1
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
Anti-Cancer Properties of Ginkgolic Acids in Human Nasopharyngeal Carcinoma CNE-2Z Cells via Inhibition of Heat Shock Protein 90. Molecules 2021; 26:molecules26216575. [PMID: 34770993 PMCID: PMC8588116 DOI: 10.3390/molecules26216575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ginkgo biloba L. has been used in traditional Chinese medicine (TCM) for thousands of years. However, the anti-cancer properties of ginkgolic acids (GAS) isolated from G. biloba have not been investigated in human nasopharyngeal carcinoma cells. In this study, GAS exhibited an inhibitory effect on the ATPase activity of heat shock protein 90 (Hsp90) and anti-proliferative activities against four human cancer cell lines, with IC50 values ranging from 14.91 to 23.81 μg·mL−1. In vivo experiments confirmed that GAS inhibited tumor growth in CNE-2Z cell-xenografted nude mice with low hepatotoxicity. We further demonstrated that GAS suppressed migration and invasion and induced the apoptosis of CNE-2Z cells by inducing the degradation of Hsp90 client proteins (MMP-2, MMP-9, Her-2, c-Raf, Akt, and Bcl-2). Together, GAS are new Hsp90 inhibitors by binding to Hsp90 (hydrogen bond and hydrophobic interaction). Thus, GAS from G. biloba might represent promising Hsp90 inhibitors for the development of anti-nasopharyngeal carcinoma agents.
Collapse
|
3
|
Weidenauer L, Quadroni M. Phosphorylation in the Charged Linker Modulates Interactions and Secretion of Hsp90β. Cells 2021; 10:cells10071701. [PMID: 34359868 PMCID: PMC8304327 DOI: 10.3390/cells10071701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Hsp90β is a major chaperone involved in numerous cellular processes. Hundreds of client proteins depend on Hsp90β for proper folding and/or activity. Regulation of Hsp90β is critical to coordinate its tasks and is mediated by several post-translational modifications. Here, we focus on two phosphorylation sites located in the charged linker region of human Hsp90β, Ser226 and Ser255, which have been frequently reported but whose function remains unclear. Targeted measurements by mass spectrometry indicated that intracellular Hsp90β is highly phosphorylated on both sites (>90%). The level of phosphorylation was unaffected by various stresses (e.g., heat shock, inhibition with drugs) that impact Hsp90β activity. Mutating the two serines to alanines increased the amount of proteins interacting with Hsp90β globally and increased the sensitivity to tryptic cleavage in the C-terminal domain. Further investigation revealed that phosphorylation on Ser255 and to a lesser extent on Ser226 is decreased in the conditioned medium of cultured K562 cells, and that a non-phosphorylatable double alanine mutant was secreted more efficiently than the wild type. Overall, our results show that phosphorylation events in the charged linker regulate both the interactions of Hsp90β and its secretion, through changes in the conformation of the chaperone.
Collapse
|
4
|
Usman B, Nawaz G, Zhao N, Liao S, Liu Y, Li R. Precise Editing of the OsPYL9 Gene by RNA-Guided Cas9 Nuclease Confers Enhanced Drought Tolerance and Grain Yield in Rice ( Oryza sativa L.) by Regulating Circadian Rhythm and Abiotic Stress Responsive Proteins. Int J Mol Sci 2020; 21:ijms21217854. [PMID: 33113937 PMCID: PMC7660227 DOI: 10.3390/ijms21217854] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
Abscisic acid (ABA) is involved in regulating drought tolerance, and pyrabactin resistance-like (PYL) proteins are known as ABA receptors. To elucidate the role of one of the ABA receptors in rice, OsPYL9 was mutagenized through CRISPR/Cas9 in rice. Homozygous and heterozygous mutant plants lacking any off-targets and T-DNA were screened based on site-specific sequencing and used for morpho-physiological, molecular, and proteomic analysis. Mutant lines appear to accumulate higher ABA, antioxidant activities, chlorophyll content, leaf cuticular wax, and survival rate, whereas a lower malondialdehyde level, stomatal conductance, transpiration rate, and vascular bundles occur under stress conditions. Proteomic analysis found a total of 324 differentially expressed proteins (DEPs), out of which 184 and 140 were up and downregulated, respectively. The OsPYL9 mutants showed an increase in grain yield under both drought and well watered field conditions. Most of the DEPs related to circadian clock rhythm, drought response, and reactive oxygen species were upregulated in the mutant plants. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEPs were only involved in circadian rhythm and Gene Ontology (GO) analysis showed that most of the DEPs were involved in response to abiotic stimulus, and abscisic acid-activated signaling pathways. Protein GIGANTEA, Adagio-like, and Pseudo-response regulator proteins showed higher interaction in protein–protein interaction (PPI) network. Thus, the overall results showed that CRISPR/Cas9-generated OsPYL9 mutants have potential to improve both drought tolerance and the yield of rice. Furthermore, global proteome analysis provides new potential biomarkers and understandings of the molecular mechanism of rice drought tolerance.
Collapse
Affiliation(s)
- Babar Usman
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (B.U.); (G.N.); (N.Z.); (S.L.)
| | - Gul Nawaz
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (B.U.); (G.N.); (N.Z.); (S.L.)
| | - Neng Zhao
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (B.U.); (G.N.); (N.Z.); (S.L.)
| | - Shanyue Liao
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (B.U.); (G.N.); (N.Z.); (S.L.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (B.U.); (G.N.); (N.Z.); (S.L.)
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| |
Collapse
|
5
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Yuan C, Han J, Chang H, Xiao W. Arabidopsis CK2 family gene CKB3 involved in abscisic acid signaling. BRAZ J BIOL 2020; 81:318-325. [PMID: 32491060 DOI: 10.1590/1519-6984.225345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022] Open
Abstract
CKB3 is a regulatory (beta) subunit of CK2. In this study Arabidopsis thaliana homozygous T-DNA mutant ckb3 was studied to understand the role of CKB3 in abscisic acid (ABA) signaling. The results shown: CKB3 was expressed in all organs and the highest expression in the seeds, followed by the root. During seed germination and root growth the ckb3 mutant showed reduced sensitivity to ABA. The ckb3 mutant had more stomatal opening and increased proline accumulation and leaf water loss. The expression levels of number of genes in the ABA regulatory network had changed. This study demonstrates that CKB3 is an ABA signaling-related gene and may play a positive role in ABA signaling.
Collapse
Affiliation(s)
- C Yuan
- College of Life Science, Luoyang Normal University, Luoyang, PR China
| | - J Han
- College of Life Science, Luoyang Normal University, Luoyang, PR China
| | - H Chang
- College of Life Science and Engineering, Handan University, Handan, PR China
| | - W Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, PR China
| |
Collapse
|
7
|
Yuan C, Ai J, Chang H, Xiao W, Liu L, Zhang C, He Z, Huang J, Li J, Guo X. CKB1 is involved in abscisic acid and gibberellic acid signaling to regulate stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2017; 130:587-598. [PMID: 28342111 DOI: 10.1007/s10265-017-0924-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/11/2016] [Indexed: 05/08/2023]
Abstract
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.
Collapse
Affiliation(s)
- Congying Yuan
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Jianping Ai
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hongping Chang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Wenjun Xiao
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Cheng Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Zhuang He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Ji Huang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Jinyan Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China
| | - Xinhong Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Structure-based virtual screening and optimization of modulators targeting Hsp90-Cdc37 interaction. Eur J Med Chem 2017; 136:63-73. [PMID: 28482218 DOI: 10.1016/j.ejmech.2017.04.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 11/21/2022]
Abstract
Identification of novel Hsp90 inhibitors to disrupt Hsp90-Cdc37 protein-protein interaction (PPI) could be an alternative strategy to achieve Hsp90 inhibition. In this paper, a series of small molecules targeting Hsp90-Cdc37 complex are addressed and characterized. The molecules' key characters are determined by utilizing a structure-based virtual screening workflow, derivatives synthesis, and biological evaluation. Structural optimization and structure-activity relationship (SAR) analysis were then carried out on the virtual hit of VS-8 with potent activity, which resulted in the discovery of compound 10 as a more potent regulator of Hsp90-Cdc37 interaction with a promising inhibitory effect (IC50 = 27 μM), a moderate binding capacity (KD = 40 μM) and a preferable antiproliferative activity against several cancer lines including MCF-7, SKBR3 and A549 cell lines (IC50 = 26 μM, 15 μM and 38 μM respectively). All the data suggest that compound 10 exhibits moderate inhibitory effect on Hsp90-Cdc37 and could be regard as a first evidence of a non-natural compound targeting Hsp90-Cdc37 PPI.
Collapse
|
9
|
Borges JC, Seraphim TV, Dores-Silva PR, Barbosa LRS. A review of multi-domain and flexible molecular chaperones studies by small-angle X-ray scattering. Biophys Rev 2016; 8:107-120. [PMID: 28510050 PMCID: PMC5425780 DOI: 10.1007/s12551-016-0194-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.
Collapse
Affiliation(s)
- Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| | - Thiago V Seraphim
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
10
|
Götz M, Wortmann P, Schmid S, Hugel T. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously. Methods Enzymol 2016; 581:487-516. [DOI: 10.1016/bs.mie.2016.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|