1
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
2
|
Xu J, Chang L, Xiong Y, Peng Q. Chitosan-Based Hydrogels as Antibacterial/Antioxidant/Anti-Inflammation Multifunctional Dressings for Chronic Wound Healing. Adv Healthc Mater 2024:e2401490. [PMID: 39036852 DOI: 10.1002/adhm.202401490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Due to repeated microbial infection, persistent inflammation, excessive oxidative stress, and cell dysfunction, chronic wounds are difficult to heal, posing a serious threat to public health. Therefore, developing multifunctional wound dressings that can regulate the complex microenvironment of chronic wounds and enhance cellular function holds great significance. Recently, chitosan has emerged as a promising biopolymer for wound healing due to its excellent biocompatibility, biodegradability, and versatile bioactivity. The aim of this review is to provide a comprehensive understanding of the mechanisms of delayed chronic wound healing and discuss the healing-promoting properties of chitosan and its derivatives, such as good biocompatibility, antibacterial activity, hemostatic capacity, and the ability to promote tissue regeneration. On this basis, the potential applications of chitosan-based hydrogels are summarized in chronic wound healing, including providing a suitable microenvironment, eliminating bacterial infections, promoting hemostasis, inhibiting chronic inflammation, alleviating oxidative stress, and promoting tissue regeneration. In addition, the concerns and perspectives for the clinical application of chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuhuan Xiong
- Department of Stomatology, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
4
|
Bui VH, Vo HTN, Kim SK, Ngo DN. Caffeic acid-grafted chitooligosaccharides downregulate MAPK and NF-kB in RAW264.7 cells. Chem Biol Drug Des 2024; 103:e14496. [PMID: 38444006 DOI: 10.1111/cbdd.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 03/07/2024]
Abstract
Chitooligosaccharide (COS) is a derivative of chitosan, which is a natural macromolecular compound. COS has been shown effects in an inflammatory response. Recent reports show that COS derivatives have enhanced anti-inflammatory activity by inhibiting intracellular signals. Evaluation of the anti-inflammatory effect of caffeic acid conjugated COS chain (CA-COS) was performed in this study. The effects of CA-COS on the inflammatory response were demonstrated in lipopolysaccharide-stimulated RAW264.7 macrophages. The results showed that CA-COS inhibited nitric oxide (NO) production and downregulated the gene expression of nitric oxide synthase (iNOS), and cytokines such as tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-6 without cytotoxic effect. In addition, western blot analysis showed that CA-COS inhibits the protein expression of iNOS and nuclear factor kappa B (NF-kB), including p50 and p65, and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these results provide clear evidence for the anti-inflammatory mechanism of CA-COS that show great potential as a novel agent for the prevention and therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Van-Hoai Bui
- Department of Biochemistry, Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Ho Chi Minh City University of Industry and Trade (HUIT), Ho Chi Minh City, Vietnam
| | - Hong-Tham N Vo
- Department of Biochemistry, Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Seoul, Korea
| | - Dai-Nghiep Ngo
- Department of Biochemistry, Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics (Basel) 2023; 12:665. [PMID: 37107027 PMCID: PMC10135369 DOI: 10.3390/antibiotics12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
7
|
Guan Z, Feng Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. Int J Mol Sci 2022; 23:ijms23126761. [PMID: 35743209 PMCID: PMC9223384 DOI: 10.3390/ijms23126761] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Biodegradable chitin is the second-most abundant natural polysaccharide, widely existing in the exoskeletons of crabs, shrimps, insects, and the cell walls of fungi. Chitosan and chitooligosaccharide (COS, also named chitosan oligosaccharide) are the two most important deacetylated derivatives of chitin. Compared with chitin, chitosan and COS not only have more satisfactory physicochemical properties but also exhibit additional biological activities, which cause them to be widely applied in the fields of food, medicine, and agriculture. Additionally, due to their significant ability to improve gut microbiota, chitosan and COS are deemed prospective prebiotics. Here, we introduced the production, physicochemical properties, applications, and pharmacokinetic characteristics of chitosan and COS. Furthermore, we summarized the latest research on their antioxidant, anti-inflammatory, and antimicrobial activities. Research progress on the prebiotic functions of chitosan and COS is particularly reviewed. We creatively analyzed and discussed the mechanisms and correlations underlying these activities of chitosan and COS and their physicochemical properties. Our work enriched people's understanding of these non-plant-derived prebiotics. Based on this review, the future directions of research on chitosan and COS are explored. Collectively, optimizing the production technology of chitin derivatives and enriching understanding of their biological functions will shed more light on their capability to improve human health.
Collapse
Affiliation(s)
- Zhiwei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- School of Life Science, Qilu Normal University, Jinan 250200, China
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266347, China
- Correspondence:
| |
Collapse
|
8
|
Saleem S, Banerjee R, Rajesh Kannan R. Chrysin-Loaded Chitosan Nanoparticle-Mediated Neuroprotection in Aβ 1-42-Induced Neurodegenerative Conditions in Zebrafish. ACS Chem Neurosci 2022; 13:2017-2034. [PMID: 35696319 DOI: 10.1021/acschemneuro.2c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyloid β plaques and neurofibrillary tangles are the characteristic features of Alzheimer's disease (AD). Plaques of amyloid β play a pivotal role in affecting cognitive functions and memory. Alzheimer's disease is a progressive neurodegenerative disease and is one of the leading causes of dementia worldwide. Several treatment strategies focusing on the amyloid cascade have been implemented to treat AD. The blood-brain barrier (BBB) poses the main obstructive barrier by refraining drugs from penetrating the brain. Nanotechnology is a promising research field for brain drug delivery using nanosized particles. Zebrafish is emerging as a model of interest to elaborate on brain targeting and nanotechnology-based therapeutics for neurodegenerative diseases. In the current study, we have synthesized and characterized chrysin-loaded chitosan nanoparticles (Chr-Chi NPs) and evaluated them for neuroprotection against amyloid-β-induced toxicity. We find that treatment with Chr-Chi NPs helps to retain memory, cognition, and synaptic connections, which are otherwise compromised due to Aβ1-42 toxicity. The NPs further help in reducing aggregates of amyloid β, thus decreasing neuronal death and generation of reactive oxygen species (ROS). Taken together, our study brings to light a novel strategy for treating AD by a combined action on the neurons and amyloid aggregates mediated by chrysin and chitosan, respectively. Chr-Chi NPs, therefore, have the potential to provide a beneficial combinatorial treatment strategy for AD.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Science, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India
| | - Rachana Banerjee
- JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, West Bengal, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Science, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
9
|
Lee S, Byun S, Lee C, Park SH, Rudra D, Iwakura Y, Lee YJ, Im S, Hwang DS. Resolving the Mutually Exclusive Immune Responses of Chitosan with Nanomechanics and Immunological Assays. Adv Healthc Mater 2022; 11:e2102667. [PMID: 35397156 DOI: 10.1002/adhm.202102667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Multifaceted functions displayed by both pro- and anti-inflammatory properties of chitosan hinder its effective development as an immunomodulatory agent. Herein, the contributions of the bending stiffness of chitosan with regard to its immune regulatory properties toward inflammation are investigated. The anti-inflammatory properties of chitosan molecular weight (MW) with a shorter (≈1 kDa) or longer (≈15 kDa) than the persistent length (LP ) are compared using immunological assays and nanomechanics-based experiments on the surface forces apparatus (SFA). Interestingly, 1 kDa chitosan significantly enhances the generation of anti-inflammatory regulatory T cells (Tregs) through the Dectin-1-dependent pattern recognition receptor (PRR) on antigen-presenting cells. SFA analyses also show a similar trend of interaction forces between chitosan and diverse PRRs depending on their MW. The results obtained in the immunological and nanomechanical experiments are consistent and imply that the binding features of PRRs vary depending on the MW of chitosan, which may alter immune activity. In accordance, in vivo administration of only 1 kDa represses inflammatory responses and suppresses the progression of experimental colitis. This study elucidates a previously unexplored bending stiffness-dependent immune regulatory property of chitosan and suggests the applicability of low MW (rod-like) chitosan as a pharmaceutical ingredient to treat diverse inflammatory disorders.
Collapse
Affiliation(s)
- Suyoung Lee
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| | - Seohyun Byun
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| | - Changhon Lee
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| | - Sun Hee Park
- ImmmunoBiome Inc. 77 Cheongam‐Ro, Nam‐Gu Pohang 37673 Republic of Korea
| | - Dipayan Rudra
- ImmmunoBiome Inc. 77 Cheongam‐Ro, Nam‐Gu Pohang 37673 Republic of Korea
- School of Life Sciences and Technology ShanghaiTech University 393 Huaxia Middle Rd Pudong Shanghai 201210 China
| | - Yoichiro Iwakura
- Center for Animal Disease Models Research Institute for Science and Technology Tokyo University of Science 2669 Yamazaki Noda Chiba 278‐0022 Japan
- Center for Experimental Medicine and Systems Biology Institute of Medical Science the University of Tokyo Minato‐ku Tokyo 108‐0071 Japan
| | - You Jeong Lee
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- Department of Pharmacy Seoul National University Gwanak‐ro 38‐gil Seoul 08826 Republic of Korea
| | - Sin‐Hyeog Im
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- ImmmunoBiome Inc. 77 Cheongam‐Ro, Nam‐Gu Pohang 37673 Republic of Korea
| | - Dong Soo Hwang
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| |
Collapse
|
10
|
The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Mar Drugs 2022; 20:md20010069. [PMID: 35049924 PMCID: PMC8781119 DOI: 10.3390/md20010069] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan obtained from abundant marine resources has been proven to have a variety of biological activities. However, due to its poor water solubility, chitosan application is limited, and the degradation products of chitosan oligosaccharides are better than chitosan regarding performance. Chitosan oligosaccharides have two kinds of active groups, amino and hydroxyl groups, which can form a variety of derivatives, and the properties of these derivatives can be further improved. In this review, the key structures of chitosan oligosaccharides and recent studies on chitosan oligosaccharide derivatives, including their synthesis methods, are described. Finally, the antimicrobial and antitumor applications of chitosan oligosaccharides and their derivatives are discussed.
Collapse
|
11
|
Dietary supplementation of chitosan affects milk performance, markers of inflammatory response and antioxidant status in dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
13
|
Sutthasupha P, Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food Funct 2021; 11:7371-7388. [PMID: 32839793 DOI: 10.1039/d0fo00302f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is closely associated with insulin resistance (IR). The most likely links between the two are obesity-mediated systemic low-grade chronic inflammation, endoplasmic reticulum stress and mitochondrial dysfunction, which are all known to contribute to the development of type 2 diabetes (T2DM) and eventually diabetic nephropathy (DN). Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin commonly found in exoskeletons of crustaceans such as shrimp and crab as well as the cell walls of fungi. COS has various biological effects including lipid lowering, anti-inflammation, anti-diabetes, and anti-oxidant effects. Therefore, COS is a potential new therapeutic agent for treatment of the obesity-induced DN condition. It is an abundant natural polymer and therefore freely available. This review includes information regarding the relationship between obesity, IR, T2DM, and DN as well as the potential usefulness of COS in controlling lipid and cholesterol metabolism, T2DM and kidney injury models in both in vivo and in vitro studies. However, evidence is limited regarding the effect of COS on the DN model. Further studies, especially in obesity-induced DN, are needed to support the mechanisms proposed in this review.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. and Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Manek E, Darvas F, Petroianu GA. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer's Disease. Molecules 2020; 25:E4866. [PMID: 33096898 PMCID: PMC7587961 DOI: 10.3390/molecules25204866] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 24 million people worldwide and represents an immense medical, social and economic burden. While a vast array of active pharmaceutical ingredients (API) is available for the prevention and possibly treatment of AD, applicability is limited by the selective nature of the blood-brain barrier (BBB) as well as by their severe peripheral side effects. A promising solution to these problems is the incorporation of anti-Alzheimer drugs in polymeric nanoparticles (NPs). However, while several polymeric NPs are nontoxic and biocompatible, many of them are not biodegradable and thus not appropriate for CNS-targeting. Among polymeric nanocarriers, chitosan-based NPs emerge as biodegradable yet stable vehicles for the delivery of CNS medications. Furthermore, due to their mucoadhesive character and intrinsic bioactivity, chitosan NPs can not only promote brain penetration of drugs via the olfactory route, but also act as anti-Alzheimer therapeutics themselves. Here we review how chitosan-based NPs could be used to address current challenges in the treatment of AD; with a specific focus on the enhancement of blood-brain barrier penetration of anti-Alzheimer drugs and on the reduction of their peripheral side effects.
Collapse
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| | - Ferenc Darvas
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Georg A. Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| |
Collapse
|
15
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effect of N-2-hydroxypropyltrimethyl ammonium chloride chitosan-sulfate chitosan complex nanoparticles on dendritic cells. Carbohydr Polym 2020; 251:117098. [PMID: 33142636 DOI: 10.1016/j.carbpol.2020.117098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In this study, we synthesized negatively charged chitosan sulfate and positively charged hydroxypropyltrimethyl ammonium chloride chitosan (HACC), and then prepared chitosan derivatives with positive and negative ions as nanoparticles (NPs) by ovalbumin encapsulation using the polyelectrolyte method. NPs with different substitution sites and molecular weights (MW) were prepared by varying conditions. We then determined the zeta potential average, diameter, encapsulation effect, and their immunostimulatory effects on dendritic cells (DCs). The results showed that chitosan-derivative NPs ranged in size from 153.33 to 320.90 nm; all NPs were positive, with charges ranging from 17.10 to 39.30 mV and the encapsulation rates of 65 %-75 %. Three NPs greatly promoted the expression and secretion of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β) in DC cells: C2,3,6 chitosan sulfate-HACC (C2,3,6-HACC; 200 kDa), C3,6 chitosan sulfate-HACC (C3,6-HACC; 200 kDa) and C6 chitosan sulfate-HACC (C6-HACC; 50 kDa). We also found that 200-kDa C2,3,6-HACC and 50-kDa C6-HACC NPs greatly increased secretion of the major histocompatibility complex-II (MHC-II), CD40, CD80, and CD86, indicating that these NPs promote effective antigen presentation, further increasing immunity effects. Finally, we applied laser confocal photography and determined that NPs entered the cell to promote the regulation of cellular immune activity; this discovery lays a foundation for further research on their mechanism of their action. Therefore, C2,3,6-HACC and C6-HACC NPs have the potential as immunological adjuvants.
Collapse
Affiliation(s)
- Chaojie Xu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
16
|
Zheng Y, Yan S, Qi J, Zhao Y, Guo X, Shi B. Protective effect of chitosan oligosaccharide against oxidative damage of peripheral blood mononuclear cells in dairy cows induced by diethylenetriamine/nitric oxide via NF-κB signalling pathway. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1772131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yaguang Zheng
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyu Qi
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Guo
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
17
|
Gao Q, Zhang J, Chen C, Chen M, Sun P, Du W, Zhang S, Liu Y, Zhang R, Bai M, Fan C, Wu J, Men T, Jiang X. In Situ Mannosylated Nanotrinity-Mediated Macrophage Remodeling Combats Candida albicans Infection. ACS NANO 2020; 14:3980-3990. [PMID: 32167741 DOI: 10.1021/acsnano.9b07896] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep Candida albicans infection is one of the major causes of death in immunosuppressed hosts. Remodeling macrophages to phenotype M1 can decrease fungus burden and facilitate combating C. albicans under an immunosuppressive state. In this study, a nanotrinity was exploited to direct fungicidal macrophage polarization by leveraging the regulation pathways in macrophage redifferentiation. Conventional chemotherapeutic imatinib, which can abrogate M2 macrophage polarization via "shutting off" the STAT6 phosphorylation pathway, was encapsulated in biodegradable polymeric nanoparticles. In house-customized dual functional mannosylated chitosan oligosaccharides were then coated on the surface of the imatinib-laden nanoparticles, and thus, a mannosylated nanotrinity was achieved with ternary functions for macrophage remodeling: (i) imatinib-blocked STAT6 phosphorylation pathway for decreasing M2 macrophage population; (ii) chitosan oligosaccharides-mediated TLR-4 pathway activation that could promote macrophage redifferentiation to M1 phenotype; (iii) mannose motif-enhanced macrophage targeting. After physiochemical characterization, regulatory effects of the mannosylated nanotrinity on macrophages and the anti-C. albicans efficacy were evaluated at the cellular level and animal level, respectively. The results demonstrated that our mannosylated nanotrinity could efficiently induce macrophage polarization toward the M1 phenotype, decrease M2 phenotype production, and markedly lessen fungus burden and increased the median survival time of mice infected with C. albicans. Therefore, the mannosylated nanotrinity developed in this study could significantly induce macrophage remodeling in situ by the two-pronged process, "turning on" M1 phenotype polarization meanwhile "shutting off" M2 phenotype polarization, and thus allowed to eradicate C. albicans infection.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Chen Chen
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Menglin Chen
- Department of engineering, Aarhus University, Navitas, Inge Lehmanns Gade 10, 8000 Aarhus, Denmark
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, PR China
| | - Wei Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Shengchang Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Rui Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Mei Bai
- Yancheng City No.1 People's Hospital, Yancheng 224001, Jiangsu Province, PR China
| | - Changchun Fan
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, PR China
| | - Tongyi Men
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Xinyi Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| |
Collapse
|
18
|
Recent Updates in Pharmacological Properties of Chitooligosaccharides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568039. [PMID: 31781615 PMCID: PMC6875261 DOI: 10.1155/2019/4568039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.
Collapse
|
19
|
Wu C, Dai Y, Yuan G, Su J, Liu X. Immunomodulatory Effects and Induction of Apoptosis by Different Molecular Weight Chitosan Oligosaccharides in Head Kidney Macrophages From Blunt Snout Bream ( Megalobrama amblycephala). Front Immunol 2019; 10:869. [PMID: 31156612 PMCID: PMC6530513 DOI: 10.3389/fimmu.2019.00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 01/14/2023] Open
Abstract
Prophylactic administration of immunopotentiators has been tested and practiced as one of the most promising disease prevention methods in aquaculture. Chitosan oligosaccharide (COS), as an ideal immunopotentiator, is mainly used as feed additives in aquaculture, and the antimicrobial and immune enhancement effects are highly correlated with molecular weight (MW), but little is known about the mechanisms in teleost. Here, we isolated and purified macrophages in head kidney from blunt snout bream (Megalobrama amblycephala), stimulated them with three different MW (~500 Da, ~1000 Da and 2000~3000 Da) COSs, performed RNA-sequencing, global transcriptional analyses, and verification by quantitative real-time PCR (qRT-PCR) and immunofluorescent staining methods. Differential expression gene (DEG) analysis indicated that gene expression patterns are different and the proportion of unique genes are relatively high in different treatment groups. Biological process and gene set enrichment analysis (GSEA) demonstrated that all three COSs activate resting macrophages, but the degrees are different. Weighted gene co-expression network analysis (WGCNA) reflected gene modules correlated to MW, the module hub genes and top GO terms showed the activation of macrophage was positively correlated with the MW, and larger MW COS activated cell death associated GO terms. Further use of the screening and enrichment functions of STRING and Pfam databases discovered that apoptosis-related pathways and protein families were activated, such as the P53 pathway and caspase protein family. qRT-PCR results showed that as the stimulation time extends, the innate immune-related and P53 pathways are gradually activated, and the degree of activation is positively correlated with the stimulation time. In addition, apoptosis was detected by immunofluorescent staining in three groups. Therefore, the use of COS has two sides—it can activate the immune system against pathogen invasion, but with the increase in stimulation time and MW, macrophage apoptosis is induced, which may be caused by abnormal replication of DNA and excessive inflammation. This study provides a theoretical basis for the rational use of COS as an immunopotentiator in aquaculture.
Collapse
Affiliation(s)
- Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yishan Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| |
Collapse
|
20
|
Sanjeewa KA, Kang N, Ahn G, Jee Y, Kim YT, Jeon YJ. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Dai Z, Feng S, Liu A, Wang H, Zeng X, Yang CS. Anti-inflammatory effects of newly synthesized α-galacto-oligosaccharides on dextran sulfate sodium-induced colitis in C57BL/6J mice. Food Res Int 2018; 109:350-357. [PMID: 29803460 PMCID: PMC5976246 DOI: 10.1016/j.foodres.2018.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Abstract
α-Galacto-oligosaccharides have been reported to have beneficial health effects. The purpose of this study was to investigate the preventive effects of a newly synthesized α-galacto-oligosaccharide mixture (α-GOSg), as well as raffinose family oligosaccharides (RFOs), on dextran sulfate sodium (DSS)-induced colitis in mice. When administered in drinking water at 0.5% for 15 days, both α-GOSg and RFOs significantly decreased fecal hemoglobin content, partially prevented colon length shortening, reduced the severity of colon inflammation, and attenuated DSS-induced upregulation of cyclooxygenase-2. In addition, the activation of the inflammatory regulator nuclear factor-kappa B was slightly inhibited by α-GOSg. The results showed that the newly synthesized α-GOSg preparation has similar anti-inflammatory activities as RFOs in this colitis model. The anti-inflammatory activity of α-GOSg in humans remains to be investigated.
Collapse
Affiliation(s)
- Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Anna Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Guo J, Zheng Z, Lu X, Zeng S, Chen C, Zhang L, Zheng B. Purification and Characterisation of κ-Carrageenan Oligosaccharides Prepared by κ-Carrageenase from Thalassospira sp. Fjfst-332. Carbohydr Polym 2018; 180:314-327. [DOI: 10.1016/j.carbpol.2017.10.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 01/15/2023]
|
23
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effects of sulfated chitosans on RAW 264.7 mouse macrophages via the activation of PI3K/Akt signaling pathway. Int J Biol Macromol 2017; 108:1310-1321. [PMID: 29129634 DOI: 10.1016/j.ijbiomac.2017.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
To investigate the immunostimulatory effects of chitosan sulfates, we prepared α- and β-chitosan sulfates with different molecular weights and compared their immunostimulatory activities in RAW 264.7 macrophages. Results suggest that β-chitosan sulfates were more active than α-chitosan in promoting nitric oxide (NO) production. Further study show that β-chitosan sulfate significantly promoted the production of NO, prostaglandin E2, tumor necrosis factor (TNF)-α, interleukin-6 and interleukin-1β at the levels of transcription and translation. Moreover, Western blots revealed that it induced the phosphorylation of p85 and Akt, and the nuclear translocation of p50/p65 and c-Fos/c-Jun. The luciferase activity of cells pretreated with β-chitosan sulfate further confirmed the nuclear translocation of p50/p65 and c-Fos/c-Jun. Determination of Toll-like receptor (TLR) 4 expression suggested that β-chitosan sulfate at least partly bound to TLR4. In conclusion, β-chitosan sulfates activate RAW 264.7 cells through the PI3K-Akt pathway, which is dependent on activator protein-1 and nuclear factor-κB activation.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
24
|
Ouyang QQ, Zhao S, Li SD, Song C. Application of Chitosan, Chitooligosaccharide, and Their Derivatives in the Treatment of Alzheimer's Disease. Mar Drugs 2017; 15:E322. [PMID: 29112116 PMCID: PMC5706020 DOI: 10.3390/md15110322] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Classic hypotheses of Alzheimer's disease (AD) include cholinergic neuron death, acetylcholine (ACh) deficiency, metal ion dynamic equilibrium disorder, and deposition of amyloid and tau. Increased evidence suggests neuroinflammation and oxidative stress may cause AD. However, none of these factors induces AD independently, but they are all associated with the formation of Aβ and tau proteins. Current clinical treatments based on ACh deficiency can only temporarily relieve symptoms, accompanied with many side-effects. Hence, searching for natural neuroprotective agents, which can significantly improve the major symptoms and reverse disease progress, have received great attention. Currently, several bioactive marine products have shown neuroprotective activities, immunomodulatory and anti-inflammatory effects with low toxicity and mild side effects in laboratory studies. Recently, chitosan (CTS), chitooligosaccharide (COS) and their derivatives from exoskeletons of crustaceans and cell walls of fungi have shown neuroprotective and antioxidative effects, matrix metalloproteinase inhibition, anti-HIV and anti-inflammatory properties. With regards to the hypotheses of AD, the neuroprotective effect of CTS, COS, and their derivatives on AD-like changes in several models have been reported. CTS and COS exert beneficial effects on cognitive impairments via inhibiting oxidative stress and neuroinflammation. They are also a new type of non-toxic β-secretase and AChE inhibitor. As neuroprotective agents, they could reduce the cell membrane damage caused by copper ions and decrease the content of reactive oxygen species. This review will focus on their anti-neuroinflammation, antioxidants and their inhibition of β-amyloid, acetylcholinesterase and copper ions adsorption. Finally, the limitations and future work will be discussed.
Collapse
Affiliation(s)
- Qian-Qian Ouyang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China.
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shannon Zhao
- American Studies and Ethnicity, University of Southern California, Los Angeles, CA 90089, USA.
| | - Si-Dong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
25
|
Shin JY, Kang JS, Byun HW, Ahn EK. Regulatory effects and molecular mechanism of Trigonostemon reidioides on lipopolysaccharide‑induced inflammatory responses in RAW264.7 cells. Mol Med Rep 2017; 16:5137-5142. [PMID: 28849132 PMCID: PMC5647046 DOI: 10.3892/mmr.2017.7297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
Trigonostemon reidioides (Kurz) Craib has been traditionally used for the treatment of vomiting and asthma in Cambodia. However, the underlying molecular mechanisms of the anti‑inflammatory effect of T. reidioides extract remains unknown. The present study investigated the anti‑inflammatory activity and molecular action of an ethanol extract of T. reidioides (ETR) in lipopolysaccharide (LPS)‑induced RAW264.7 macrophage cells. Nitric oxide assays, ELISA, reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used. ETR treatment inhibited the production of nitric oxide by downregulating inducible nitric oxide synthase expression, while exhibiting no significant cytotoxicity compared with macrophages treated with LPS‑alone. Consequently, ETR decreased the production of certain proinflammatory cytokines, including interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α. Additionally, ETR inhibited the activation of mitogen‑activated protein kinases (MAPKs), including extracellular signal‑regulated kinase, c‑Jun N‑terminal kinase and p38 MAPK, as well as the phosphatidylinositol 3‑kinase (PI3K)/Akt signaling pathway. These effects were mediated by inhibition of the nuclear localization of nuclear factor κ‑B (NF‑κB). Taken together, the results of the present study demonstrate that ETR may exert an anti‑inflammatory effect by inhibiting the expression of inflammatory mediators and cytokines via downregulation of the NF‑κB, PI3K/Akt and the MAPK signaling pathways in LPS‑stimulated macrophages. Based on these results, we hypothesize that ETR may be a potential therapeutic agent for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Ju Young Shin
- Bio‑Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 443‑270, Republic of Korea
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 404‑708, Republic of Korea
| | - Hye-Woo Byun
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 404‑708, Republic of Korea
| | - Eun-Kyung Ahn
- Bio‑Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 443‑270, Republic of Korea
| |
Collapse
|
26
|
Wang J, Zhang P, He H, Se X, Sun W, Chen B, Zhang L, Yan X, Zou K. Eburicoic acid from Laetiporus sulphureus (Bull.:Fr.) Murrill attenuates inflammatory responses through inhibiting LPS-induced activation of PI3K/Akt/mTOR/NF-κB pathways in RAW264.7 cells. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:845-856. [PMID: 28577049 DOI: 10.1007/s00210-017-1382-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/17/2017] [Indexed: 01/14/2023]
Abstract
Excessive activation of macrophages has been implicated in various types of inflammatory injury. Suppression of macrophage activation would have therapeutic benefits, leading to the alleviation of the progression of inflammatory diseases. Eburicoic acid (EA) is one of main bioactive components isolated from Laetiporus sulphureus (Bull.:Fr.) Murrill. In our previous study, we found that EA possessed anti-inflammatory activities. However, the cellular and molecular mechanisms underlying its anti-inflammatory activities remain to be poorly understood. The present study aimed to further evaluate its effect on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophage cells. We investigated the anti-inflammatory effect by modulating LPS-induced activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/nuclear transcription factor-κB (NF-κB) pathway in RAW264.7 cells. The results showed that EA caused no obvious cytotoxicity, and its suitable concentrations on RAW264.7 cells were in the range from 0.02 to 0.08 μM. EA significantly inhibited the releases of inflammatory mediators, nitrite oxide (NO) and prostaglandin E2 (PGE2); suppressed mRNA and protein expression levels of inducible nitrite oxide synthase (iNOS) and cyclooxygenase-2 COX-2 and pro-inflammatory cytokine TNF-α, IL-6, and IL-1β; and reduced levels of phosphorylated PI3K, Akt, mTOR, and NF-κBp65 in LPS-induced RAW264.7 cells in dose- and time-dependent manners. These aforementioned results indicated that EA executed anti-inflammatory effect on LPS-induced RAW264.7 cells, and this effect might be achieved via suppressing the PI3K/Akt/mTOR/NF-κB signaling pathway and inhibiting the LPS-induced productions of inflammatory mediators and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China.,Hubei Research Institute of Tujia Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Pan Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China. .,Hubei Research Institute of Tujia Medicine, China Three Gorges University, Yichang, Hubei, China.
| | - Xinxin Se
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wenjun Sun
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Beiyan Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Lin Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Ximing Yan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China.,Hubei Research Institute of Tujia Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
27
|
Mineral-balanced deep sea water enhances the inhibitory effects of chitosan oligosaccharide on atopic dermatitis-like inflammatory response. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther 2016; 170:80-97. [PMID: 27773783 DOI: 10.1016/j.pharmthera.2016.10.013] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan oligosaccharide (COS) is an oligomer of β-(1➔4)-linked d-glucosamine. COS can be prepared from the deacetylation and hydrolysis of chitin, which is commonly found in the exoskeletons of arthropods and insects and the cell walls of fungi. COS is water soluble, non-cytotoxic, readily absorbed through the intestine and mainly excreted in the urine. Of particular importance, COS and its derivatives have been demonstrated to possess several biological activities including anti-inflammation, immunostimulation, anti-tumor, anti-obesity, anti-hypertension, anti-Alzheimer's disease, tissue regeneration promotion, drug and DNA delivery enhancement, anti-microbial, anti-oxidation and calcium-absorption enhancement. The mechanisms of actions of COS have been found to involve the modulation of several important pathways including the suppression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) and the activation of AMP-activated protein kinase (AMPK). This review summarizes the current knowledge of the preparation methods, pharmacokinetic profiles, biological activities, potential therapeutic applications and safety profiles of COS and its derivatives. In addition, future research directions are discussed.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Varanuj Chatsudthipong
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
29
|
Tong Q, Yang Y, Xiong Z, Li Z, Yuan W, Wang T. Chitooligosaccharides Downregulate TLR4/NF-κB/COX-2 Signaling Cascade in Dextran Sulfate Sodium-treated Mice: A Potential Mechanism for the Anti-colitis Effect. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.720.728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Makene VW, Tijani JO, Petrik LF, Pool EJ. Evaluation of cytotoxicity and inflammatory activity of wastewater collected from a textile factory before and after treatment by coagulation-flocculation methods. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:471. [PMID: 27418078 DOI: 10.1007/s10661-016-5441-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Collapse
Affiliation(s)
- Vedastus W Makene
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Jimoh O Tijani
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, South Africa
| | - Leslie F Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, South Africa
| | - Edmund J Pool
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
31
|
Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. NATURE MATERIALS 2016; 15:679-85. [PMID: 26974408 PMCID: PMC4900449 DOI: 10.1038/nmat4590] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 01/29/2016] [Indexed: 05/04/2023]
Abstract
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.
Collapse
Affiliation(s)
- Ron Feiner
- The laboratory for tissue engineering and regenerative medicine, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leeya Engel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharon Fleischer
- The laboratory for tissue engineering and regenerative medicine, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maayan Malki
- The laboratory for tissue engineering and regenerative medicine, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Idan Gal
- The laboratory for tissue engineering and regenerative medicine, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Shapira
- The laboratory for tissue engineering and regenerative medicine, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Tal Dvir
- The laboratory for tissue engineering and regenerative medicine, Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Zhang Y, Zhang H, Zhao Z, Lv M, Jia J, Zhang L, Tian X, Chen Y, Li B, Liu M, Han D, Ji C. Enhanced expression of glucose-regulated protein 78 correlates with malondialdehyde levels during the formation of liver cirrhosis in rats. Exp Ther Med 2015; 10:2119-2125. [PMID: 26668603 PMCID: PMC4665701 DOI: 10.3892/etm.2015.2783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to explore the role of glucose-regulated protein 78 (GRP78) in the development of liver cirrhosis promoted by intestinal endotoxemia in rats. Fifty-one male Wistar rats were randomly divided into the liver cirrhosis 4-week, 6-week and 8-week groups and the normal control group at each time point. Liver cirrhosis was induced by employing multiple pathogenic factors in the rats. Blood and liver tissues were collected. The levels of alanine aminotransferase (ALT), homocysteine, endotoxin and tumor necrosis factor-α (TNF-α) in the plasma, and TNF-α, malondialdehyde (MDA) and procollagen type III peptide (PIIIP) in the liver tissues were determined. The mRNA and protein expression levels of GRP78 in the liver were detected using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Morphological changes were observed through hematoxylin and eosin and van Gieson staining of the liver. Liver cirrhosis caused marked histopathological changes to the livers of the rats. Following significant increases in the levels of ALT, homocysteine, endotoxin and TNF-α in the plasma, and TNF-α, MDA and PIIIP in the liver tissues of all experimental groups with the progression of liver cirrhosis, the mRNA and protein expression levels of GRP78 also gradually increased. In addition, correlation analysis indicated that the enhanced expression of GRP78 correlated with the MDA levels of the rats during the formation of liver cirrhosis.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Hepatology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Huiying Zhang
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhongfu Zhao
- Institute of Hepatology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Minli Lv
- ICU of The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiantao Jia
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Lili Zhang
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xiaoxia Tian
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yunxia Chen
- Department of Microbiology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Baohong Li
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Mingshe Liu
- Institute of Hepatology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Dewu Han
- Institute of Hepatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Cheng Ji
- USC Research Center for Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
33
|
Makene VW, Pool EJ. The assessment of inflammatory activity and toxicity of treated sewage using RAW264.7 cells. WATER AND ENVIRONMENT JOURNAL : THE JOURNAL 2015; 29:353-359. [PMID: 26900395 PMCID: PMC4744696 DOI: 10.1111/wej.12127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Toxicity and inflammatory activity of wastewater samples were evaluated using RAW264.7 cells as a bioassay model. The RAW264.7 cell cultures were exposed to sterile filtered wastewater samples collected from a sewage treatment plant. Cell viability was evaluated using WST-1 and XTT assays. Inflammatory effects of samples were assessed by determination of nitric oxide (NO) and interleukin 6 (IL-6). The NO was estimated using the Griess reaction and IL-6 was measured by enzyme-linked immunoassay. All samples had no toxicity effects to RAW264.7 cells, however they significantly (P < 0.001) induced NO and IL-6 production. The highest NO (12.5 ± 0.38 μM) and IL-6 (25383.84 ± 2327 pg/mL) production was induced by postbiofiltration sample. Final effluent induced the lowest inflammatory response, which indicates effective sewage treatment. In conclusion, wastewater samples can induce inflammatory activities in RAW264.7 cells. The RAW264.7 cells, therefore, can be used as a model for monitoring the quality of treated sewage.
Collapse
Affiliation(s)
- Vedastus W Makene
- Department of Medical Bioscience University of the Western Cape Bellville 7535 South Africa
| | - Edmund J Pool
- Department of Medical Bioscience University of the Western Cape Bellville 7535 South Africa
| |
Collapse
|
34
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
35
|
Ma C, Wang Y, Dong L, Li M, Cai W. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2015; 47:207-13. [PMID: 25651848 DOI: 10.1093/abbs/gmu135] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resveratrol, the most important ingredient extracted from Polygonum cuspidatum, exerts cytoprotective effects via anti-inflammatory actions in vitro. In this study, we investigated this effect of resveratrol on the lipopolysaccharide (LPS)-induced inflammatory response and its underlying molecular mechanism of action in RAW264.7 murine macrophages. Results showed that resveratrol down-regulated the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6), therefore, suppressed the production of nitric oxide and the secretion of IL-6 in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Resveratrol also inhibited the translocation of high-mobility group box 1 (HMGB1) from the nucleus to the cytoplasm and of nuclear transcription factor kappa-B (NF-κB) p65 from the cytoplasm to the nucleus; it suppressed the phosphorylation of IκBα. Furthermore, these actions were mediated by suppressing the phosphorylation of signal transducer and activator of transcription (STAT)-1 and -3. In conclusion, these data indicate that resveratrol exerts anti-inflammatory effects, at least in part by reducing the release of HMGB1 and modulating the NF-κB and Janus kinase/STAT signaling pathways. Resveratrol could potentially be developed as a useful agent for the chemoprevention of inflammatory diseases.
Collapse
Affiliation(s)
- Chunfang Ma
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Yin Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Lei Dong
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Minjing Li
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| | - Wanru Cai
- The Second Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310005, China
| |
Collapse
|