.R.C.M.); (L.R.B.G.)
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| | - Maria C. M. de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| |
Collapse
|
23
|
Yildirim D, Alagöz D, Toprak A, Tükel S, Fernandez-Lafuente R. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
|
25
|
Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Int J Biol Macromol 2019; 134:936-945. [DOI: 10.1016/j.ijbiomac.2019.05.106] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022]
|
26
|
Zhang Y, Zhao Y, Gao X, Jiang W, Li Z, Yao Q, Yang F, Wang F, Liu J. Kinetic model of the enzymatic Michael addition for synthesis of mitomycin analogs catalyzed by immobilized lipase from T. laibacchii. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
28
|
Kassick AJ, Chen L, Kovaliov M, Mathers RT, Locklin J, Averick S. SuFEx-based strategies for the preparation of functional particles and cation exchange resins. Chem Commun (Camb) 2019; 55:3891-3894. [DOI: 10.1039/c9cc00036d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A predictable and reproducible number of sulfuric acid sites have been achieved for cation exchange resins by employing a mild SuFEx-based reagent system to effect the hydrolysis of fluorosulfonated polymer beads.
Collapse
Affiliation(s)
- Andrew J. Kassick
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Li Chen
- Department of Chemistry and College of Engineering
- University of Georgia
- Athens
- USA
| | - Marina Kovaliov
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Robert T. Mathers
- Department of Chemistry
- The Pennsylvania State University
- New Kensington
- USA
| | - Jason Locklin
- Department of Chemistry and College of Engineering
- University of Georgia
- Athens
- USA
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pittsburgh
- USA
| |
Collapse
|
29
|
Silva MVC, Aguiar LG, de Castro HF, Freitas L. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases. World J Microbiol Biotechnol 2018; 34:169. [DOI: 10.1007/s11274-018-2553-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/02/2018] [Indexed: 01/25/2023]
|
30
|
Cebrián-García S, Balu AM, García A, Luque R. Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid. Molecules 2018; 23:molecules23092283. [PMID: 30200657 PMCID: PMC6225346 DOI: 10.3390/molecules23092283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Alkyl esters are high added value products useful in a wide range of industrial sectors. A methodology based on a simple sol-gel approach (biosilicification) is herein proposed to encapsulate enzymes in order to design highly active and stable biocatalysts. Their performance was assessed through the optimization of valeric acid esterification evaluating the effect of different parameters (biocatalyst load, presence of water, reaction temperature and stirring rate) in different alcoholic media, and comparing two different methodologies: conventional heating and microwave irradiation. Ethyl valerate yields were in the 80–85% range under optimum conditions (15 min, 12% m/v biocatalyst, molar ratio 1:2 of valeric acid to alcohol). Comparatively, the biocatalysts were slightly deactivated under microwave irradiation due to enzyme denaturalisation. Biocatalyst reuse was attempted to prove that good reusability of these sol-gel immobilised enzymes could be achieved under conventional heating.
Collapse
Affiliation(s)
- Soledad Cebrián-García
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Alina M Balu
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Araceli García
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Rafael Luque
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
- Scientific Centre for Molecular Design and Synthesis of Innovative Compounds for Medicine, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198 Moscow, Russia.
| |
Collapse
|
31
|
Cebrián-García S, Balu AM, Luque R. Ultrasound-Assisted Esterification of Valeric Acid to Alkyl Valerates Promoted by Biosilicified Lipases. Front Chem 2018; 6:197. [PMID: 29930937 PMCID: PMC5999784 DOI: 10.3389/fchem.2018.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
A novel, environmentally friendly, and sustainable ultrasound-assisted methodology in the valorization of valeric acid to alkyl valerate using a biosilicified lipase from Candida antarctica is reported. This one-pot room temperature methodology of enzyme biosilicification leads to biosilicified lipases with improved activity and reaction efficiency as compared to free enzymes. Yields in the ultrasound-promoted esterification of valeric acid was ca. 90% in 2 h with 15% m/v of biosilicified lipase (Bio-lipase; 616 U/g biocatalyst enzymatic activity) and a molar ratio 1:2 (valeric acid:ethanol), slightly superior to that observed by the free enzyme (75% conversion, 583U/g biocatalyst enzymatic activity). The reuse of enzymes in these conditions was tested and the results show a relatively good reusability of these biosilicified enzymes under the investigated conditions, particularly preserving fairly stable specific activities (616 vs. 430 U/g biocatalyst after four reuses).
Collapse
Affiliation(s)
| | - Alina M Balu
- Departamento de Quimica Organica, Universidad de Cordoba, Cordoba, Spain
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Cordoba, Spain.,Scientific Center for Molecular Design and Synthesis of Innovative Compounds for the Medical Industry, Peoples Friendship University of Russia (RUDN), Moscow, Russia
| |
Collapse
|
32
|
Ferreira MM, Santiago FL, Silva NA, Luiz JH, Fernandéz-Lafuente R, Mendes AA, Hirata DB. Different strategies to immobilize lipase from Geotrichum candidum : Kinetic and thermodynamic studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Joseph G, Wang L. Production of Biofuels from Biomass by Fungi. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Lipase immobilization on functionalized mesoporous TiO 2 : Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Rios NS, Pinheiro MP, Lima MLB, Freire DMG, da Silva IJ, Rodríguez-Castellón E, de Sant’Ana HB, Macedo AC, Gonçalves LRB. Pore-expanded SBA-15 for the immobilization of a recombinant Candida antarctica lipase B: Application in esterification and hydrolysis as model reactions. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Bezerra RM, Neto DMA, Galvão WS, Rios NS, Carvalho ACLDM, Correa MA, Bohn F, Fernandez-Lafuente R, Fechine PB, de Mattos MC, dos Santos JC, Gonçalves LR. Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Fernandez-Lafuente R. Special Issue: Enzyme Immobilization 2016. Molecules 2017; 22:E601. [PMID: 28397749 PMCID: PMC6153742 DOI: 10.3390/molecules22040601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
38
|
Effect of protein load on stability of immobilized enzymes. Enzyme Microb Technol 2017; 98:18-25. [DOI: 10.1016/j.enzmictec.2016.12.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
|
39
|
Ortiz-Negrón A, Lasanta-Cotto N, Suleiman D. Imidazolium ionic liquid incorporation on sulfonated poly(styrene-isobutylene-styrene) proton exchange membranes. J Appl Polym Sci 2017. [DOI: 10.1002/app.44900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ariangelís Ortiz-Negrón
- Department of Chemical Engineering; University of Puerto Rico; Mayagüez Campus Mayagüez 00681-9000 Puerto Rico
| | - Noelia Lasanta-Cotto
- Department of Chemical Engineering; University of Puerto Rico; Mayagüez Campus Mayagüez 00681-9000 Puerto Rico
| | - David Suleiman
- Department of Chemical Engineering; University of Puerto Rico; Mayagüez Campus Mayagüez 00681-9000 Puerto Rico
| |
Collapse
|
40
|
Vescovi V, Giordano RLC, Mendes AA, Tardioli PW. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of Fructose Oleate in an Organic Solvent/Water System. Molecules 2017; 22:molecules22020212. [PMID: 28146090 PMCID: PMC6155854 DOI: 10.3390/molecules22020212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
Lipases from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) wereimmobilized on functionalized silica particles aiming their use in the synthesis of fructose oleate in a tert-butyl alcohol/water system. Silica particles were chemically modified with octyl (OS), octyl plus glutaraldehyde (OSGlu), octyl plus glyoxyl(OSGlx), and octyl plus epoxy groups(OSEpx). PFL was hyperactivated on all functionalized supports (more than 100% recovered activity) using low protein loading (1 mg/g), however, for TLL, this phenomenon was observed only using octyl-silica (OS). All prepared biocatalysts exhibited high stability by incubating in tert-butyl alcohol (half-lives around 50 h at 65 °C). The biocatalysts prepared using OS and OSGlu as supports showed excellent performance in the synthesis of fructose oleate. High estersynthesis was observed when a small amount of water (1%, v/v) was added to the organic phase, allowing an ester productivity until five times (0.88-0.96 g/L.h) higher than in the absence of water (0.18-0.34 g/L.h) under fixed enzyme concentration (0.51 IU/g of solvent). Maximum ester productivity (16.1-18.1 g/L.h) was achieved for 30 min of reaction catalyzed by immobilized lipases on OS and OSGlu at 8.4 IU/mL of solvent. Operational stability tests showed satisfactory stability after four consecutive cycles of reaction.
Collapse
Affiliation(s)
- Vinicius Vescovi
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Raquel L C Giordano
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| | - Paulo W Tardioli
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
41
|
Rios NS, Pinheiro MP, dos Santos JCS, de S. Fonseca T, Lima LD, de Mattos MC, Freire DM, da Silva IJ, Rodríguez-Aguado E, Gonçalves LR. Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of ( R , S )-Phenylethyl acetate. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives. Molecules 2016; 21:molecules21081074. [PMID: 27548117 PMCID: PMC6274110 DOI: 10.3390/molecules21081074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.
Collapse
|
43
|
Albuquerque TL, Rueda N, dos Santos JC, Barbosa O, Ortiz C, Binay B, Özdemir E, Gonçalves LR, Fernandez-Lafuente R. Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Matte CR, Bordinhão C, Poppe JK, Rodrigues RC, Hertz PF, Ayub MA. Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Tacias-Pascacio VG, Peirce S, Torrestiana-Sanchez B, Yates M, Rosales-Quintero A, Virgen-Ortíz JJ, Fernandez-Lafuente R. Evaluation of different commercial hydrophobic supports for the immobilization of lipases: tuning their stability, activity and specificity. RSC Adv 2016. [DOI: 10.1039/c6ra21730c] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immobilization of different lipases on diffferent hydrophobic supportsviainterfacial activation has permitted to tunning enzyme performance.
Collapse
Affiliation(s)
- Veymar G. Tacias-Pascacio
- Instituto de Catálisis-ICP-CSIC
- 28049 Madrid
- Spain
- Unidad de Investigación y Desarrollo en Alimentos
- Instituto Tecnológico de Veracruz
| | - Sara Peirce
- Instituto de Catálisis-ICP-CSIC
- 28049 Madrid
- Spain
- Dipartimento di Ingegneria Chimica
- dei Materiali e della Produzione Industriale
| | | | - Malcon Yates
- Instituto de Catálisis-ICP-CSIC
- 28049 Madrid
- Spain
| | | | | | | |
Collapse
|
46
|
Manoel EA, Robert JM, Pinto MCC, Machado ACO, Besteti MD, Coelho MAZ, Simas ABC, Fernandez-Lafuente R, Pinto JC, Freire DMG. Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Adv 2016. [DOI: 10.1039/c5ra22508f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper shows the production of lipase B fromCandida antarctica(LIPB) after cloning the gene that encoded it inPichia pastorisusing PGK as a constitutive promoter. The lipase was immobilized on different home-made supports for distinct reactions.
Collapse
Affiliation(s)
- Evelin A. Manoel
- Laboratório Integrado de Pesquisas em Biotecnologia
- Departamento de Biotecnologia Farmacêutica
- Faculdade de Farmácia
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Julia M. Robert
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Martina C. C. Pinto
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Antonio C. O. Machado
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Marina D. Besteti
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Maria Alice Z. Coelho
- Biological System Engineering Group Laboratory
- Departamento de Engenharia Bioquímica
- Escola de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Alessandro B. C. Simas
- Laboratório Roderick Barnes
- Instituto de Pesquisas e Produtos Naturais
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | - Jose Carlos Pinto
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Denise M. G. Freire
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| |
Collapse
|
47
|
Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv 2016. [DOI: 10.1039/c6ra22047a] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advantages, drawbacks and trends in nanomaterials for enzyme immobilization.
Collapse
Affiliation(s)
- Eliane P. Cipolatti
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
- Biochemistry Department
| | - Alexsandra Valério
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Rosana O. Henriques
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise E. Moritz
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Jorge L. Ninow
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise M. G. Freire
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | - Evelin A. Manoel
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | | | - Débora de Oliveira
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| |
Collapse
|
48
|
Alves JS, Garcia-Galan C, Danelli D, Paludo N, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Use of Lecitase-Ultra immobilized on styrene-divinylbenzene beads as catalyst of esterification reactions: Effects of ultrasounds. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 481] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|
50
|
|