1
|
Park CH, Oh YL, Shin JH, Park YJ. The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells. Molecules 2024; 29:3976. [PMID: 39203053 PMCID: PMC11357533 DOI: 10.3390/molecules29163976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Ganoderma lucidum, a member of the Basidiomycetes family, is attracting attention for its medicinal potential due to its biological activity and the presence of numerous bioactive compounds. Although it is known that extracts of this mushroom inhibit melanin production, there are few reports on a single substance associated with this effect. In this study, we identified ganodermanontriol (GT), a novel compound from G. lucidum, that effectively inhibited melanin biosynthesis in B16F10 cells. GT inhibits melanin production by suppressing the expression of cellular tyrosinase proteins and microphthalmia-related transcription factor (MITF). Furthermore, GT affects the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling molecules, which are involved in melanogenesis in B16F10 cells. Finally, the biosynthesis of GT and other substances by G. lucidum was evaluated using HPLC analysis. Thus, this study revealed the mechanism by which GT in G. lucidum inhibits melanin production in B16F10 cells, and these findings will contribute to promoting the potential use of this mushroom in the future.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Youn-Lee Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, 92, Bisan-ro, Eumseong-gun 27709, Republic of Korea
| | - Ju-Hyeon Shin
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Republic of Korea; (C.-H.P.); (J.-H.S.)
| |
Collapse
|
2
|
Shirkhan F, Safaei F, Mirdamadi S, Zandi M. The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10319-y. [PMID: 38965196 DOI: 10.1007/s12602-024-10319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The skin, being the largest organ in the human body, plays a pivotal role in safeguarding the body against invasive pathogens. Therefore, it is essential to reinforce and protect this vital organ. Current research supports the impact of probiotics on skin health and their ability to alleviate various skin disorders. However, the effectiveness and probable side effects of probiotics in skin care remain a subject of debate, necessitating further investigation and analysis. Hence, this study aims to highlight existing gaps and future needs in the current research on probiotics in skin care and pave the way for future investigations. Therefore, we scrutinized the effects of oral (fermented foods and dietary supplements) and non-oral/topical probiotics on skin care, and the mechanism of probiotics that affect skin health. The results of most studies showed that fermented foods containing probiotics, particularly dairy products, positively impact skin health. The research results regarding the efficacy of probiotic supplements and live strains in treating skin disorders show promising potential. However, safety evaluations are crucial, to identify any potential adverse effects. While research has identified numerous potential mechanisms by which probiotics may influence skin health, a complete understanding of their precise mode of action remains elusive. However, it seems that probiotics can exert their positive effects through the gut-skin and gut-skin-brain axis on the human body. Therefore, following the identification of safe probiotics, additional studies should be carried out to establish optimal dosages, potential side effects, suitable regulatory guidelines, and validation methods.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881, Iran
| | - Fatemeh Safaei
- Iranian Research Organization for Science and Technology, Microbial Biotechnology Student in Iranian Research Organization for Science and Technology, Microbial biotechnology, Tehran, 3353511, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685, Iran.
| | - Mohammad Zandi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, 3353511, Iran.
| |
Collapse
|
3
|
Choi SH, Kim H, Hwang-Bo J, Kim KM, Kwon JE, Lee SR, Hwang SH, Kang SC, Lee YG. Anti-Melanogenic Effects of Cnidium monnieri Extract via p38 Signaling-Mediated Proteasomal Degradation of Tyrosinase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1305. [PMID: 38794376 PMCID: PMC11125256 DOI: 10.3390/plants13101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cnidium monnieri fructus is widely used in traditional Oriental medicine for treating female genital disorders, male impotence, frigidity, and skin-related conditions in East Asia. However, the role of C. monnieri fructus extract (CMFE) in melanin synthesis is not well elucidated. This study aimed to investigate the anti-melanogenesis effect and mechanism of action of CMFE in α-MSH-stimulated B16F10 cells. Intracellular melanin content and tyrosinase activity were measured in α-MSH-stimulated B16F10 cells treated with various concentrations of CMFE (0.5-5 μg/mL). mRNA and protein levels of tyrosinase and MITF were evaluated using qRT-PCR and ting. CMFE's effect on the proteasomal degradation of tyrosinase was confirmed using a proteasomal degradation inhibitor, MG132. CMFE treatment activated p38, a protein associated with proteasomal degradation. Treatment with CMFE at up to 5 μg/mL showed no significant cytotoxicity. CMFE significantly reduced α-MSH-stimulated melanin production (43.29 ± 3.55% decrease, p < 0.05) and cellular tyrosinase activity (31.14 ± 3.15% decrease, p < 0.05). Although mRNA levels of MITF and tyrosinase increased, CMFE suppressed tyrosinase protein levels. The suppressive effect of CMFE on tyrosinase protein was blocked by MG132. CMFE inhibited melanogenesis by promoting the proteasome degradation of tyrosinase through p38 activation. These findings suggest that CMFE has the potential to be a natural whitening agent for inhibiting melanogenesis.
Collapse
Affiliation(s)
- Soon Ho Choi
- Research Institute, APRG Inc., Yongin 16950, Republic of Korea;
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jeon Hwang-Bo
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Kyoung Mi Kim
- Research Center, CureBio Therapeutics Co., Ltd., Suwon 16229, Republic of Korea;
| | - Jeong Eun Kwon
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea;
| | - Sun Ha Hwang
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Yeong-Geun Lee
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| |
Collapse
|
4
|
Wang T, Liu F, Chen C, Lu Y. Fluorometric "AND" logic gate for detection of tyramine and tyrosinase based on in-situ formation of silicon-containing nanoparticles. Anal Chim Acta 2024; 1298:342415. [PMID: 38462342 DOI: 10.1016/j.aca.2024.342415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Tyramine is an important index of food freshness degree, and tyrosinase that can specifically oxidized monophenolamine to catecholamine plays a crucial part in the occurrence and development of melanin-related skin diseases. Therefore, it is crucial to develop sensitive and efficient methods for the detection of tyramine and tyrosinase. RESULTS In this work, encouraged by tyrosinase-triggered specific oxidation of tyramine to dopamine and the unique fluorescent reaction between dopamine and amino silane, we have developed a one-step synthetic strategy of silicon containing nanoparticles (Si CNPs) for "turn-on" detection of tyramine and tyrosinase. The Si CNPs formed with thoroughly studied mechanism exhibit uniform structure and robust yellow-green fluorescence. The low detection limits for tyramine (1.87 μM) and tyrosinase (0.0029 U/mL) demonstrate admirable sensitivity outstripping most methods. The proposed assay achieves satisfactory results in the determination of tyramine and tyrosinase activity in real samples. Furthermore, we leverage this new fluorescent assay to enable the fabrication of an "AND" Boolean logic gate. SIGNIFICANCE The entire process can be completed at easily available temperature and pressure with rapid response, convenient operation and visual observation. This fluorescent assay featured with excellent sensitivity, selectivity and stability has considerable prospects in the application of biosensors and disease diagnosis.
Collapse
Affiliation(s)
- Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
5
|
Park S, Han N, Lee J, Lee JN, An S, Bae S. Anti-Melanogenic Effects of Lilium lancifolium Root Extract via Downregulation of PKA/CREB and MAPK/CREB Signaling Pathways in B16F10 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3666. [PMID: 37960022 PMCID: PMC10648933 DOI: 10.3390/plants12213666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Hyperpigmentation disorders causing emotional distress require the topical use of depigmenting agents of natural origin. In this study, the anti-melanogenic effects of the Lilium lancifolium root extract (LRE) were investigated in B16F10 cells. Consequently, a non-cytotoxic concentration of the extract reduced intracellular melanin content and tyrosinase activity in a dose-dependent manner, correlating with the diminished expression of core melanogenic enzymes within cells. LRE treatment also inhibited cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)/microphthalmia-associated transcription factor signaling, which regulates the expression of tyrosinase-related genes. Upon examining these findings from a molecular mechanism perspective, LRE treatment suppressed the phosphorylation of protein kinase A (PKA), p38, and extracellular signal-related kinase (ERK), which are upstream regulators of CREB. In addition, L-phenylalanine and regaloside A, specifically identified within the LRE using liquid chromatography-mass spectrometry, exhibited inhibitory effects on melanin production. Collectively, these results imply that LRE potentially suppresses cAMP-mediated melanogenesis by downregulating PKA/CREB and mitogen-activated protein kinase (MAPK)/CREB signaling pathways. Therefore, it can be employed as a novel therapeutic ingredient of natural origin to ameliorate hyperpigmentation disorders.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (N.H.)
| | - Nayeon Han
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (N.H.)
- Dermato Bio, Inc., #505, Techno Cube, 13-18 Songdogwahak-ro 16beon-gil, Yeongsu-gu, Incheon 21984, Republic of Korea;
| | - Jungmin Lee
- Dermato Bio, Inc., #505, Techno Cube, 13-18 Songdogwahak-ro 16beon-gil, Yeongsu-gu, Incheon 21984, Republic of Korea;
| | - Jae-Nam Lee
- Department of Cosmetology, Graduate School of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Sungkwan An
- Eco Up Bio, Inc., 373 Chang-ui-ri, Seorak-myeon, Gapyeong-gun 477852, Republic of Korea;
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (N.H.)
| |
Collapse
|
6
|
Zaib S, Javed H, Ogaly HA, Khan I. Evaluating the Anti‐Gastric Ulcer Activity of
Aegle marmelos
: A Brief Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hanan A. Ogaly
- Chemistry Department, College of Science King Khalid University Abha 61421 Saudi Arabia
- Biochemistry and Molecular Biology Department Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester, 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
7
|
Sangkaew O, Prombutara P, Roytrakul S, Yompakdee C. Metatranscriptomics Reveals Sequential Expression of Genes Involved in the Production of Melanogenesis Inhibitors by the Defined Microbial Species in Fermented Unpolished Black Rice. Microbiol Spectr 2023; 11:e0313922. [PMID: 36861996 PMCID: PMC10100879 DOI: 10.1128/spectrum.03139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Fermented products require metabolic enzymes from the microbial community for desired final products. Using a metatranscriptomic approach, the role of microorganisms in fermented products on producing compounds with a melanogenesis inhibition activity has not yet been reported. Previously, unpolished black rice (UBR) fermented with the E11 starter containing Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Rhizopus oryzae, and Pediococcus pentosaceus (FUBR) showed potent melanogenesis inhibition activity. This study aimed to investigate the function of these defined microbial species in producing melanogenesis inhibitors in the FUBR using a metatranscriptomic approach. The melanogenesis inhibition activity increased in a fermentation time-dependent manner. Genes related to melanogenesis inhibitors synthesis such as carbohydrate metabolism, amino acids synthesis, fatty acids/unsaturated fatty acids synthesis, and carbohydrate transporters were analyzed. Most genes from R. oryzae and P. pentosaceus were upregulated in the early stage of the fermentation process, while those of S. cerevisiae and S. fibuligera were upregulated in the late stage. FUBR production using different combinations of the four microbial species shows that all species were required to produce the highest activity. The FUBR containing at least R. oryzae and/or P. pentosaceus exhibited a certain level of activity. These findings were in agreement with the metatranscriptomic results. Overall, the results suggested that all four species sequentially and/or coordinately synthesized metabolites during the fermentation that led to a FUBR with maximum melanogenesis inhibition activity. This study not only sheds light on crucial functions of certain microbial community on producing the melanogenesis inhibitors, but also paves the way to initiate quality improvement of melanogenesis inhibition activity in the FUBR. IMPORTANCE Fermentation of food is a metabolic process through the action of enzymes from certain microorganisms. Although roles of the microbial community in the fermented food were investigated using metatranscriptomic approach in terms of flavors, but no study has been reported so far on the function of the microorganisms on producing compounds with a melanogenesis inhibition activity. Therefore, this study explained the roles of the defined microorganisms from the selected starter in the fermented unpolished black rice (FUBR) that can produce melanogenesis inhibitor(s) using metatranscriptomic analysis. Genes from different species were upregulated at different fermentation time. All four microbial species in the FUBR sequentially and/or coordinately synthesized metabolites during fermentation that led to a FUBR with maximal melanogenesis inhibition activity. This finding contributes to a deeper understanding of the roles of certain microbial community during fermentation and led to the knowledge-based improvement for the fermented rice with potent melanogenesis inhibition activity.
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Science & Bioinformatics Center, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
8
|
Chemical Composition and Tyrosinase Inhibitory Activities of Fatty Acids Obtained from Heterotrophic Microalgae, S. limacinum and C. cohnii. Appl Biochem Biotechnol 2023; 195:369-385. [PMID: 36083430 DOI: 10.1007/s12010-022-04143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 02/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme for melanin production in plant and mammalian cells. Upregulation of this enzyme results in hyperpigmentation disorders. In order to treat pigmentation problems, novel skin whitening compounds are extremely screened. It is found that fatty acids based on their saturation levels either increase or decrease tyrosinase enzyme activity. Thus, fatty acids and their compositions are promising candidates for the treatment of hyperpigmentation or hypopigmentation disorders. Microalgae are rich in both saturated and unsaturated fatty acids, as well. In this study, C. cohnii and S. limacinum fatty acids were evaluated as tyrosinase inhibitor candidates. Mushroom tyrosinase activity studies displayed that both extracts increase tyrosinase enzyme activity dose-dependently. On the other hand, S. limacinum at 200 µg ml-1 concentration almost decreased half of tyrosinase enzyme activity in B16-F10 cells. Besides, it was 3 times more efficient for tyrosinase enzyme activity inhibition and 2 times more effective to decrease melanin synthesis compared to C. cohnii. Considering low toxicity to B16-F10 melanoma and healthy keratinocyte cells (HaCaT), S. limacinum fatty acids could be a suitable source for lipid-based tyrosinase inhibitory functional cosmetics products.
Collapse
|
9
|
Cephalosporin as Potent Urease and Tyrosinase Inhibitor: Exploration through Enzyme Inhibition, Kinetic Mechanism, and Molecular Docking Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1092761. [PMID: 35937399 PMCID: PMC9352478 DOI: 10.1155/2022/1092761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
In present study, eleven cephalosporin drugs were selected to explore their new medically important enzyme targets with inherited safety advantage. To this end, selected drugs with active ingredient, cefpodoxime proxetil, ceftazidime, cefepime, ceftriaxone sodium, cefaclor, cefotaxime sodium, cefixime trihydrate, cephalexin, cefadroxil, cephradine, and cefuroxime, were evaluated and found to have significant activity against urease (IC50 = 0.06 ± 0.004 to 0.37 ± 0.046 mM) and tyrosinase (IC50 = 0.01 ± 0.0005 to 0.12 ± 0.017 mM) enzymes. Urease activity was lower than standard thiourea; however, tyrosinase activity of all drugs outperforms (ranging 6 to 18 times) the positive control: hydroquinone (IC50 = 0.18 ± 0.02 mM). Moreover, the kinetic analysis of the most active drugs, ceftriaxone sodium and cefotaxime sodium, revealed that they bind irreversibly with both the enzymes; however, their mode of action was competitive for urease and mixed-type, preferentially competitive for tyrosinase enzyme. Like in vitro activity, ceftriaxone sodium and cefotaxime sodium docking analysis showed their considerable binding affinity and significant interactions with both urease and tyrosinase enzymes sufficient for downstream signaling responsible for observed enzyme inhibition in vitro, purposing them as potent candidates to control enzyme-rooted obstructions in future.
Collapse
|
10
|
Lee IS, Kim JH. Antimelanogenic activity of patuletin from Inula japonica flowers in B16F10 melanoma cells and zebrafish embryos. Nat Prod Res 2021; 36:4457-4460. [PMID: 34933629 DOI: 10.1080/14786419.2021.1983812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During the search for natural melanogenesis inhibitors, patuletin, a flavonoid, was isolated from Inula japonica flowers. We investigated the antimelanogenic effects of patuletin on B16F10 melanoma cells and zebrafish embryos. Patuletin dose-dependently reduced melanocyte-stimulating hormone-induced melanogenesis and L-DOPA oxidation in B16F10 cells. Western blot analysis showed that patuletin reduced cellular tyrosinase expression in a dose-dependent manner. Patuletin treatment significantly decreased melanin pigmentation in the embryo compared to the untreated controls.
Collapse
Affiliation(s)
- Ik Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| |
Collapse
|
11
|
Meng Z, Oh S. Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells. J Microbiol Biotechnol 2021; 31:990-998. [PMID: 33958510 PMCID: PMC9705926 DOI: 10.4014/jmb.2104.04008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFStreated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.
Collapse
Affiliation(s)
- Ziyao Meng
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea,Corresponding author Phone: +82-62-530-2116 Fax: +82-62-530- 2129 E-mail:
| |
Collapse
|
12
|
Ding Y, Jiang Y, Im ST, Myung S, Kim HS, Lee SH. Diphlorethohydroxycarmalol inhibits melanogenesis via protein kinase A/cAMP response element-binding protein and extracellular signal-regulated kinase-mediated microphthalmia-associated transcription factor downregulation in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells and zebrafish. Cell Biochem Funct 2021; 39:546-554. [PMID: 33474761 DOI: 10.1002/cbf.3620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022]
Abstract
Diphlorethohydroxycarmalol (DPHC) is a marine polyphenolic compound derived from brown alga Ishige okamurae. A previously study has suggested that DPHC possesses strong mushroom tyrosinase inhibitory activity. However, the anti-melanogenesis effect of DPHC has not been reported at cellular level. The objective of the present study was to clarify the melanogenesis inhibitory effect of DPHC and its molecular mechanisms in murine melanoma cells (B16F10) and zebrafish model. DPHC significantly inhibited tyrosinase activity and melanin content dose-dependently in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. This polyphenolic compound also suppressed the expression of phosphorylation of cAMP response element-binding protein (CREB) by attenuating phosphorylation of cAMP-dependent protein kinase A, resulting in decreased MITF expression levels. Furthermore, DPHC downregulated MITF protein expression levels by promoting the phosphorylation of extracellular signal-regulated kinase. It also inhibited tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2 in α-MSH stimulated B16F10 cells. In in vivo studies using zebrafish, DPHC also markedly inhibited melanin synthesis in a dose-dependent manner. These results demonstrate that DPHC can effectively inhibit melanogenesis in melanoma cells in vitro and in zebrafish in vivo, suggesting that DPHC could be applied in fields of pharmaceutical and cosmeceuticals as a skin-whitening agent. Significance of study: The present study showed for the first time that DPHC could inhibit a-MSH-stimulated melanogenesis via PKA/CREB and ERK pathway in melanoma cells. It also could inhibit pigmentation in vivo in a zebrafish model. This evidence suggests that DPHC has potential as a skin whitening agent. Taken together, DPHC could be considered as a novel anti-melanogenic agent to be applied in cosmetic, food, and medical industry.
Collapse
Affiliation(s)
- Yuling Ding
- Department of Biopharmaceuticals, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Chanchun, China
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Seung Tae Im
- Department of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| | - Seungwon Myung
- Department of Medical Science, Soonchunhyang University, Asan, Republic of Korea
| | - Hyun-Soo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seochun, Republic of Korea
| | - Seung-Hong Lee
- Department of Medical Science, Soonchunhyang University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
13
|
Alhelf M, Rashed LA, Ragab N, Elmasry MF. Association between long noncoding RNA taurine-upregulated gene 1 and microRNA-377 in vitiligo. Int J Dermatol 2021; 61:199-207. [PMID: 34014568 DOI: 10.1111/ijd.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Taurine-upregulated gene 1 (TUG1) is one of the long noncoding RNAs (lncRNAs) that plays a role in melanogenesis. MicroRNA-377 (miRNA-377) is a conserved noncoding RNA that regulates angiogenesis and promotes oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are components of the nuclear hormone receptor superfamily. PPAR-γ activators stimulate melanogenesis. Interleukin (IL)-17 has been implicated in the pathogenesis of several immunological diseases. This work aimed at detecting the expression levels of lncRNA TUG1, miRNA-377, PPAR-γ, and IL-17 among vitiligo subjects and to investigate their possible role in the pathogenesis of vitiligo. METHODS This study was conducted on 30 healthy controls and 30 vitiligo patients. LncRNA TUG1 and miRNA-377 were detected in serum by real-time polymerase chain reaction (PCR). Also, expressions of PPAR-γ and IL-17 were assessed in tissue by real-time PCR. RESULTS LncRNA TUG1 and PPAR-γ levels were significantly downregulated in the vitiligo group compared with the control group. On the other hand, miRNA-377 and IL-17 were significantly upregulated in the vitiligo group compared with the control group. CONCLUSION This study demonstrated the dysregulated expressions of lncRNA TUG1 and miRNA-377 in patients with vitiligo suggesting that both contributed to the pathogenesis of vitiligo that might be through PPAR-γ downregulation and IL-17 upregulation.
Collapse
Affiliation(s)
- Maha Alhelf
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.,Biotechnology School, Nile University, Giza, Egypt
| | - Laila A Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noura Ragab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha F Elmasry
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
The Anti-Melanogenesis Effect of 3,4-Dihydroxybenzalacetone through Downregulation of Melanosome Maturation and Transportation in B16F10 and Human Epidermal Melanocytes. Int J Mol Sci 2021; 22:ijms22062823. [PMID: 33802228 PMCID: PMC7999661 DOI: 10.3390/ijms22062823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The biosynthesis pathway of melanin is a series of oxidative reactions that are catalyzed by melanin-related proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Reagents or materials with antioxidative or free radical-scavenging activities may be candidates for anti-melanogenesis. 3,4-Dihydroxybenzalacetone (DBL) is a polyphenol isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and P. linteus. In this study, we investigated the effects and mechanisms of DBL on antioxidation and melanogenesis in murine melanoma cells (B16F10) and human epidermal melanocytes (HEMs). The results indicated that DBL scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals, and exhibited potent reducing power, indicating that it displays strong antioxidative activity. DBL also inhibited the expression of TYR, TRP-1, TRP-2, and microphthalmia-related transcription factor (MITF) in both the cells. In addition, DBL inhibited hyperpigmentation in B16F10 and HEMs by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3 beta (GSK3β), and mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinase (ERK) signaling pathways. DBL not only shortened dendritic melanocytes but also inhibited premelanosome protein 17 (PMEL17) expression, slowing down the maturation of melanosome transportation. These results indicated that DBL promotes anti-melanogenesis by inhibiting the transportation of melanosomes. Therefore, DBL is a potent antioxidant and depigmenting agent that may be used in whitening cosmetics.
Collapse
|
15
|
Rodboon T, Sirilun S, Okada S, Kariya R, Chontananarth T, Suwannalert P. Modified Riceberry rice extract suppresses melanogenesis-associated cell differentiation through tyrosinase-mediated MITF downregulation on B16 cells and in vivo zebrafish embryos. Res Pharm Sci 2021; 15:491-502. [PMID: 33628291 PMCID: PMC7879784 DOI: 10.4103/1735-5362.297852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022] Open
Abstract
Background and purpose: Excessive melanin production caused by overactive tyrosinase (TYR) enzyme results in several dermatological problems. The TYR inhibitor, derived from metabolite changes during fermentation, has been well recognized for pigmentation control. Experimental approach: This study is interested in alternative anti-melanogenic agents from bio-modified Riceberry rice through fermentation. Modified Riceberry rice extract (MRB) was evaluated for its cytotoxicity, melanin content, melanin excretion, and TYR activity in B16 cells. TYR and their melanogenesis-related molecules such as TYR-related proteins-1 and -2, and microphthalmia-associated transcription factor (MITF) were determined. The anti-melanogenic activity and toxicity were also tested using the embryonic zebrafish model. Furthermore, comprehensive genotoxicity testing was verified by cytokinesis-block micronucleus cytome assay. Findings/Results: The study found that non-cytotoxic concentrations of MRB at 20 and 40 mg/mL inhibited melanogenesis and melanin excretion by interfering B16 cell morphology. Cellular TYR enzymatic activity was also suppressed in the treated cells. The mRNA transcription and protein expression levels of TYR and MITF decreased by dose-dependent and time-dependent manners with MRB treatment. In the animal model, MRB was found to be safe and potent for melanogenesis-related TYR inhibition in embryonic zebrafish at 20 and 30 mg/mL. The toxicity of effective doses of MRB showed no genotoxicity and mutagenicity. Conclusion and implications: This study suggests that MRB has anti-melanogenesis potential through TYR and its-related protein inhibitions. MRB is also safe for applications and maybe a promising anti-melanogenic agent for hyperpigmentation control.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Thapana Chontananarth
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Ghazali AR, Muralitharan RV, Soon CK, Salyam T, Ahmad Maulana NN, Mohamed Thaha UAB, Mohamad Halim R, Suhaifi S, Md Khalid MH, Ahmad AH, Kofli NT. Viability and Antioxidant Effects of Traditional Cooling Rice Powder (bedak sejuk) Made from Oryza sativa ssp. Indica and Oryza sativa ssp. japonica on UVB-Induced B164A5 Melanoma Cells. Asian Pac J Cancer Prev 2020; 21:3381-3386. [PMID: 33247699 PMCID: PMC8033139 DOI: 10.31557/apjcp.2020.21.11.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Traditional cooling rice powder (bedak sejuk) is a fermented rice-based cosmetic that is applied topically on one's skin, as an overnight facial mask. According to user testimonies, bedak sejuk beautifies and whitens skin, whereby these benefits could be utilised as a potential melanoma chemopreventive agent. OBJECTIVE Hence, this study aimed to determine the effects of bedak sejuk made from Oryza sativa ssp. indica (Indica) and Oryza sativa ssp. japonica (Japonica) on UVB-induced B164A5 melanoma cells, and also identify the antioxidant capacities of both types of bedak sejuk. METHODS The optimum dose of Indica and Japonica bedak sejuk to treat the cells was determined via the MTT assay. Then, the antioxidant capacities of both types of bedak sejuk were determined using the FRAP assay. RESULTS From the MTT assay, it was found that Indica and Japonica bedak sejuk showed no cytotoxic effects towards the cells. Hence, no IC50 can be obtained and two of the higher doses, 50 and 100 g/L were chosen for treatment. In the FRAP assay, Indica bedak sejuk at 50 and 100 g/L showed FRAP values of 0.003 ± 0.001 μg AA (ascorbic acid)/g of bedak sejuk and 0.004 ± 0.0003 μg AA/g of bedak sejuk. Whereas Japonica bedak sejuk at 50 g/L had the same FRAP value as Indica bedak sejuk at 100 g/L. As for Japonica bedak sejuk at 100 g/L, it showed the highest antioxidant capacity with the FRAP value of 0.01 ± 0.0007 μg AA/g of bedak sejuk which was statistically significant (p < 0.05) when compared to other tested concentrations. CONCLUSION In conclusion, Japonica bedak sejuk has a higher antioxidant capacity compared to Indica bedak sejuk despite both being not cytotoxic towards the cells. Regardless, further investigations need to be done before bedak sejuk could be developed as potential melanoma chemoprevention agents.
Collapse
Affiliation(s)
- Ahmad Rohi Ghazali
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Raveena Vaidheswary Muralitharan
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chan Kam Soon
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Tharsini Salyam
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Najihah Ahmad Maulana
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ummul Aqeela Balqees Mohamed Thaha
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rasyidah Mohamad Halim
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sajidah Suhaifi
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhamad Haziq Md Khalid
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adibah Hanis Ahmad
- Programme of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noorhisham Tan Kofli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
17
|
Sangkaew O, Yompakdee C. Fermented Unpolished Black Rice ( Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells. J Microbiol Biotechnol 2020; 30:1184-1194. [PMID: 32423183 PMCID: PMC9745659 DOI: 10.4014/jmb.2003.03019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for antimelanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses antimelanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Huang SY, Wang HMD, Ke J, Li J, Chen L, Xu Z, Li K, Chen HB, Huang X, Yang H, Guo Y, Wang GH. Two Cosmetic Properties of an Ethanol Extract of a Cultured and Edible Red Macroalga, Bangia fuscopurpurea: Moisturizing and Whitening Effects. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20944668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have focused on the role of a cultured red macroalga Bangia fuscopurpurea as a functional food; however, except for antioxidant activity, there are no reports directly regarding the potential cosmetic properties of this alga. Our present study explored the moisturizing effect of its ethanol extract (BFH1) and used the tyrosinase activity inhibition assay to evaluate its in vitro whitening effect. The in vitro moisture-retention ability of BFH1 was similar to that of glycerol (positive control), but its moisture-absorption ability was significantly higher. The overall in vivo moisturizing effect of topical application of BFH1 in mice was similar to that of glycerol, but BFH1 did not cause significant changes in the oil content of the skin, and there were no obvious side effects regarding skin appearance and external behavior during treatment. BFH1 exerted in vitro tyrosinase inhibitory activity with a half-maximal inhibitory concentration (IC50) of 48.3 μg/mL (IC50 of positive control, vitamin C: 19.6 μg/mL). The total phenolic content of BFH1 was determined as 10.8 % ± 0.07 %. Thus, BFH1 has high potential to be turned into a cosmetic ingredient with moisturizing and whitening effects.
Collapse
Affiliation(s)
- Shi-Ying Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
| | - Hui-Min David Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jianhua Ke
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lili Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zixuan Xu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Kunjie Li
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hong-Bin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China
| | - Xiaodong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China
| | - Huiyong Yang
- School of Medicine/Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guey-Horng Wang
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Traditional Chinese Medicine Bioengineering, Xiamen Medical College, Xiamen, China
| |
Collapse
|
19
|
Inhibitory Effects of Pinostilbene Hydrate on Melanogenesis in B16F10 Melanoma Cells via ERK and p38 Signaling Pathways. Int J Mol Sci 2020; 21:ijms21134732. [PMID: 32630811 PMCID: PMC7369948 DOI: 10.3390/ijms21134732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Melanin protects our skin from harmful ultraviolet (UV) radiation. However, when produced in excess, it can cause hyperpigmentation disorders, such as melanoma, freckles, lentigo, and blotches. In this study, we investigated the effects of pinostilbene hydrate (PH) on melanogenesis. We also examined the underlying mechanisms of PH on melanin production in B16F10 cells. Our findings indicated that PH significantly inhibits melanin content and cellular tyrosinase activity in cells without causing cytotoxicity. In addition, Western blot analysis showed that PH downregulated the protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and other melanogenic enzymes, such as tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2). Although PH activated the phosphorylation of extracellular signal-regulated kinase (ERK), it inhibited p38 mitogen-activated protein kinases (p38). Furthermore, the inhibition of tyrosinase activity by PH was attenuated by treatment with PD98059 (a specific ERK inhibitor). Additionally, p-AKT was upregulated by PH treatment. Finally, the inhibitory effects of PH on melanin content and tyrosinase activity were confirmed in normal human melanocytes. These results suggest PH downregulates melanogenesis via the inhibition of MITF expression, followed by the MAPKase signaling pathways. Thus, PH may be used to treat or prevent hyperpigmentation disorders and in functional cosmetic agents for skin whitening.
Collapse
|
20
|
Park JU, Yang SY, Guo RH, Li HX, Kim YH, Kim YR. Anti-Melanogenic Effect of Dendropanax morbiferus and Its Active Components via Protein Kinase A/Cyclic Adenosine Monophosphate-Responsive Binding Protein- and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation. Front Pharmacol 2020; 11:507. [PMID: 32390848 PMCID: PMC7191003 DOI: 10.3389/fphar.2020.00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Dendropanax morbiferus H. Lév has been reported to have some pharmacologic activities and also interested in functional cosmetics. We found that the water extract of D. morbiferus leaves significantly inhibited tyrosinase activity and melanin formation in α-melanocyte stimulating hormone (MSH)-induced B16-F10 cells. D. morbiferus reduced melanogenesis-related protein levels, such as microphthalmia-associated transcription factor (MITF), TRP-1, and TRP-2, without any cytotoxicity. Two active ingredients of D. morbiferus, (10E)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (DMW-1) and (10E)-(-)-10,17-octadecadiene-12,14-diyne-1,9,16-triol (DMW-2) were identified by testing the anti-melanogenic effects and then by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. DMW-1 and DMW-2 significantly inhibited melanogenesis by the suppression of protein kinase A (PKA)/cyclic AMP (cAMP)-responsive binding protein (CREB) and p38 MAPK phosphorylation. DMW-1 showed a better inhibitory effect than DMW-2 in α-MSH-induced B16-F10 cells. D. morbiferus and its active component DMW-1 inhibited melanogenesis through the downregulation of cAMP, p-PKA/CREB, p-p38, MITF, TRP-1, TRP-2, and tyrosinase. These results indicate that D. morbiferus and DMW-1 may be useful ingredients for cosmetics and therapeutic agents for skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Hong Xu Li
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
21
|
Carcelli M, Rogolino D, Bartoli J, Pala N, Compari C, Ronda N, Bacciottini F, Incerti M, Fisicaro E. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chem 2020; 303:125310. [DOI: 10.1016/j.foodchem.2019.125310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
|
22
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 525] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Gong CF, Wang YX, Wang ML, Su WC, Wang Q, Chen QX, Shi Y. Evaluation of the Structure and Biological Activities of Condensed Tannins from Acanthus ilicifolius Linn and Their Effect on Fresh-Cut Fuji Apples. Appl Biochem Biotechnol 2019; 189:855-870. [PMID: 31131419 DOI: 10.1007/s12010-019-03038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Condensed tannins (CTS) have been isolated and purified from leaves of Acanthus ilicifolius Linn. And their structures were investigated by three methods: 13C nuclear magnetic resonance (13C NMR), reversed-phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed that the CTS were a mixture of catechin/epicatechin, galatechin/epicatechin, and amphicin/epigalin, and that the polymer chain lengths were 3-mers to 14-mers. Antityrosinase activities and antioxidant activities of the CTS from A. ilicifolius leaves were further studied. The IC50 of the CTS on mushroom tyrosinase activity was determined to be 19.7 ± 0.13 μg/mL, and inhibition type analyses indicated that the CTS were mixed type inhibitors and their inhibition CTS was reversible. The CTS from A. ilicifolius leaves also exhibited potential antioxidant activity. The IC50 of DPPH and ABTS scavenging activities were 104 ± 0.894 μg/mL and 86 ± 0.616 μg/mL, respectively. And the FRAP value was 758.28 ± 2.42 mg AAE/g. In addition, we found that the CTS from A. ilicifolius leaves had an excellent effect on preserving the quality of fresh-cut apples by preventing apples from browning through reducing polyphenol oxidase activities in apples.
Collapse
Affiliation(s)
- Chen-Fang Gong
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Yu-Xia Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Meng-Li Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Wei-Chao Su
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Qin Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Qing-Xi Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China
| | - Yan Shi
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
24
|
Fu C, Chen J, Lu J, Pei S, Hu S, Jiang L, Ding Y, Huang L, Xiang H, Huang J, Zeng Q. Downregulation of
TUG
1 promotes melanogenesis and
UVB
‐induced melanogenesis. Exp Dermatol 2019; 28:730-733. [PMID: 30924963 DOI: 10.1111/exd.13929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/18/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Chuhan Fu
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Shuanghai Hu
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Ling Jiang
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Yufang Ding
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Lihua Huang
- Central Laboratory Third Xiangya Hospital of Central South University Changsha China
| | - Hong Xiang
- Central Laboratory Third Xiangya Hospital of Central South University Changsha China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| |
Collapse
|
25
|
Chen YM, Su WC, Li C, Shi Y, Chen QX, Zheng J, Tang DL, Chen SM, Wang Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int J Biol Macromol 2019; 123:723-731. [DOI: 10.1016/j.ijbiomac.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/20/2023]
|
26
|
Han JH, Bang JS, Choi YJ, Choung SY. Anti-melanogenic effects of oyster hydrolysate in UVB-irradiated C57BL/6J mice and B16F10 melanoma cells via downregulation of cAMP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:137-144. [PMID: 30273735 DOI: 10.1016/j.jep.2018.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pacific oyster (Crassostrea gigas) has been used to treat pigmentary disorders such as freckles, melasma, and moles in Korea. AIM OF THE STUDY We aimed to investigate the inhibitory effects of oyster hydrolysate (OH) on melanogenesis in B16F10 melanoma cells and UVB-irradiated C57BL/6J mice. MATERIAL AND METHODS The molecular weight distribution and peptide sequences of OH were detected using MALDI-TOF and UHPLC. To evaluate the anti-melanogenic effects of OH, cell viability, melanin content, tyrosinase activity, intracellular cyclic adenosine monophosphate (cAMP) and protein expressions levels were measured in B16F10 cells. In addition, OH was orally administered to UVB-irradiated mice for 9 weeks. After sacrificing the mice, the whitening effects of OH were evaluated based on histological observations and protein expression levels. RESULTS In B16F10 cells, OH decreased melanin content and tyrosinase activity in a dose-dependent manner. OH exhibited anti-melanogenic activities via downregulation of cAMP signaling pathway, which consequently decreased melanin synthesis. In UVB-irradiated mice groups, OH decreased the number of active melanocytes and melanin granules. The expression of tyrosinase-related proteins and microphthalmia-associated transcription factor (MITF) decreased in the OH-administered groups. CONCLUSIONS These results show that OH inhibits melanin synthesis in B16F10 cells via downregulation of cAMP signaling pathway and in UVB-irradiated mice, by decreasing the number of active melanocytes and melanin granules.
Collapse
Affiliation(s)
- Jae Hyeong Han
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Joon Sok Bang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yeung Joon Choi
- Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University, Gyeongnam 53064, Republic of Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
27
|
Pynam H, Dharmesh SM. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed Pharmacother 2018; 106:98-108. [DOI: 10.1016/j.biopha.2018.06.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/21/2023] Open
|
28
|
Wojcik S, Weidinger D, Ständer S, Luger T, Hatt H, Jovancevic N. Functional characterization of the extranasal OR2A4/7 expressed in human melanocytes. Exp Dermatol 2018; 27:1216-1223. [PMID: 30091289 DOI: 10.1111/exd.13764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Olfactory receptors (ORs) were first described as specialized chemoreceptors in the nasal epithelium. In the last two decades, ORs have also been detected to be functionally expressed and active in different nonolfactory tissues of the human body, because they used to react to specific odour stimuli. In this study, we conducted a characterization of the extranasal OR2A4/7 expressed in primary human melanocytes and sections of the human skin. OR2A4/7 expression could be demonstrated at the transcript and protein level. We uncovered elevated intracellular cAMP and Ca2+ levels accompanied by elevated p38 and reduced p42/44 MAPK phosphorylation following odourant (cyclohexyl salicylate; CHS) stimulation of melanocytes. These results were associated with enhanced melanin biosynthesis in conjunction with the growth inhibition and differentiation of melanocytes. Our findings highlight the participation of OR2A4/7 in human primary melanocyte physiology and suggest an alternate mechanism that regulates melanogenesis.
Collapse
Affiliation(s)
- Sebastian Wojcik
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Weidinger
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Sonja Ständer
- Department of Dermatology, Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
29
|
Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci Rep 2018; 8:13928. [PMID: 30224716 PMCID: PMC6141596 DOI: 10.1038/s41598-018-32303-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants have been used to treat diseases from time immemorial. We aimed to examine the efficacy of the ethyl acetate fraction of Nymphaea nouchali flower extract (NNFE) against melanogenesis process, and the underlying mechanisms in vitro and in vivo. Paper spray ionisation mass spectroscopy and (+) mode electrospray ionisation revealed the presence of seven flavonoids, two spermidine alkaloids, 3,4,8,9,10-pentahydroxy-dibenzo[b,d]pyran-6-one, and shoyuflavone C in NNFE. NNFE (100 µg/mL) significantly inhibited the monophenolase and diphenolase activities of mushroom tyrosinase at 94.90 ± 0.003% and 93.034 ± 0.003%, respectively. NNFE significantly suppressed cellular tyrosinase activity and melanin synthesis in vitro in melan-a cells and in vivo in HRM2 hairless mice. Furthermore, NNFE inhibited tyrosinase (TYR), tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) expression, thereby blocking melanin synthesis. In particular, NNFE suppressed cAMP production with subsequent downregulation of CREB phosphorylation. Additionally, it stimulated MAP kinase phosphorylation (p38, JNK, and ERK1/2) and the proteasomal debasement pathway, leading to degradation of tyrosinase and MITF and the suppression of melanin production. Moreover, selective inhibitors of ERK1/2, JNK, and p38 attenuated NNFE inhibitory effects on melanogenesis, and MG-132 (a proteasome inhibitor) prevented the NNFE-induced decline in tyrosinase protein levels. In conclusion, these findings indicate that NNFE is a potential therapy for hyperpigmentation.
Collapse
|
30
|
Song HY, Kim HM, Kim WS, Byun EH, Jang BS, Choi DS, Byun EB. Effect of gamma irradiation on the anti-oxidant and anti-melanogenic activity of black ginseng extract in B16F10 melanoma cells. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Antioxidation and Melanogenesis Inhibition of Various Dendrobium tosaense Extracts. Molecules 2018; 23:molecules23071810. [PMID: 30037075 PMCID: PMC6099997 DOI: 10.3390/molecules23071810] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
This study investigated the polyphenol content, antioxidant activity, and inhibition ability of mushroom tyrosinase and melanogenesis of Dendrobium tosaense (DT) extract. Ground DT was extracted using deionized water (W) or 50% ethanol (50E) at room temperature (RT) or 50 °C (50T) for 20 min. The 50T + 50E extract exhibited the highest total phenol content 47.0 ± 4.0 mg gallic acid equivalent/g DT extract, the highest level of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) free-radical scavenging 66.0 ± 3.0 mg Trolox equivalent/g DT extract, and the highest reducing power 12.00 ± 0.50 mg vitamin C equivalent/g DT extract. The RT + W extract had the highest total flavonoid content 110.0 ± 3.0 mg quercetin equivalent/g DT extract. The RT + 50E extract had the lowest half maximal inhibitory concentration 1.30 ± 0.00 mg/mL for 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging, and the lowest half maximal inhibitory concentration 6.40 ± 0.30 mg/mL for mushroom tyrosinase inhibition activity. DT extracts, especially RT + W and 50T + W, exhibited potent inhibitory effects on melanogenesis of B16/F10 cells. These results demonstrated the application potential of DT extract for skincare.
Collapse
|
32
|
Kim DY, Won KJ, Hwang DI, Park SM, Kim B, Lee HM. Chemical Composition, Antioxidant and Anti-melanogenic Activities of Essential Oils from Chrysanthemum boreale
Makino
at Different Harvesting Stages. Chem Biodivers 2018; 15. [DOI: 10.1002/cbdv.201700506] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/29/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Do-Yoon Kim
- Department of Cosmetic Science; College of Life and Health; Hoseo University; Asan 31499 Korea
- College of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang 414006 P. R. China
| | - Kyung-Jong Won
- Department of Physiology; School of Medicine; Konkuk University; Chungju 27478 Korea
| | - Dae Il Hwang
- Department of Cosmetic Science; College of Life and Health; Hoseo University; Asan 31499 Korea
| | - Soo Min Park
- Department of Cosmetic Science; College of Life and Health; Hoseo University; Asan 31499 Korea
| | - Bokyung Kim
- Department of Physiology; School of Medicine; Konkuk University; Chungju 27478 Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science; College of Life and Health; Hoseo University; Asan 31499 Korea
| |
Collapse
|
33
|
Abstract
Proso millet (Panicum miliaceum) is rich in nutritive components and is widely used as a human food, feed and forage for animals, and fuel. This study investigated the effect of a proso millet extract on the inhibition of tyrosinase, a key enzyme in melanogenesis. High performance liquid chromatography analysis indicated that the proso millet extract contained phenolic tyrosinase inhibitors, such as syringic acid, p-coumaric acid, and ferulic acid. The extract had an IC50 for inhibition of tyrosinase activity of 14.02 mg/mL. A Lineweaver-Burk double reciprocal plot showed that the proso millet extract functioned as a mixed competitive and noncompetitive inhibitor. Proso millet has potential as a tyrosinase inhibitor that may have applications in the cosmetics industry.
Collapse
|
34
|
Byun EB, Song HY, Mushtaq S, Kim HM, Kang JA, Yang MS, Sung NY, Jang BS, Byun EH. Gamma-Irradiated Luteolin Inhibits 3-Isobutyl-1-Methylxanthine-Induced Melanogenesis Through the Regulation of CREB/MITF, PI3K/Akt, and ERK Pathways in B16BL6 Melanoma Cells. J Med Food 2017; 20:812-819. [DOI: 10.1089/jmf.2016.3890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Eui-Baek Byun
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ha-Yeon Song
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| | - Sajid Mushtaq
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Hye-Min Kim
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Jung Ae Kang
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Mi-So Yang
- Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Nak-Yun Sung
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| | - Beom-Su Jang
- Division of Biotechnology, Advanced Radiation Technology Institute/Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, Korea
| |
Collapse
|
35
|
Kim KI, Jeong HB, Ro H, Lee JH, Kim CD, Yoon TJ. Inhibitory effect of 5-iodotubercidin on pigmentation. Biochem Biophys Res Commun 2017; 490:1282-1286. [PMID: 28684314 DOI: 10.1016/j.bbrc.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 01/20/2023]
Abstract
Melanin pigments are the primary contributors for the skin color. They are produced in melanocytes and then transferred to keratinocytes, eventually giving various colors on skin surface. Although many depigmenting and/or skin-lightening agents have been developed, there is still a growing demand on materials for reducing pigmentation. We attempted to find materials for depigmentation and/or skin-lightening using the small molecule compounds commercially available, and found that 5-iodotubercidin had inhibitory potential on pigmentation. When HM3KO melanoma cells were treated with 5-iodotubercidin, pigmentation was dramatically reduced. The 5-iodotubercidin decreased the protein level for pigmentation-related molecules such as MITF, tyrosinase, and TRP1. In addition, 5-iodotubercidin decreased the phosphorylation of CREB, while increased the phosphorylation of AKT and ERK. These data suggest that 5-iodotubercidin inhibits melanogenesis via the regulation of intracellular signaling related with pigmentation. Finally, 5-iodotubercidin markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. Together, these data suggest that 5-iodotubercidin can be developed as a depigmenting and/or skin-lightening agent.
Collapse
Affiliation(s)
- Kyung-Il Kim
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea
| | - Hae Bong Jeong
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; Skin Med Co., Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea.
| |
Collapse
|
36
|
Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5232680. [PMID: 28660210 PMCID: PMC5474274 DOI: 10.1155/2017/5232680] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022]
Abstract
Natural medical plant is considered as a good source of tyrosinase inhibitors. Red vine leaf extract (RVLE) can be applied to a wide variety of medical disciplines, such as treatments for chronic venous insufficiency over many decades. This study investigated the tyrosinase inhibitory activity of RVLE containing gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol which are effective for skin hyperpigmentation. The five components contents are 1.03, 0.2, 18.55, 6.45, and 0.48 mg/g for gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol. The kinetic study showed the tyrosinase inhibitory of RVLE via a competitive reaction mechanism. RVLE solution has an IC50 (the half inhibitory concentration) value of 3.84 mg/mL for tyrosinase inhibition, that is, an effective tyrosinase inhibitory activity, and can be used as a whitening agent for cosmetic formulations in the future.
Collapse
|
37
|
|
38
|
Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidum. Int J Mol Sci 2016; 17:ijms17111798. [PMID: 27801787 PMCID: PMC5133799 DOI: 10.3390/ijms17111798] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
Ganoderma lucidum, a species of the Basidiomycetes class, has been attracting international attention owing to its wide variety of biological activities and great potential as an ingredient in skin care cosmetics including “skin-whitening” products. However, there is little information available on its inhibitory effect against tyrosinase activity. Therefore, the objectives of this study were to investigate the chemical composition of G. lucidum and its inhibitory effects on melanogenesis. We isolated the active compound from G. lucidum using ethanol extraction and ethyl acetate fractionation. In addition, we assayed its inhibitory effects on tyrosinase activity and melanin biosynthesis in B16F10 melanoma cells. In this study, we identified a bioactive compound, ganodermanondiol, which inhibits the activity and expression of cellular tyrosinase and the expression of tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), thereby decreasing melanin production. Furthermore, ganodermanondiol also affected the mitogen-activated protein kinase (MAPK) cascade and cyclic adenosine monophosphate (cAMP)-dependent signaling pathway, which are involved in the melanogenesis of B16F10 melanoma cells. The finding that ganodermanondiol from G. lucidum exerts an inhibitory effect on tyrosinase will contribute to the use of this mushroom in the preparation of skin care products in the future.
Collapse
|
39
|
Kang SJ, Choi BR, Lee EK, Kim SH, Yi HY, Park HR, Song CH, Lee YJ, Ku SK. Inhibitory Effect of Dried Pomegranate Concentration Powder on Melanogenesis in B16F10 Melanoma Cells; Involvement of p38 and PKA Signaling Pathways. Int J Mol Sci 2015; 16:24219-42. [PMID: 26473849 PMCID: PMC4632747 DOI: 10.3390/ijms161024219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF) expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA), cAMP response element-binding protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β) were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP.
Collapse
Affiliation(s)
- Su Jin Kang
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, Gyeongsan 712-715, Korea.
| | - Beom Rak Choi
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Eun Kyoung Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, Gyeongsan 712-715, Korea.
| | - Seung Hee Kim
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Hae Yeon Yi
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Hye Rim Park
- Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea.
| | - Chang Hyun Song
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| | - Young Joon Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, Gyeongsan 712-715, Korea.
| | - Sae Kwang Ku
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| |
Collapse
|
40
|
Hu YH, Zhuang JX, Yu F, Cui Y, Yu WW, Yan CL, Chen QX. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase. J Biosci Bioeng 2015; 121:385-9. [PMID: 26342770 DOI: 10.1016/j.jbiosc.2015.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023]
Abstract
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, cefotaxime, a cephalosporin antibacterial drug, was tested as an inhibitor of tyrosinase. The results show that cefotaxime inhibits both the monophenolase and diphenolase activities of tyrosinase. For the monophenolase activity, cefotaxime increased the lag time and decreased the steady-state activity with an IC50 of 3.2 mM. For the diphenolase activity, the inhibition by cefotaxime is reversible and mix-I type with an IC50 of 0.14 mM. The inhibition constants (K(I) and K(IS)) were determined to be 0.14 and 0.36 mM, respectively. The molecular mechanism of inhibition of tyrosinase by cefotaxime was determined by fluorescence quenching and molecular docking. The results demonstrated that cefotaxime was a static quencher of tyrosinase and that cefotaxime could dock favorably in the active site of tyrosinase. This research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors in the future.
Collapse
Affiliation(s)
- Yong-Hua Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jiang-Xing Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Feng Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yi Cui
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wen-Wen Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chong-Ling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|